Supersymmetry and supergravity

Lecture 21



SUSY and quantum corrections

 So far we have discussed the construction of classical Lagrangians that are
invariant under 4d .//° = 1 supersymmetry

* Let us now discuss some aspects of the quantum corrections in these models
* We begin with the simplest Wess-Zumino model

S = jd“xdzedz@(b@ + (Jd“xd%’ W(®)+h.c. )

% Lo, @ + Lo @3
= —m —
5 0 3 80
* The 0 subscripts on the mass and coupling are a reminder that these are the

bare mass and coupling that enter the bare Lagrangian



WZ model
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e In terms of component fields, the Lagrangian reads
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e After eliminating the auxiliary fields we find
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WZ model
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* This is a renormalizable QFT with Yukawa interactions and quartic
scalar potential

* All divergences that we encounter in perturbation theory can be
reabsorbed by a finite number of counterterms

* |Let us analyze this model with methods that we learn in QFT, ignoring
SUSY for the time being



WZ model
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By a constant phase rotation of X and y we can set m,, to be real and non-negative
» Let us parametrize g, as gy = \/5 Yo e'* where Vo Is real. We can define

X = ée‘ia(A +iB)

where A, B are real scalar fields. The Lagrangian reads
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WZ model
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* |In this language it is easier to verity that the WZ model admits parity as a symmetry.

Parity acts on spacetime coordinates as & : (x", x) - (x°, — x%) and is
implemented by a unitary operator P with

P1AP=A(%x) , P 'B(x)P=—B(%x)
Py, ()P == i)y, 7(Px)  (0°=—1

 \We can regard parity as an accidental symmetry of the WZ model with a single chiral
superfield (for more details: Weinberg vol lll, pages 82, 83)



Renormalization procedure
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* The original Lagrangian is written in terms of bare fields and bare masses/couplings
* |t is convenient to rewrite it in terms of renormalized fields and physical masses/
couplings

« We split £ as £ = £+ £, into the Lagrangian written in terms of renormalized
quantities, plus counterterms

 The counterterms can be adjusted order-by-order in perturbation theory to absorb
all UV divergences from loop integrals



Renormalization procedure

In the free theory (g = 0) the 2-pt function of A has a simple pole a’cp2 = — mg with residue one. The VEV of A is
Z€ero.

In the interacting theory:

» the location of the pole is no longer the bare mass mg that enters the Lagrangian, but at the physical mass mj

of particles of the A field

> the residue at the pole is generically different from one
» the VEV of the scalar A might get shifted

We shift and rescale the bare field A by a positive constant Z, and a constant v: A= Zj/ : A +V
The renormalized field A, has zero VEV and is such that its 2-pt function has unit residue at the physical mass mj
Similar remarks apply to B and the fermion: B = Zé/z B, Y = lelj/z .o, W= Zvlj/2 W,

NB: Lorentz invariance of the vacuum forbids a VEV for the fermion; parity forbids a VEV for B

hese Z factors are usually referred to as wavefunction renormalization



Renormalization procedure

1 ¢ N — — 1 1 1 —
& =—=0"A0,A—=0"BI,B +i0,55" y——mi (A* + BY)—— moy y—~ my@ 7

— YA+ —iy,Blyw—yy)

— my oA (A% + BY)—= 32 (A? + B?)?
We perform the replacements A= Zj/z A+, B = Zé/z B., y= Zl/zz,//r . w =272 W,
We get an ugly expression that can be parametrized as
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Renormalization procedure
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 \We have generated all terms that are compatible with Lorentz symmetry, parity,
renormalizability, with arbitrary coefficients

» Notice how the shift v in the scalar field A has generated a term linear in A,
(tadpole) and the constant term V/,



Renormalization procedure
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. The 10 parameters m?, mj, Mys Yas VB > Aaans AaBp aaans ABBBB 44488 €NCOdE the

physical/measurable masses and couplings of the particles in the model

« They are defined by suitable renormalization condition. For instance, we can define mj as

the location of the pole in the exact A, 2-pt function; y, can be defined as the value of the
3-point amplitude Ay, . at the limit where external momenta go to zero, etc...



Renormalization procedure
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* At zeroth order in perturbation theory the physical couplings are given by
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Renormalization procedure
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- Thefactors Z, ..., £, ~ and Y encode the counterterms. Let us write Z; to denote
the Z factors collectively.

o Attree-level we have Z, = 1, Y = 0. We write

Z=146Z , Y=0+6Y



Renormalization procedure

Z=1+6Z , Y=0+468Y

* The original Lagrangian splits as the sum of the Lagrangian written in terms of renormalized fields and
physical masses/couplings, plus counterterms and a constant: & = Sfr + cht — V()

% =—%()”A aA—%aﬂB 0 B
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 The counterterms are adjusted order-by-order in perturbation theory to preserve the renormalization
conditions (0Y is adjusted to cancel tadpoles of A))

* |n the process, all UV divergences from loop integrals are cancelled; physical observables are finite
when expressed in terms of the physical masses/couplings



What about SUSY?

Some natural questions:

Can the model be regularized and renormalized preserving SUSY?

How does SUSY constrain the wavefunction renormalizations and the shift v in the
scalar A? How does it constrain the Z factors for masses and couplings?

Since the bare Lagrangian only had two parameters m,,, y,, we have some relations
among the renormalized couplings at zeroth order in perturbation theory. For instance

. 2 _ 2 02 —
zeroth order: my=mg=m, , Yy=Yp,

AAAA = Aapp = My, YA 2 Asann = 2 BB = AanB = yj

Is there a renormalization scheme in which these relations preserved beyond zeroth
order in perturbation theory?



What about SUSY?

» Addressing these questions in the model without auxiliary fields is possible but a
bit cumbersome. Recall that after integrating out the auxiliary fields,

» the SUSY algebra only closes up to the EOMs

» the SUSY variations are non-linear in the fields, because the on-shell value
F(X) (that enters o) is a non-linear function of X

* For these reasons, it is best to go back to the model before integrating out the
auxiliary fields
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The model keeping auxiliary fields

» As before, we can set m,, real and non-negative without loss of generality

* To make parity symmetry manifest, we write

o 1 —i ° 1 X (O '
20 =12y,e™, X=$e (A+iB), F=ﬁe (F —i%)

with real scalar fields A, B, &, &

 The Lagrangian takes the form
& =—=0"Ad,A—~"BI,B+id, 55yt (F>+ G
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« Under parity, # transforms as A, while & transforms as B



The model keeping auxiliary fields

 We can now set up the renormalization procedure as we did in the model without
auxiliary fields. When we re-write the same Lagrangian in terms of renormalized fields
and couplings, it takes the form

Z = _% £y 0°A, a//tAr_% Z 0" B, a//tB r T iZl/f aﬂl/jf o l//f_l_% (Zs gz% + 2y 561%)
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» NB: a priori, Lorentz and parity allow for a constant shift of both A and & . These shifts
are responsible for the appearance of the terms on the last line



Some results without derivation
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1. The model can be regularized and renormalized preserving SUSY

2. SUSY forbids a constant shift of A and/or &. In particular, the last line in the Lagrangian is
not generated

3. All wavefunction renormalization factors are equal:
Ly =21 —Z =Lg =Le = Ly



Some results without derivation

4. There is no need to introduce independent Z factors for mass terms and
couplings: wavefunction renormalization in the only source of renormalization

1 1 : 1
ZL =2y [_5 0"'A, aﬂAr_E 0"B, aﬂB r 11 a//t'//f o Wl‘+5 (9% T ?f)]

+m (A F . + B, ?r)—% m. (W .+ Y. y.)
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where we the relation between renormalized and bare couplings is
m.=Leomy Yr = Z(%/z Yo

 Dramatic simplifications compared to non-SUSY models of the same kind!



Some results without derivation

* \We can write both the bare Lagrangian and the Lagrangian in terms of

renormalized fields and couplings using superspace, to emphasize that
SUSY is manifest

5= [d4xd2«9d2§d>5+ ”d4 40 (3 mg @ +1 g, ®%) +h.c.
— [d4xd29d2§Z¢CDr5r+ [[d4xd29( m_ D>+ ; ngDf) +h.c.]

CDI,:Z(I_)”Z(I) , m.=Lemy grzzg)/zgo



Non-renormalization theorem

The results that we have stated for the simple WZ model with one chiral superfield extend to
all renormalizable models with an arbitrary number of chiral superfields:

The model can be regularized and renormalized preserving SUSY

The wavefunction renormalization factors are the same for all component fields in the same
chiral superfield, at all orders in perturbation theory

Non-renormalization theorem: the mass terms and couplings Iin the superpotential are not
renormalized at any order in perturbation theory, except for wavefunction renormalization

In particular:

> |f a term is absent in the classical superpotential, it is not generated at any order In
perturbation theory (for example the linear term W O E @ in the WZ model)

> The zeroth order relations between the couplings are preserved at all orders In
perturbation theory



How are these results derived?

There are various approaches to deriving the non-renormalization theorem

* In the simplest WZ model, one can verify it explicitly at one-loop by a brute force
computation. One finds “miraculous” cancellations between bosonic and fermionic loops

* The simplest WZ model (formulated with auxiliary fields) is discussed in
lliopoulos, Zumino, “Broken supergauge symmetry and renormalization™
http://cds.cern.ch/record/415096

The authors give an argument based on “elementary” QFT methods (i.e. methods borrowed
from non-SUSY QFTs)

» Special techniques for Feynman diagrams in superspace have been developed, which show
the origin of the “miraculous” one-loop cancellations and demonstrate that these
cancellations persist at all orders in perturbation theory

* The most elegant proof is based on holomorphy ideas, perfected by Seiberg in the ‘90s.
We will see the power of holomorphy later


http://cds.cern.ch/record/415096

Some simple observations

Let us assume that we have found a way to regularize the theory that is manifestly supersymmetric. (For
models with chiral superfields, one can use the Pauli-Villars method, or introduce higher derivatives in a

controlled way to change the propagators.)

Since SUSY is manifest, we can perform the redefinition from bare fields to renormalized fields in
superspace, and write

— 7172
D=2y D +v
where Zg is a positive constant and v is a chiral superfield that encodes the potential shift in the VEV of

O due to quantum corrections

What components of v can be non-zero? To preserve Lorentz symmetry we can only give a VEV to the
scalar components of the chiral superfield v, and these VEVs must be constant

v(x,0,0) =X, + 0>F,
If the constant Fv IS non-zero, however, SUSY is broken: we can see it from the SUSY variation of the
fermion component of v, oy, = i1/ 2 6" fﬁﬂXv + \/5 cF, = \/5 EF,



Some simple observations

« We conclude that ® = Z&)/z ®_ + v where v does not depend on x, 0 or 0

 We plug this in the bare Lagrangian and find
5= Jd4xd29d2§®5 " ”d“xcﬂe (5o @+ gy @) +h.c. |
— Jd‘*x d20d*0 7, ®. D, + Ud“x d?0 (Z3?v (my + gy v) @+ Zg, (g + 2 go) @+ 232 g, ®@}) +h.c. ]

 NB: we can safely drop any constant from the superpotential, because the action only depends on its derivatives

By renaming a few parameters, the above can always be written as
S = Jd4x d*0d*0Z, D P, + [Jd“x d*0 (Zg E, <I>r+% Z m q>§+§ Z,8:®}) +h.c. ]

where E_, m_, g. are physical renormalized couplings and the Z factors are a priori arbitrary



Some simple observations

S = [d4xd20d2§Zq)CI>r5r+ Hd“ d*0 (Z3 E, c1>+ Z m c1>2+ Z, 8. D;) +h.c.]

* |tis at this point that the hard part of the non-renormalization theorem
kicks in. It guarantees that E, = O (equiv v = () and it states that

/Z, =1, Zg = | at all orders in perturbation theory, in such a way that

m,=ZLemy Er = ZC%/Z 80



Supersymmetry and supergravity
Lecture 22



Holomorphy arguments

Arguments based on holomorphy are a powerful and insightful way to
“understand” the origin of the non-renormalization theorem

To address holomorphy arguments, we need some preliminary material;
> background superfields
> R-symmetry
> Wilsonian effective action VS 1P| effective action

We recall the first two ingredients, then we consider the holomorphy

arguments. We leave the comparison of effective actions at the end (it is
a technical point)



Background fields and spurions

* A background field is a field that enters the Lagrangian, but that it is not
iIntegrated over in the path integral

* A background field does not have to satisfy any equation of motion

 NB: auxiliary fields do not have propagating degrees of freedom, but we
do perform the path integral over them

* A constant parameter in the Lagrangian can be considered as a
background scalar field that has a constant profile in spacetime



Background fields and spurions

* Thinking of parameters as background fields is useful because we can consider the action of a
global symmetry on dynamical fields and background fields simultaneously

» For example: let us consider a model with free massless real scalars and an O(/N) symmetry
L ==58;00' 04 . ¢~ R;¢
 Let us turn on a mass term
= —— .. 0*d" J——m..0" ¢’
ff_ 251]a¢a,u¢ 2ml]¢¢

o |f the matrix m; is generic, O(/N) is broken. However, we can regard m;; as a background field,

and let it transform under O(N) together with the dynamical scalars ¢":

1 i 1 i 1] i i ] ~ ~
Z = _3517 0" a,u¢J_3mii¢ ¢’ @' — Rj¢J ’ My = My (R 1)ki (R 1)Lﬂj

* |n this way we are formally preserving O(/N) invariance

e A background field that transforms under a global symmetry is also known as a spurion



Background superfields

* |n SUSY field theories it is convenient to regard coupling constants and mass parameters
are background superfields

* In a renormalizable model with chiral superfields and superpotential
W = Ei (I)l-l-z m; d* (I)]+§ 8iik O' P/ P

we interpret the mass parameters m;; and the couplings £;, g;; as background chiral
superfields

» The only non-zero component of the background chiral superfields is their @ = 6 = 0

component X, which is a constant. The fermionic component y and the auxiliary
components [ are set to zero

 This preserves SUSY, because oy = 0, as can be seen from

Sy =i\20"EdX+\2EF



R-symmetry

 Recall: an R-symmetry is a U(1) global symmetry that acts non-trivially on the
supercharges. It follows that component fields in the same supermultiplet have

different charges
 We have already discussed R-symmetry for chiral multiplets:

field/param X' W' F ¢
charge R[X'l R[X'1-1 R[X]1-2 1
 The superpotential preserves R-symmetry if it has definite charge +2:
R[W] =2

o Caveat: R-symmetry is a chiral symmetry (left-handed and right-handed spinors
are rotated differently) and in some cases it is subject to quantum anomalies.
This does not happen in models that only have chiral multiplets



The holomorphy argument

* | et us now consider the holomorphy argument for the Wess-Zumino model
* The starting point is the classical action

S = "d4xd29d2§®5+ ”d4xd2«9Wd+h.c.] , W, = %m®2+%gcb3

 We regard m and g as background chiral superfields

 They can be considered as spurions that transform under a global
U(l), X U(l)p symmetry. Here U(1), is a non-R-symmetry (i.e. all

component fields in a supermultiplet have the same charge), while U(1)5 is
an R-symmetry



The holomorphy argument

|4

C

_ 1 2, 1 3

The table of charges is as follows:
u(l), Ul

0, | |
m =2 0
g =3 —1

Checks:

1. Both terms in W, have charge 0 under the non-R-symmetry U(1),

A[m®?] = A[m] +2A[®] = (-2)+2(1) =0, AlgDP’]=A[g] +3A[®]=(-3)+3(1)=0
2. Both terms in W_; have charge 2 under the R-symmetry U(1);

Rlm®?] = R[m] +2A[®P] = 0)+2(1) =2, R[g®P’]=R[g]+3R[P]=(-1)+3(1)=2

NB: The canonical kinetic term ® ® in the classical action is also U(1), X U(1) invariant



The holomorphy argument

* Let us now consider the Wilsonian effective action that we get at low energies if we integrate out the high-
momentum modes of the chiral superfield ® (we recall some facts on Wilsonian effective actions below)

* \We assume that the theory can be regulated preserving SUSY
* We can write the effective action in superspace. Schematically

S = Jd‘*x d*0d*0K (D, m, g, ®,m,T) + Jd‘*x d*OW_(®,m,g)+h.c. |

c

e Remarks:

1. The effective action contains in general both renormalizable and non-renormalizable terms. We are displaying
the terms that give at most 2 derivatives in spacetime. S 4 also contains infinitely many higher-derivative terms.

We do not need them because we want to study W,.

2. The effective Kéhler potential K ¢ is a priori a generic real, non-holomorphic function of ®@, m, g. Symmetry
under U(1), X U(1) tells us that A[K ] = 0 and R[K ] = 0

3. The effective superpotential W, is a priori a generic holomorphic function of @, m, g. Symmetry under
U(l), X U(l)p tells us that A[W ;] = 0 and R[W_ ] = 2



The holomorphy argument

The effective superpotential W, is a priori a generic holomorphic function of @, m, g. Symmetry
under U(1), X U(1)p tells us that A[W_&] = 0 and R[ W, ] = 2.

« What terms can possibly enter W, «? Let us consider the quantity

0 mbgc Ull), U(l)g
O 1 |
. We must demand A[®?m?” g] = 0 and R[D*m" g¢] =2 m -9 0
e The solutionis (a,b,c) = (n+ 2,1 —n,1 —n) g -3 -l

0% mbgc — m (1)2 (m—l g (I))n
- This shows that, if we include factor out m ®* from W, what is left can be an arbitrary function
of the combination m ™! g @

* \We conclude that the effective superpotential can be written as

W (D, m,g) =m @’ f(m~! g ®) for some holomorphic function £(z)



The holomorphy argument

W (D, m, g) = m®* f(m~! g®) for some holomorphic function f(z)
» The function f(z) must be compatible with two special limits:
1. Weak-coupling limit g — O

This is the limit we consider in perturbation theory. There cannot be any singularity as g — 0,
and therefore f(z) can only contain non-negative powers of its arguments in its Laurent series

W = Z anml_” o P2
n>0
2. Massless limit m — 0
The Wilsonian effective action is unambiguous even if the field is massless. There should be no
singularity in the limit m — 0. We learn that the only a, coeffs that can be nonzero are a, and a;:

Weﬁ‘z Clom(p2+a1gq)3



The holomorphy argument

Weﬂ‘: Clomq)2+a1g(b3

But a, a; are numerical constants that do not depend on the background chiral supertields

1 1

m, g. In order for W ¢ to be compatible with W, we must have a, = -, a; = 3

Cl

_ 1 2, 1 3
%% T = 5 m O —+ 3 g 0,
This is exactly the same as the classical superpotentiall No guantum corrections are
generated, at all
We have proven the non-renormalization theorem using holomorphy

The holomorphy argument does not rely on perturbation theory. It is not clear, however, if
the WZ model exists non-perturbatively, because it is not asymptotically free

There is no clever argument about K (P, m, g, ®, i, 2). Indeed, wavefunction
renormalization receives contributions at all orders in perturbation theory



1Pl effective action

Let us recall the steps in the definition of the 1P| effective action. To keep the notation simple, we
consider a real scalar field ¢, but the arguments apply to general fields

We take the QFT of interest and we couple it to classical sources J to define the partition function
Z[]] — J@¢ eiS[¢]+i [d*x¢J

The partition function is the generating functional of the total n-pt functions, including
contributions from Feynman diagrams that consist of several disconnected components

5
OITh(x))-.-hx)10) = — — R J=0

Taking a log we get the functional i W[J] = log Z|J] that generates connected n-pt functions

O :
<O ‘ T¢(X1) : ¢(Xn) ‘ O)conn — léj(xl) o l5J(X1) M —0




1Pl effective action

Next, we consider the 1-pt function of @ in the presence of a generic source J
(0] p(x)]0), =

The quantity (0| ¢(x) | 0), can be regarded as a classical field, so we write

Let us perform a Legendre transform of i W[J] to construct a functional of ¢_;(x), as follows:
[l = W) - a7 4,

On the RHS we regard J as a functional of ¢, (x), obtained by inverting the relation ¢_(x) =

One verifies from the definition that

oWl|J]

0J(X)

Pei(x) = (O] p(x) | O>J

oWl|J]

oJ(x)



Why “effective action”?

) ) ) B 5W[J] 5r[§bol]
F[¢cl] — W[J] [d XJ¢CI ’ ¢C1(X) - 5]()6) | 5¢cl(x)

» The functional I'[¢_] is an effective action:

5S
» In the classical theory, a field configuration solves the EOMs iff r gb[(ii =0
> |n the quantum theory, if we demand zero external source, J = 0, we find the
“y 5F[¢cl]
dit =0
condition 5500

* One can prove that amplitudes in the quantum theory can be computed replacing the
classical action S[¢] with the effective action I '[¢_,] and retaining only tree diagrams

» I'[¢@.] gives an effective tree-level description of all quantum corrections



Why “1P|”?

e If we write I [¢),] in momentum space, we get schematically
d4

(2m)*

p 1 d4p n
2n*  (2n)

1—1[¢cl] — J ¢cl( p)A(p) ¢cl(p) + Z J Vn(pb . 9pn) ¢cl(p1)° . ¢cl(pn)

» The quantity A is the exact propagator; V, are the 1PI vertices. They are
computed summing over connected and 1P| diagrams with n external legs

1Pl = cannot be divided in two disconnected pieces by cutting a single line

N ~NLS




Caveats on the 1Pl effective action

. d4p N d4p1 d4pn
F[¢cl] — [ (271_)4 ¢cl(_p)A(p) ¢cl(p) T ; I (271_)4 e (271_)4 Vn(pla . 9pn) ¢cl(p1)° . ¢cl(pn)

* In general, the 1Pl vertex functions Vn are not analytic in the momenta, which means
that (undoing the Fourier transform) the 1Pl effective action is non-local in spacetime

» If we consider a massive theory, one can expand in powers of p;/m. The outcome is
an infinite sum of local terms

* In atheory with massless particles, however, this is not possible, and non-locality
remains (the vertex functions can have branch cuts that start at p = 0)

 In general, the 1PI effective action is sensitive to IR effects. This is because I [gbcl] IS

supposed to account for all loop corrections, coming from all momenta running in
loops, including arbitrarily low momenta



Wilsonian effective action

* Wilsonian philosophy:
> split quantum fields into low-momentum and high-momentum modes,
with low and high determined with reference to some scale u

> perform the path integral on the high-momentum modes (i.e. “integrate
them out”)

 Schematically (after Wick rotation to Euclidean signature)

4 ~—
PL(x) = J e p(p) . Pulx) = J

d4p

(2m)*

d’p
(2m)*

e ¢ (p)

p|<u p|>u

e—S;V[CbL] — J'@¢H e S0y



Wilsonian effective action

» NB: We still have to perform the path integral over ¢ !

» To compute an observable, we use S;V | | to compute tree diagrams,

as well as loop diagrams, where loop momenta are cutoff at u

* In the end, we still perform the full path integral, but we do it in two
steps: high momenta first, low momenta second



Wilsonian effective action

S/)V | ] contains in general an infinite sum of local terms, with y-dependent coefficients. For

example, for a real scalar field with a ¢p <> — @ symmetry, S;V [ | = Jd“x SZXV where

b, (1) b, (1)

LW == | otw) - A P+ | 00,0
+ :ao(ﬂ)ﬂ4+az(ﬂ)ﬂ2¢2+a4(ﬂ) h* A a;(f)¢6+ + ...

When we use S;V [¢); ] in loop diagrams, we get an extra ¢ dependence, because the loop momenta

are cutoff at u

This extra u dependence has to cancel against the explicit 4 dependence of the couplings in S/}V [y ]

This is because we are still performing the full path integral, and the scale /it that we use to separate
low and high momenta is arbitrary. Physical quantities cannot depend on it



Holomorphy and the Wilsonian effective action

 The Wilsonian effective action does not suffer from the IR problems that one encounters in the 1PI
effective action

* The Wilsonian effective action is always an (infinite) sum of local terms. In a SUSY theory locality is
needed to distinguish F-terms and D-terms

—1

 Formally, we can always convert a D-term as an F-term, but the price to pay is a non-local
(where [ ] = 0”%)

* To see this, notice the following identity in superspace

{d‘lx d-0 d2§q>1(_% DH®, = Jd4x d*0 ®,[]®, for any chiral superfields ®,, ®,

o If wesetd, = ~1 d; we get an identity that converts a non-local D-term into a local F-term

 Because of its IR singularities in a massless theory, the 1Pl action might develop non-local D-terms.
They get converted into F-terms and ruin the non-renormalization theorem

* This can never happen with the Wilsonian effective action



Supersymmetry and supergravity
Lecture 23



Reminder on SUSY gauge theory actions

 The superspace action for a renormalizable model with vector and chiral superfields is

S Jd4xd29 AR (W*W,)+h.c Trg (t,1,) = T(R) 0 C i
= .C., ) = b T = 1 —
SYM 167T(R) R * R b b 27 82
Sx = Jd‘*x OGP 2" ® Sy, = jd“x d*0W(®) +h.c. S = Jd“x d"0d*0p Vi,

o Let us focus on Sqyy and Sg. In component fields:

i 1 1 1 _ 1 7
_ a b a Mb s 1d : a bpo
Zsym = 6u | 4g2F””FW. 2gzz) D ——gzz/l o D"+ 06y FW F7

Yy = — DHX, DﬂXi +iD,; 5" '+ F, F' + i\/§ [)_(,. (ta)ij W A% — A4, (ta)ij XJ’] +D*X. (ta)ij X/
Fi =0,A—0,A —f, A AL AS DX =0X +iAl(t)) X




Reminder on SUSY gauge theory actions

* The @ term is a total derivative. It is invisible in perturbation theory: we ignore it, for the time being
* To set up perturbation theory it is more convenient to work with canonically normalized gauge fields
* After rescaling the gauge fields (and their SUSY partners), the classical action takes the form

Legni = 6., [—% Fow pb 4 L paph —ije6h DT

Fx=-D'X; DX +iD55"w + F,F' +i\/2 g [X;(t,) v/ 29 — 27, (t,)". X'| + g D* X, (1), X'
Fi =0,A—0,AL — g f, AL AL DX =0X' +igAf(1); X
* Let us assume for simplicity that there is no Fl term. The D-term in the scalar potential is
Vp =826 X, (1) X'| | X (1), X7
* Remarks: in the classical action, SUSY implies that

1. the Yukawa coupling Xy A is equal to /2 g
2. the coefficient of the quartic [X X ] [X ¢ X] term in the scalar potential is g*

3. the gauge-invariant term [)_(l- 51:]- XJ] :)_(k 5"{ )'d ] Is absent from the scalar potential



Quantum corrections and SUSY

In the classical action, SUSY implies that
1. the Yukawa coupling XA is equal to /2 g
2. the coefficient of the quartic [X # X] [X ¢ X] term in the scalar potential is g*

3. the gauge-invariant term |X; &', X/| |X; 6%, X”| is absent from the scalar potential

* Are these properties preserved by perturbative guantum corrections?

e This is non-obvious, because renormalization introduces all possible couplings that

are compatible with renormalizability and symmetries, a priori with arbitrary
coefficients

 One way to diagnose whether the above properties hold in the quantum theory is

to study the beta functions of the gauge coupling, the Yukawa coupling, and
quartic couplings in the scalar potential



Reminder on beta functions

The gauge coupling, the Yukawa couplings, and the (sc:alar)4 couplings are dimensionless in the classical
Lagrangian. Their classical mass dimensions are 0

Quantum effects break the classical scale invariance of these couplings

According to the renormalization program, physical quantities are not expressed in terms of the bare gauge
coupling g, in the bare Lagrangian, but rather in terms of a renormalized coupling g(x). Here p is the

renormalization scale. Similar remarks apply to Yukawa couplings and (scalar)4 couplings

Let us denote schematically as 4, the set of dimensionless couplings in the gauge theory with matter

The dependence of A(u) on u is governed by the beta function ﬁll,-

dA(p)
H di — ﬁ/li({/lj(//t) 1)

p,. = P, (14;}) is a function of the couplings 4,(x). It does not depend on the UV cutoff that regularizes the

theory, and it does not depend explicitly on the scale u
In general, beta functions are scheme-dependent. Their leading 1-loop terms, however, are universal



Beta function of the gauge coupling

 The 1-loop beta function for the gauge coupling in a generic (hon-necessarily SUSY) renormalizable
gauge theory can be written as

83

b
16 72

1-loop:  f,(8) =

 The coefficient b receives various contributions:

11 2 1
b=?T(adJ)—§ Z T(r)—g Z T(r)
ferm compl.scal.
1. The first term comes from gauge fields and ghosts

2. The second term is a sum over the representations r of (positive chirality) Weyl fermions

3. The third term is a sum over the representations r of complex scalars
* Group theory notation:

tl‘r(ta tb) — T(l‘) 56119



Beta function of the gauge coupling

11 , 2 1
b=—Tadj) - 2 T - < Z T(r)
ferm compl.scal.
* |n a SUSY theory we can rearrange the sum into multiplets

* The vector multiplet is always in the adjoint representation. The gauge fields and ghosts

contribute % T(adj). The gaugini are also in the adjoint representation. They contribute

—% T(adj). In total

vector multiplet: b = 3 T(adj)

* A chiral multiplet in the representation r contains one complex scalar and one Weyl fermion
(we should not count the auxiliary fields, because it does not have independent dofs). The

scalar contributes —% 1(r); the fermion gives —% I(r). Then

chiral multiplet in rep r: b =—1T(r)



Example: SQCD

 Reminder: Fl terms are not allowed. We take a zero superpotential for
simplicity. The model has gauge group SU(N,) and matter chiral

superfields Q' ~and Ef ,1- We have an SU(N;) X SU(N;)" global symmetry

SU(N.) SU(Ns) SU(Ny)

I
Q' .

Q"1 .

e In our previous equations, X" denotes collectively all matter fields. For
SQCD: X' — (0, 0O)



Example: SQCD

* |In SQCD we only find fields in the adjoint or fund/antifun representations of
SU(N.). We can use

SUN,):  Tad)=N, , T(O)=TD0O) =1/2
 We then have
vector multiplet of SU(N..): b=3N.
chiral multiplet in the fund or antifund of SU(N..): b=—1/2

» Counting both the O’s and the a’s, we have a total of 2Nf chiral multiplets in the

fund or antifund rep of SU(/V,.). The total 1-loop beta function coefficient is then



Beta function for Yukawa couplings

The 1-loop beta function for Yukawa couplings has the schematic form ,By ~ y3 + g2y

To be more precise, we use the notation of ME Machacek, MT Vaughn “Two-loop
renormalization group equations in a general quantum field theory (ll). Yukawa couplings”
Nuclear Physics B, 1984

Consider a general renormalizable model (not necessarily SUSY) in which we have a set of
real scalar fields ¢, and 2-component fermions y*. We encode the Yukawa couplings in a

complex symmetric matrix ny

QD—ny)(x)(yqﬂA+h.c. Dy =0,y +igt), A,

We have introduced the notation y* which stands collectively for all the fermions. In a
SUSY model y* contains both the fermions from chiral multiplets and the gaugini

The representation (ta)xy is in general reducible



Beta function for Yukawa couplings

o The 1-loop beta function for ny IS given by

(4m? Byy = 5 (YY) (B (VB),, 4= (VB) (VB (Y4),, + 2 (), (P4 (v
+ (Y5),, (YD (YY), = 387 (YY), (1,15, — 38" (YY), (1,1,)%,

« We write (YA)xy to emphasize that we think of Y as a matrix with entries ny

Wy

» Repeated A, B or a, b indices are contracted with o

o The quantity (¢, ta)xy is the quadratic Casimir of the (generically reducible) representation
of the fermions. In each “irreducible subblock” (7, 7,)", reduces to a multiple of the
identity matrix

* |t is convenient to use a diagrammatic notation to describe the various terms in the 1-
loop beta function



Beta function for Yukawa couplings

(4m)? Bys = 5 (YY) (PED™ (¥B),, 42 (V) (YBH™ (P4, + 2 (VB (Y417 (vD),,
+ (Y5),, (YPH (YY), = 38> (Y, (1,05, — 387 (YY), (1,1,)%,

The vertices that originate from the Yukawa couplings & D — ny X ¥’ @, +h.c. and the gauge
covariant derivative are of the form

\ A ‘|A X
A 2 s o %
{ S g — Y A
x4 ’ ) } %)
* |ngoing arrows stand for spinors with undotted Weyl indices; outgoing arrows stand for spinors with
dotted Weyl indices

 We don’t put an arrow on the scalar leg, because the scalars are real. |[dem for gauge bosons

* QOur discussion is a a bit schematic. A thorough discussion fo Feynman rules in 2-component notation
can be found e.g. in arXiv 0812.1594




(47)* Byy = = (V) (VP (V) b2 (VP), (PPN (V),,, + 2 (VB), (A2 (1P,
+ (V) (YBOY (74), =382 (YY), (1,1,)°, — 3 8% (YY), (. 1,)%,

A
A A x - L -,
3 v AV | QLOL\ \‘ / :
X ‘9 < \} X Fas W ua/
| o A
The various terms correspond to the following diagrams. |
These diagrams reflect the actual 1-loop Feynman diagrams ) "
L B
used in the computation of the beta function « ' 2w /3
(Some diagrams that one might draw are absent. This is -
due to some gauge choices in the propagators.
The final 1-loop beta function is gauge invariant.) A

Beta function for Yukawa couplings

SO > <
> - W 7
A
»

B
Sk
. V)




Beta function for Yukawa couplings

* |[n a SUSY gauge theory the Yukawa couplings have a special form:
FxDiV28X(t) w1 +h.c.
1. They only involve a gaugino and a fermion from a chiral multiplet (and never two gaugini or two y/'s

2. Their index structure is determined by the gauge generators

3. Their coefficient is equal to the gauge coupling constant (up to a numerical constant)
 Diagrammatically:

L) P b YL
OL | L L a 0/ < g 9

» We put an arrow on the complex scalar. It fits the arrow on y to describe the “flow” of “gauge charge” (notice the pattern of
ingoing/outgoing arrows VS lower/upper indices)



Beta function for Yukawa couplings

* \We can specialize the general expression for the beta function to the case of a
SUSY gauge theory

o All terms are automatically proportional to g3

* One of the diagrams does not contribute, because there is no way to match the
arrows of all fermions and scalars

‘\X A/ ~
y /:.\ 7 “;Z Z
b S ’ < A \ |' 2N Y
7 , )\ /)_,{/ < > AR
a b \\ / 1’ OL Y A 0/ I N



Beta function for Yukawa couplings

* The other diagrams generate various group-theoretical factors through contractions of the gauge
generators

 For an irreducible representation r of the gauge group, we use the notation
tre(t, 1) = T(r) o, (1,1)'; = Cy(r) &'

« Compared to the 1-loop beta function of the gauge coupling (that only contains 71°s) some of the
diagrams generate C,(r) factors in the 1-loop beta function for Yukawa couplings. For example:

_ 2 ’ ]
U TN BN AN Ny

e At the end, however, the numerical factors among the various diagrams conspire in such a way that all
C,(r) factors can be reabsorbed and recast in terms of 7(r) factors



Beta function for Yukawa couplings

 |n conclusion, one finds that:

1. The index structure of the Yukawa couplings is preserved, in the
sense that fy, has the same index structure as Y4 roughly
Xy

Xy’
Pya =8 > (coeff) Y7,

2. The numerical coefficient in front of the tensor structure matches
exactly the 1-loop coefficient of the beta function for the gauge
coupling

* This means that 1-loop effects do not spoil the special relations among
couplings that we have at tree level



Beta function for (scalar)? couplings

e Similar results are found in the analysis of the 1-loop beta function for (scalar)* couplings

» In a SUSY gauge theory with gauge group SU(/NV.) and fund/antifund matter we can write
down two distinct index structures for terms in the scalar potential

5 X; ()" XX (1), X1 or  [X;6' X'][X, 6", X’]
(For other gauge groups and representations we might have more options)
* One has to verify that

1. The coefficient for the structure [)_(l.(S’:]- X [)_(k 5"{ X?1in the (scalar)* 1-loop beta function
is zero (in this way this SUSY breaking coupling is not generated at 1-loop)

2. The coefficient for the structure 5% [X. (ta)’:]- X/1[X, (t,)*, X?] in the (scalar)* 1-loop beta
function matches exactly with the 1-loop coefficient in the gauge coupling beta function
 Both these properties are satisfied, but only thanks to cancellations among different diagrams



Supersymmetry and supergravity
Lecture 24



Holomorphic gauge coupling

* \We have seen that the 1-loop beta function for the gauge coupling in a SUSY
gauge theory has the form

g3

P =-77

where the 1-loop coefficient b receives contributions both from the vector
multiplet and the chiral multiplets

vector multiplet: b = 3T(ady)
chiral multiplet in rep r: b =—1T(r)
 Can we use the power of SUSY/holomorphy to to beyond 1-loop?
* Yes, but we have to be careful about notion of gauge coupling we analyze

b



Holomorphic gauge coupling

In order to use the power of holomorphy, we need to use the holomorphic gauge coupling

This is defined by writing the SYM term with an overall 1/g?, combining the kinetic term with
the theta term in the holomorphic combination 7

In superspace:

LT
Seonr = | d*x d20 Tro (WY ) +h.c.
SYM J YO TRy R 2

0 Ar
TI‘R (ta tb) — T(R) 56119 , T=—+4+1—
21 g2

In components:

‘ 1 1 1 _ 1
— _ auv b aNnb _ cra auv bpo
Zsvm = bap | rye Fov Fb + ¥ DD = 40" DAY + 06, F F ]

NB: the gauge fields are not canonically normalized




Holomorphic gauge coupling

The coupling g runs with the renormalization scale i according to the beta function

dg b
U E = [ = 167r2g at 1-loop
This is an ODE for g(u) which we can solve as
1 b Ag |
= log — (1-loop running)

g(p)? 87° 7

The integration constant Ay, is a real, positive dimensionful parameter: the intrinsic scale of the
non-Abelian gauge theory

Because of the non-trivial beta function, a classical dimensionless parameter g is traded for a
dimensionful scale Ag: this is the phenomenon of dimensional transmutation

NB: this is a feature of QFT in general, not specific to SUSY. For example, in real-world QCD the
intrinsic scale is approx A & 200 MeV (see for instance Peskin Schroeder Section 17.2)



Holomorphic gauge coupling

* The theta angle is the coefficient of a topological term in the action. It does not run when
we change the renormalization scale u

« We can combine the running g(u) with the theta angle to define a running holomorphic
coupling

(! N 47 1 b As
T1_ =— 441 , = — 0g ——
1-loop ) g(ﬂ)z g(ﬂ)z Q12 & u
* \We can rewrite this quantity as
b A
T1-loop(H) = = log;

where we have introduced the holomorphic version of the real intrinsic scale A,

- i0/b
AN:=Are



Wilsonian effective action and 7

* We are mainly interested in theories that are asymptotically free:

> the gauge coupling goes to zero at high energies
> as we lower the energy scale, the coupling grows stronger and stronger

* \We can safely do perturbation theory in the UV. In a renormalizable model all
UV divergences can be reabsorbed. The gauge theory can be defined without
reference to a UV completion

* At lower energies, perturbation theory breaks down, and non-perturbative
effects can become important

e Problem: Integrate out the high-energy modes above some scale u, £ > u;
what can we say about the gauge coupling in the Wilsonian effective action

for energies £ < u?



Wilsonian effective action and 7

The Wilsonian effective action is well-defined and does not suffer from IR ambiguities/pathologies

Since SUSY is unbroken, the Wilsonian effective action must fit into the general structure of a SUSY
gauge theory

—17T
S = Jd“xdzﬁ LS, W W +h.c.

167

In the UV gauge theory 7 is just a constant. In the IR, the effective 7 can depend on A (or rather A/u
for dimensional reasons). However, SUSY of the low-energy Wilsonian action only allows

dependence on A/u and not on its complex conjugate (holomorphy)

We have already found the 1-loop expression for 7. Let us therefore parametrize the full 7.4 as a sum
of two terms:

b A A\

Teff — ~ lOg_ +f<_)
27l U U

where f is an unspecified holomorphic function



Aside: shifts of the theta angle and instantons

» Let us recall how the theta angle enters the action:

|
SH — 9 Jd4x 5ab FCl,W/ Fbpd , S@ — Qn : n = Jd4x 56119 6471_2 ,ul/pa Fa,uv Fbpa

6472 “uvpo

 The integrand in the expression of n can be written as a total derivative:

>
, T(r) Fo% Fb7 =  Tr (4 M7 A, A, + 5 A A, A(,)

* This is why the theta term does not change the EOMs and does not affect the perturbative expansion

2 HUPO Cl

« Caveat: The object inside 0ﬂ is only locally defined. We cannot apply Stokes’ theorem and conclude

that n I1s zero!

* Indeed, n turns out to be an integer, the so-called instanton number

* |n performing the path integral, we have to sum over various sectors, with all possible instanton
numbers. Usual perturbation theory is done around A/f = () and is implicitly done in the n = 0 sector



Aside: shifts of the theta angle and instantons

auv bpo
" 6412 ups

So=0n n=J'd4x5a

 The action enters the path integral via e'>. The theta term thus contributes a
phase factor ¢, We see that @ — 6 + 27 is a symmetry

* Another point of view:

> In perturbation theory: the theta term has no effect; we can freely shift
6 by any amount, and the perturbation expansion does not change

> including non-perturbative instanton effects: we can no longer shift &
by an arbitrary amount, but we can still perform discrete shifts by

integer multiples of 27



Wilsonian effective action and 7

b A A
Toif = 7 10g lf(—>
27 U U
Recall the definition A 1= Ag e??. A shift @ — @ + 27 is equivalent to a phase rotation A — A ¢*™/?
In the 1-loop term, A — A e*™” implies 2%1, log 2 > 21;, log %+27z . This is exactly the behavior

that we want for the holomorphic gauge coupling

This means that under A — A e?*" the quantity f(A/x) must be invariant. It can depend on A only
via A

The weak coupling limitis A — 0O (notice that as ¢ — 07, in our conventions T — + io0). The
correction term f(/A/u) must have a regular expansion around A = 0

Final expression:

b A Ay
T = — 10 | a, (—)
= i U Z T

n=1



Wilsonian effective action and 7

b A x> (A
T =—— 10 a, (—)
M= i ° U Z ub

n=1
» The definition of A and the expression of the 1-loop g(u) imply

I b A . AP
= log—R , A=A e | — =
g(u)? 87° H u"

2
* Notice the exponential suppression e~ 1/8": these effects are invisible in perturbation theory!

e Interpretation:
> The holomorphic gauge coupling function is renormalized at 1-loop
> |t receives no other corrections in perturbation theory
> |t can receive non-perturbative corrections

The coefficients a, are in principle well-defined, but extremely hard to compute. They have been
computed by Seiberg and Witten in some 4d 4/ = 2 SUSY gauge theories



The NSVZ beta function

» There is another important formula for the beta function of a 4d ./ = 1 SUSY gauge theory

* [t is not the beta function for the holomorphic gauge coupling, but rather for the canonical
gauge coupling. We have to write the action as

1 1 _ 1
_ aur b a Nb s 10 aur rbopo
fZSYM—fSab[—ZF” Fu+— DUDY = id? 0" DA +—— 06,0 F Fp]

with factors of g inside the field strength and the covariant derivatives

* Using techniques based on instanton methods, Novikov, Shifman, Vainshtein, and Zakharov
proved the NSVZ formula for the “exact” beta function:

g3 3T(adj) = Y T(r) (1 — )
1622 1 — T(adj) g2/(872)

* The derivation goes beyond the scope of these lectures

Prnsvz(8) = —



The NSVZ beta function

g3 3T(adj) — 2, T(r)(1 -y
1622 1 — T(adj) g2/(872)

We have already encountered the group-theoretical constants Tr (¢, #,) = 1(r) o,

Prnsvz(8) = —

The sum is over all matter chiral superfields

The quantity y; is the "anomalous dimension” of the i-th matter chiral superfield D, Itis
defined in terms of the wavefunction renormalization factor

T 1 dlogZt
= (Z')"“®D. (nosumoni) , yl = —
2 dlogu

Recall that SUSY allows wavefunction renormalization for chiral superfields

(I)i

bare

NB: the anomalous dimensions y; are themselves non-trivial functions of g, so the NSVZ
formula is not fully explicit!



The NSVZ beta function

o3 3T(adj)— Y T(r)(1 -y
1672 1 — T(adj) g2/(872)

* |f one expands the beta function in powers of g, the coefficients of the 1-

loop and 2-loop terms are universal: they do not depend on the
regularization and renormalization scheme

Pnsvz(8) = —

 The NSVZ beta function has been tested at 2-loops in several examples

 Beyond the 2-loop coefficient, the beta function coefficients start to be

scheme dependent. So pyqy7(g) is indeed exact to all orders in

perturbation theory, but in a particular scheme which is not known
independently in closed form



The NSVZ beta function

g3 3 T(ad)) — Zi I(r) (1 —vy)
16722 1 — T(adj) g2/(872)
The NSVZ beta function is particularly useful in arguing for IR fixed points of the RG

flow

In some favorable cases, one can deduce what the anomalous dimensions at
putative fixed point must be (this is usually done using properties of the
superconformal algebra)

Pnsvz(8) = —

Armed with the knowledge of yi, one can verify that the numerator of the NSVZ
formula is zero, and thus be sure that the beta function is zero to all orders In
perturbation theory

We will not see explicit examples of these techniques because they would require us
to develop several new tools...



Holomorphy vs NSVZ

To recap:

* The holomorphic gauge coupling function is corrected at 1-loop, plus
possibly by non-perturbative effects. In particular, its 2-loop coefficient
IS zero

* The canonical gauge coupling function has a beta function given by
NSVZ. It predicts a non-zero 2-loop coefficient

* Recall that the 1-loop and 2-loop coefficients are scheme-independent

Question: What is the relation between the holomorphic and the canonical
gauge couplings? It must explain why the former does not receive
corrections at 2 loops, while the latter does



Holomorphy vs NSVZ

In the classical theory, all we need to move from the holomorphic to the canonical
framework is a simple rescaling of the gauge field:

1 1
4g2 56119 F/ilv PO = Z 56119 F/ilvc Fb'Wc ’ A//CtZ — gA/le ’ F/?V = &c F//?VC !
ng — aﬂAﬁ — ()UA/j‘ —fbcaA/I; AIS , Fﬁw — a,quilc - ayA;ZC o gcfbcaA/,[ZC AISC

It turns out that this operation is not so innocent in the quantum theory

The change of variables A/fj = gA/jlcan In the path integral has a non-trivial Jacobian

If matter chiral superfields are present, they also contribute to the Jacobian in the
path integral measure

This effect is related to guantum anomalies (which we will discuss briefly later)



Holomorphy vs NSVZ

. . . L 0 .4 1
Recall that in our conventions the holomorphic coupling is 7 = 5 1 72[ and therefore Reé%m, = —
g g

A careful analysis of the Jacobian reveals the relation between the holomorphic and canonical couplings

i = Re - : _2 T(ady) log g. — Z I(r;) log Zi_ (*)

g2 dmgi  8x2 L ‘ i ’ _
We know that the holomorphic coupling satisfies 74 —Ioop(ﬂ) = 2%1' log% and therefore (omitting the 1-
loop label)

d b d . 7T _ b _ 3 T(adj) — ). T(r))
dlog u 2mi dlogu 4rni  8n? 82
We also know that dlog? =2 yi. Taking the derivative of (*) wrt log u, we get an equation for i Ig
dlog u dlog u

terms of g, yi, and group theoretical constant. Solving for it one recovers the NSVZ formula

dlogu



Supersymmetry and supergravity
Lecture 25



SUSY gauge theories and anomalies

* Let us consider a SUSY gauge theory without superpotential. It is
specified by:

1. a choice of gauge group G

2. a collection of chiral superfields ®* = (X, 1//;, F") in some
representation of the gauge group (possibly reducible)

* At the level of the classical action, any choice of gauge group and
representation is allowed and gives a SUSY Lagrangian

* At the quantum level, some choices can be inconsistent due to
anomalies



Chiral gauge theories

* A gauge theory is called non-chiral if, for every positive-chirality Weyl
fermion in a representation r of the gauge group G, there is another
positive-chirality Weyl fermion in the representation r

* In a non-chiral gauge theory the total representation of the Weyl
fermions is necessarily real, because it is of the form R = @, (r; @ 1))

* A non-chiral gauge theory can be formulated in terms of 4-component
Dirac spinors with “vector” couplings to the gauge fields (i.e. without

any factor of the chirality matrix y;). Examples include QED and QCD



Chiral gauge theories

* A gauge theory is called chiral it the positive-chirality Weyl fermion do
not appear up in pairs (I, T). The representation R can be complex

* Chiral gauge theories violate parity (but preserve CP)
* The SM is an example of chiral gauge theory



Gauge anomalies

For some choice of gauge group G and representation R the gauge theory is
inconsistent because of a (perturbative) gauge anomaly

The anomaly arises because the action is invariant under a gauge transformation,
but the fermion measure Dy in the path integral is not invariant

In perturbation theory, gauge anomalies arise from triangle diagrams with three
external gauge fields

The condition for the cancellation of gauge anomalies is
TI‘R (t(a tb tC)) — O

R is the total representation of the Weyl fermions (usually reducible). The adjoint

indices a, b, ¢ run over all generators of the gauge group G (which can contain
both Abelian factors and simple non-Abelian factors)



GGravitational anomalies

» |f we couple a Weyl spinor y, both to a gauge field and to a non-trivial

spacetime metric, the measure Yy Dy has a non-zero anomalous

variation. We cannot make it invariant under both gauge transformations
and diffeomorphisms. We have a mixed gauge-gravitational anomaly

* |f we are only interested in studying QFT in a rigid, flat spacetime, we

can allow a gravitational anomaly. The gauge theory is still consistent as
a QFT

 |f we want to couple the QFT to dynamical gravity, the gravitational
anomaly must be canceled. The condition for this to happen is

TI‘R ta — O



Witten’s SU(2) anomaly

There is another, more subtle, anomaly that can destroy the consistency of a gauge theory
in which the gauge group contains an SU(2) factor

Witten proved that:

a gauge theory with gauge group SU(2) and an odd number of Weyl fermions in the
fundamental rep (the doublet) is inconsistent

This anomaly cannot be seen in perturbation theory/triangle diagrams. It originates from an
ambiguity in the sign of the measure Yy Dy under “large SU(2) gauge transformations”.

There is a generalization of Witten’s anomaly to other representations of SU(2), as well as
to the gauge groups USp(2N) for some choices of representations. NB: USp(2) = SU(2)

Witten’s anomaly is rooted in the topological fact that z,(USp(2N)) = Z,



Example: the SM is anomaly-free

* All perturbative gauge anomalies in the SM cancel, and the cancellation
IS non-trivial because the electroweak sector is chiral

* The SM is free from Witten’s SU(2) anomaly, because it contains an
even number of SU(2) gauge doublets: three generations of left-handed
quarks Q' and three generations of left-handed leptons L' (i = 1,2,3)

* All mixed gauge-gravitational anomalies cancel. This is good news,
because we need to couple the SM fields to gravity



A different kind of anomaly: ABJ anomaly

» Let us consider a gauge theory with gauge group G (generally
consisting of both Abelian and non-Abelian factors) and a collection of

massless Weyl fermions in a representation R of G (generally reducible)

e Suppose that G and the representation have been chosen in such a

way that the model is free of gauge anomalies and Witten’s SU(2)
anomaly
* \WWe now consider a global symmetry of this system (as opposed to a

gauge symmetry) and show that, while this global symmetry holds at
the classical level, it is destroyed by a quantum anomaly




A different kind of anomaly: ABJ anomaly

* The classical Lagrangian

L, =—ig;e' Dy’ | Dy' =0y +iAl(t,) v/

is invariant under a U(1) global symmetry that rotates all y/’s with the
same phase: infinitesimally

51/155 — ia)U(l)l//éc

» The Noether current associated to this U(1) global symmetry is

Jt = 5"y



A different kind of anomaly: ABJ anomaly

« In the classical theory GMJ” = (. In the quantum theory the divergence is non-zero due to the

Adler-Bell-Jackiw (ABJ) anomaly

0, J" = e Tr (F,, F )

3272

T/ o b

» This effect arises from 1-loop triangle diagrams with one insertion of the operator J# and two dynamical

gauge bosons

» The quantity Tr (F /w I pg) is an operator in the gauge theory because we are performing the path
integral over A/j’. The non-conservation of the current holds as an operator equation inside correlation

functions. We cannot simply turn off A/f as if it were a background field

« Conclusion: the U(1) global symmetry 51//5 = LWy l//é is a symmetry of the classical theory, but it is
explicitly broken by quantum effects in the quantum theory




A different kind of anomaly: ABJ anomaly

Caveats:

The fact that a global U(1) symmetry suffers from an ABJ anomaly does not render the
gauge theory inconsistent

The ABJ anomaly is 1-loop exact: it is not corrected by higher loops or by non-perturbative
effects

The ABJ anomaly is “additive”. Our formula gives the contribution of one Weyl fermion of
charge + 1 under the global U(1). For the contribution of one Weyl fermion of charge g,

simply insert a prefactor g. The contributions of various fermions are added up. We can write

1
J,JF = 72 ehtre Z q;1(xy) 6, F, ) F 56 (sum over pos.-chirality Weyl fermions)
f
Recall the def. Trrf(ta t,) = 1(xy) 0,



A different kind of anomaly: ABJ anomaly

0, J" =

ere N g, T(xy) 8, Fo, FL,

2
327 r:

A technical point:

* |[n most non-SUSY applications, the formula for the ABJ anomaly is stated in
terms of Dirac fermions running in the loop (as opposed to Weyl). For one Dirac

fermion of charge + 1 under the global U(1), the prefactor 31 1

turns Iinto
272 1672

1

3272’

« For applications to SUSY we need the formula in its “Weyl version” with

because the gaugino 4¢ does not have any “partner” A1 to be paired up in a
Dirac 4-component fermion



ABJ anomaly and theta angle

 The ABJ anomaly can also be regarded as an effect that originates from
the non-invariance of the path integral measure for chiral fermions under

a global U(1) transformation

By a careful treatment of the path integral measure (which needs to be
suitably regularized to be computed), one can prove that

Dy’ Dy’ = Dy Dy exp [ — Ly Jd4x ecHPe Z qy T(rf) 0.1 F/fy Fé’a
/

» The notation is a bit schematic: Yy Dy stands for the path integral

measure on all the Weyl fermions labeled by f on the RHS (and their
complex conjugates)

3272



ABJ anomaly and theta angle

| 1
Dy’ Dy’ = Dy Dy exp [— [ Oy 1) [d“x T i Z q; 1(xy) 0, F,, Fg(,] (*)
f

* Notice that the anomaly in the path integral measure is equivalent to a change in the

action. Indeed, the path integrand is @w De’™, and we see that the net effect of (*) is
the same as a shift in the action:

/ 4 1 UVPO a b
§ = §'=S—ay |dx e D g T(x))8,,F., FY,
f




ABJ anomaly and theta angle

S—->8=95—- a)U(l) J'd4x ehre Z q]‘ T(rf) 5ab F/jly Fgg (*)

3272
f‘
* There is another term In the action with a similar structure: the theta angle term
— 4 ULVPO a b
Sg— Jd X 6471-2 € 5abF//tUFp6

« Formally, we can compensate the shift (*) if we promote the constant 6 to a

spurion, i.e. a background field that also transforms. More precisely, in order
to cancel (*) we need the shift

/



ABJ anomaly and theta angle

To summarize:

o |f a global U(1) symmetry suffers from an ABJ anomaly, it is explicitly
broken by quantum effects

* Nonetheless, we can formally restore this global U(1) symmetry if we
use a spurion

* The spurion is the theta angle:

/



R-symmetry in SUSY gauge theories

» A U(1)p R-symmetry acts on the fields in a chiral multiplet and on the SUSY

parameter as follows:
field/param X' W' F'
charge R[X'l] R[X]1-1 R[X]-2

* For a vector multiplet, one has

field/param A, A, D &
charge 0 | 0 |

S
1

X' =1/2 &y

A, = iEG,A—il5,&
54, = (6" &), F,, +iDE,

a’ uv

6D = (50,4 + 0,45 ¢

¢ Since Aﬂ and D are real fields, they must have charge 0. There is no freedom in the

R-symmetry charge assigments in a vector multiplet



Some classical global symmetries of SQCD

We already know that massless SQCD has gauge group SU(/V,.) and a flavor symmetry
group SU(N;) X SU(N)’

Let us now consider candidate global U(1) symmetries. At the classical level, we have
the following table

SU(Ne) | SU(Ny) SU(Np) UMp UM | UQ)g

(ij,wf;) 0,0 | @0 (e,e)  (+1,4+1) (+1,41) | (0,-1)

(QUr, ") | @O | (e,0) (0,0  (=1,-1) (+1,41) | (0,—1)
(A% A*) | (adj,adj) | (e,)  (e,@)  (0,0)  (0,0) | (0,+1)

* NB: we have chosen a classical reference R-symmetry; any linear combination of
generators of the form tU(l)% + atyqgy, D tU(l)gl Is an equally good classical R-symmetry



Symmetries that survive the ABJ anomaly

» The symmetries SU(/Vy) X SU(M)’ and U(1)z do not suffer from ABJ anomalies

« The classical symmetries U(l)fx1 and U(l)jfe1 are separately destroyed by ABJ anomalies

Tr (tyaya ts 0 V) = ) + (W) + (1) = (+1) N, T

Tr by ty 2 27 = @)+ (W) + D) = (DN T() 6, + (=D N, T(

)56119 | (I 1)]\9T(

)8, + (0) T(adj) = N;

)8, + (+1) T(adj) = — N, + N,

» Alinear combination of the form 7y;yq + p [y1)q 18 Tree of ABJ anomalies: we have to take

B =Ny = NIIN;



Symmetries that survive the ABJ anomaly

* The table below summarizes the global continuous symmetries of the quantum theory

e |t is also useful, however, to “recycle” the classical symmetry U(l)zl. We now know that it is
explicitly broken by the ABJ anomaly, but we also know that we can formally restore it if we

treat the theta angle as a spurion 6 — 0" = 0 + 2 wyyy, Z q; 1(xy)

r:
SU(Nc) | SU(Ny) SU(Ng)' U(1)p U(1)r U(1)5

(Q'z,v'p) | (@O | @O (e (+L+1) | (1 -5 —5°) (+1,+1)

QU ¢ | @D | (ee (OO (-1,-1) | (1-4,—35) (+1,+1)

(A, A*) | (adj,adj) | (e,e) (0, @) (0,0) (0, +1) (0,0)

shift in 6 — — — — — 0 — 0+ 2Nyrwy)




Supersymmetry and supergravity
Lecture 26



SUSY breaking overview

e Spontaneous SUSY breaking
The theory is SUSY invariant, but the vacuum is not
> Tree-level SUSY breaking
The classical Lagrangian is SUSY invariant, but has no SUSY vacua
> Dynamical SUSY breaking

The classical Lagrangian is SUSY invariant and has a SUSY vacuum; non-
perturbative effects lift the vacuum and break SUSY spontaneously

* Explicit SUSY breaking
We introduce terms in the classical Lagrangian that are not SUSY invariant

> Soft SUSY breaking

The SUSY-breaking terms are chosen so that the cancellation of quadratic
divergences persists



Spontaneous SUSY breaking

Some general remarks that hold both for tree-level breaking and dynamical
breaking:

 The vacuum energy is the order parameter for spontaneous SUSY breaking.
From the SUSY algebra (H = P”‘zo)

4H=Q,(0)" + ()"0, +0,(0,)" +(0,)" 0,
{Q1 ‘ O> =0
Qz ‘ O> =0

* We are only interested in vacua the do no break Poincaré symmetry: only scalar
flelds can get non-zero VEVs, and the VEVs are constant in spacetime

SUSY is unbroken & (0|H|0)

 The vacuum energy is the same as the value of the scalar potential at the vacuum



Spontaneous SUSY breaking

 The scalar potential of a SUSY model is of the form

where both V' and V, are separately non-negative. In order to have zero vacuum energy, they
have to be zero separately

* |n a renormalizable model, the kinetic terms are canonical and the gauge coupling function is a
constant

<4 >-6;D,X D/“‘XJ——5abF“ Forv 4
* In this case

V,=6-FF |, V,==6%D D, where F =—57 oW
l] p) a OXJ
» Here the constants p, are Fl terms. They are only allowed for U(1) factors in the gauge group

. D, =-gX;(t); X - p,



Spontaneous SUSY breaking

* |n a non-renormalizable model (which can emerge for example as a low-energy
Wilsonian effective action) we still have V = V. + V|, with both terms separately

non-negative
« The quantities Vi, V, are now constructed in terms of the K&hler metric, the real
part of the gauge coupling function, and the moment maps 9’@ (see Lecture 20)

Vp =5 Ref) ' P, P,

e |t is still true that we have zero vacuum energy if and only if we satisfy all F-term
conditions dg:W = 0 and all D-term conditions &, = ()

* To have spontaneous SUSY breaking we must violate at least one of these
conditions



Tree-level SUSY breaking

* Let us examine two examples of tree-level SUSY breaking:
> O’Raifeartaigh models: F-term SUSY breaking
> Gauge theories with FI parameters: D-term SUSY breaking



Example of O’Raifeartaigh model

* Let us study a renormalizable model with no vector superfields and three chiral
superfields

 [he Kahler potential is canonical; the superpotential is

_ 2 1 2
W=—-x"® +m®, D3+ y D, D3
* For simplicity, we take the parameters k, m, y to be real

 The scalar potential has only the V. term; it reads
I 522 v |2 v Y Vv |2
Vi = \KZ—EyX3| + | mX;|"+|mX, +y X, X5]

* The three quantities inside the absolute values are the three F-term conditions.
For generic k, m, y we cannot set all three F-terms to zero simultaneously



Example of O’Raifeartaigh model

Vi = \Kz—%y)_(%\z + | m X, *+ |mX, +y X X; §

 \We cannot find SUSY vacua, but the model still has non-SUSY vacua,
which are determined by minimizing V-

e If the mass parameter is large enough, the solution is

minimize V. : X, =0, X;=0, X, undetermined

» The value of Vi at the minumum is V. = K*

» At the classical level, the scalar potential has a flat direction (X). Giving
different VEVs to X, we get inequivalent vacua (for example, the masses of
the various particles in the model depend on the VEV (X))



Example of O’Raifeartaigh model

» For example, if we choose (X;) = 0 and we study small fluctuations,
the mass spectrum of the theory is

> (real) scalars: 0,0,m?*, m*, m*>—yk*, m*+ vk

2
» fermions: O ,m ,m
* These masses satisfy a so-called “sum rule”
2 _ 2
Ir (Mscalars) =21Tr (Mfermions)

 Sum rules of this form are a generic feature of tree-level SUSY breaking



Example of O’Raifeartaigh model

 Caveat: we have seen that X is a flat direction classically

« In the classical theory the flat direction X is associated to a massless complex scalar. This was
the origin of the two O’s in the scalar spectrum

* Quantum effects lift this flat direction: Coleman-Weinberg potential

 One can compute 1-loop corrections to the 2-point function of the quantum field 0X,; that

describes fluctuations around the VEV (X;) = 0

* One finds a non-zero correction that gives a positive mass-squared
4 4

» Y K

- A872m2

» This means that (X;) = 0 is a stable non-SUSY vacuum

om

 NB: the fermion mass spectrum had a massless fermion at tree-level; this fermion remains
massless even after 0X; acquires a mass. This is due to the Goldstino theorem (see below)



Example of model with Fl term

As an example of tree-level SUSY breaking with Fl terms, let us consider SQED

It is a SUSY gauge theory with gauge group U(1) and two chiral superfields
®* of charges = 1. We include a non-zero Fl term p

We consider massive SQED by turning on the (gauge-invariant) superpotential
W=md" b~
The total scalar potential is a sum of two F-terms and one D-term:
_ _ — — 2
V=|mXT|"+ |mX |+ [g(XJ“XJr - X X)) —p]

For generic non-zero m and p we cannot set the two F-terms and the D-term to
zero simultaneously



Example of model with Fl term

A more explicit expression of the scalar potential is
2 2 2 — 122
V=p*+m*=2gp) Xt |"+(m*+2gp) | X "+ g (|XT|"= | X" |")
We have two qualitatively different cases:

. CaseA: 2g|p| < m?

Both complex scalars have a positive mass-squared, so
they are stable at zero. The value of the potential at zero is

V = pz. SUSY is broken, but the U(1) gauge symmetry
remains unbroken. The photon and the gaugino remain

- + +
massless, while the partners y— of X— have mass m. We
have a sum rule

(m*—2gp)+ (m*+2gp)=2m"



Example of model with Fl term

. CaseB: 2g|p|>m?

One of the two complex scalars acquire a term with a negative
mass-squared, which means that zero is an unstable point.

The scalar is driven towards a non-zero VEV. The value of V at

the minimum is non-zero. Both SUSY and U(1) gauge
symmetry are broken. The mass spectrum is more
complicated, but let us hightlight two features:

e There is still a sum rule for the masses of scalars vs

fermions

* There is still a massless fermion (it is no longer the gaugino,
but rather a suitable linear combination of A and ™

Y



Drawbacks of tree-level SUSY breaking

* The scale of SUSY breaking is governed by a parameter in the classical
Lagrangian

* |f we want a large hierarchy of scales (for example SUSY breaking at a
scale much lower than GUT scale or Planck scale), we have to tune the
parameters by hand. This is not a “natural” solution to SUSY breaking

* Tree-level SUSY breaking generically leads to sum rules for the traces of
the masses of scalars and fermions. These sum rules are usually an
obstacle in constructing realistic models (they would imply light
superpartners of known particles, which haven’t been observed in
experiment)



The appeal of dynamical SUSY breaking

e |n dynamical SUSY breaking, SUSY is preserved at classical level, but is
spontaneously broken once quantum effects are taken into account

 Because of the non-renormalization theorem for the superpotential, if the
classical potential is zero for some choice of VEVs, it remains zero at all
orders In perturbation theory

e Our only hope are non-perturbative corrections
 They are much harder to study, but they lead naturally to large hierarchies

* This is the case because they are suppressed by exponential factors of the
2
schematic form e 18

o A study of dynamical SUSY breaking goes beyond the scope of these
lectures



The (classical) Goldstino theorem

* Let us consider a SUSY gauge theory with canonical Kahler potential and
constant gauge coupling function

 The mass matrix for all the fermions in the model is extracted by the following
terms in the Lagrangian:

The Yukawa couplings that originate from Jd4x d*0d*0 " e*V @:

Z 228X ) W A = 2 (t,) X]
The mass terms/Yukawa couplings that originate from [d4x d’OW +h.c.

1 i i ] oo — —
Z D == Wy —- Wiy,



The (classical) Goldstino theorem

 |n total, we can write the mass terms as

M, M, (Ab> L 0 igV/2 X (1) (zb>
. . J 2 : — J

Mi, My | \y i g2 X, (1) - W #

l ]
« NB: here and in the following, when we write a scalar we mean its VEV. Thus, le stands
for the second derivative of the superpotential, evaluated at the VEV

1 a .1
5(/1 W)

» Claim: the following vector is an eigenvalue of the mass matrix with eigenvalue O:

D¢ | | oo
V2 where F'=-W{(X) , D,=-gX;,);X —p,
Fi

. NB: D’ and F" take their on-shell values and are evaluated at the VEV




The (classical) Goldstino theorem

* The relation we have to prove is

: Y k) [ _1_ nb : v k i
0 — 0 lg\/sz(ta)j \/ED _ zg\/sz(ta)jFJ

igV2X, 1) -W, F -2 X, (1) D" — W FV
* Recall: the superpotential is gauge invariant
. o ow . .
oX' =1€e"(t,); X’ 0=0oW= G oX'=1ie"W;(1,); X
. Take the complex conjugate: 0 = — i e? X, (ta)’:]- W/

. Recall that F' = — W{(X). We obtain X, (ta)kj F =0



The (classical) Goldstino theorem

* The relation we have to prove is

: % kY[ _ L b : Y k rj
0 — 0 lg\/sz(ta)j \/ED _ zg\/EXk(ta)ij

L8 \/5 X, ()" - W F/ -8 X, (t,)"; D" - Wi I

* Next we use the fact that the vacuum must be a configuration in which the gradient of the scalar potential is zero.
The scalar potential is

V=F,F+=8,,DD" = W, W+ 5, [ X; (1Y, X' + p“] [§ X, (1), X’ + p°]

. If we take a derivative wrt X' and evaluate at the VEV, we get
oV oW, _
= — = : W]

oX! 0X!

* We have verified the claim

S [8 X, (1) s X7 + p“18 X; (t"Y; = Wy, (—=F/) + 5,5, (=D g X; (1"Y,

. NB: in order for (j D* Fi)Tto be a non-trivial eigenvector, it has to be not identically zero, which means that at
2

least one of the D-terms or F-terms must be non-zero in the vacuum. This is exactly the condition for SUSY
breaking



The (classical) Goldstino theorem

» Let us perform a unitary rotation from the original basis of fermions (17, w') to a new basis (PV, ¥¥)

where PV corresponds to the special eigenvector (? D* F i)T and W* denotes collectively all
2

other fermions

(V) - (\PO)
! . . X
7 Fiooyi | \¥

e We know that the fermion

SR AN 16y
VI o) W

PO = —ﬁ (DY 8,4, AP + (F)y

iIs a massless fermion. (We have reintroduced the angular brackets in our notation to emphasize that
we are taking the VEV; it was implicit in the previous slides). It is known as the Goldstino, by
analogy with the massless Goldstone boson that appears in the spontaneous breaking of a
continuous global symmetry



The (classical) Goldstino theorem

- We should split the scalars into VEV and fluctuations, schematically X' = (X') + AX"
 The SUSY variation of the Goldstino is computed from

Sy' = i\/2 (6" &), DX ++/2FE, 534 = (6" &), F,, +iD"E,
Isolating the terms without fluctuations, and the terms with fluctuations, we can write

SP0 = —ﬁ (D% 8, [i (DPYE + fluct.] + (F,) [\/2 (F') & + fluct.]

= V2 [(F)(F')+ 8,, (D) (D?)] & + fluct. = /2 V& + fluct.

where V}, is the vacuum energy

 The Goldstino SUSY variation is inhomogeneous (it contains a constant, field-independent shift)

* This is the analog of the fact that the Goldstone bosons transform inhomogeneously under the
spontaneously broken global symmetry



The (quantum) Goldstino theorem

* Our discussion so far was based on a Lagrangian description

* |n dynamical SUSY breaking scenarios, SUSY Is spontaneously broken

by non-perturbative effects. How can we be sure that there is going to
be a Goldstino?

* \We need a non-perturbative version of the Goldstino theorem



The (quantum) Goldstino theorem

Sketch of the proof:

« Any SUSY theory has a supersymmetry current J(’j. It lies in a “supermultiplet of currents”

that also contains the stress-tensor 1, (this is a general fact that we have not derived in
these lectures)

. If we act with a supercharge on the supersymmetry current J?, we get T/w
(0 THX)} = V2 62, T, ()

« Now we take the VEV. In order to preserve Poincaré symmetry, the VEV of T/w must be a

constant times the metric, (T,,) = E'n,,,. (Cfr. with the cosmological constant term in GR).
We get

(01{Qy T} 10) = V/2 6", E



The (quantum) Goldstino theorem

Sketch of the proof:

(01{Qy T4} 10) = /26", E

 Since X is arbitrary, we can set x = ()

 Next, write the supercharge (), as the integral of the timelike component of
supersymmetry current on the spatial slice at x)=0. We get a relation of the form

\/2 Eo-gﬁ. = jd% (0]J20,x) fg(()) + f;(O)Jg(o,x) 10)

. Equivalently, we can do the integral over d*x, inserting a delta function 5(x")

V2 E a(fﬂ. = [d4x S(xY) (0] J9(x) fg(()) + J_;(O)Jg(x) 10)



The (quantum) Goldstino theorem

Sketch of the proof:

V2 E agﬂ. = Jd“x S(xY) (0] J0(x) f;(()) + f;(O)Jg(x) [0)

* Finally, this can be recast as a time-ordered 2-point function:

V2 Eq = Jd“x 0, (01 TJe(x) 74(0) | 0)

. Notice that the time ordering symbol has a Heaviside theta function ®(x")
whose derivative d, is non-zero for v = 0 only and gives back 5(xY). We do

not get contributions from 0 J_ (x) because the supersymmetry current is
conserved



The (quantum) Goldstino theorem

Sketch of the proof:
V2Ed!, = Jd4x 0, (01T J200.7(0) |0)

« SUSY is broken iff E # 0, iff the integral is non-zero. But it is an integral of a total derivative. If it is non-
zero, it must be because the quantity (O | 7'J%(x) f;(O) 0) does not fall off to infinity sufficiently rapidly

. Ingeneral (0| TJ(x) J_;(O) | O) receives contribution from all the possible intermediate states (single-

particle, multiparticle, etc). One can prove that, if we want (0| 7' J%(x) f;(()) | 0) to fall off at infinity
slowly enough to give a non-zero integral, then we must have a massless 1-particle state of spin 1/2

 Moreover, this massless fermion PV is characterized by the fact it can be generated from the vacuum by
acting with the SUSY current

(0] f’; | ‘I’g) =f % with f a non-zero constant; actually one proves > = E



The (quantum) Goldstino theorem

Sketch of the proof:

* This is the non-perturbative definition of the Goldstino: a massless
fermion whose 1-particle states | ¥Y) is such that the SUSY current has
a non-zero matrix element between | ¥Y) and the vacuum

* This is analogous to the non-perturbative definition of the Goldstone
boson: a massless scalar whose 1-particle states | @) are such that the

SUSY current has a non-zero matrix element between | @) and the
vacuum. Schematically

(O|J*| ) ~ fp*  (p"is the momentum of the state | @))
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Soft SUSY breaking

Soft SUSY breaking is a special kind of explicit SUSY breaking

Let us consider the Wess-Zumino model. We know that, because of the
non-renormalization theorem, the mass parameter and couplings do not
receive independent renormalizations, other than wavefunction
renormalization

In terms of Feynman diagrams at 1-loop, one find “miraculous”
cancellations between bosons and fermions. The cancellations remove
pieces that are quadratically divergent in the momentum cutoft, all well
as pieces that diverge logarithmically, and finite pieces

Is there a way to break SUSY explicitly, but keep the cancellation of the
quadratically divergent pieces?



Soft SUSY breaking

* This question is relevant for phenomenology

* We have seen that tree-level SUSY breaking has drawbacks (problem of

scales, sum rules for masses...) that make it not suitable to construct
models for SUSY breaking in pheno

* [t is expected that SUSY is dynamically spontaneously broken by non-
perturbative effects in a “hidden sector”. SUSY breaking effects are

trasmitted to the “visible sector” (the Standard Model) via non-
renormalizable interactions or loop effects

* We can parametrize our ignorance about these mechanisms by

including an explicit SUSY breaking in the “visible sector” model, but
doing it softly




Soft SUSY breaking

It turns out that one can organize the possible soft SUSY breaking terms using background
superfields in superspace

Let us consider a background chiral superfield ;.. So far, we have only considered situations

in which the only non-zero component of CDbkg is its X component, given by a constant,
(I)bkg — kag ’ a,qukg = 0

This was dictated by the fact that we wanted to preserve SUSY. We can see this from the
variation of the y component

Wre = 1V 2 0" E0,Xpo + V2EF bkg
In order to describe explicit SUSY breaking, we now allow for a non-zero Fbkg
— 2 — —
(I)bkg — kag + H Fbkg y aMkag —_ O y aﬂFbkg —_ O

NB: We are breaking SUSY, but we are preserving Poincaré



An analogy

* \We can describe explicity breaking of Lorentz symmetry in a Lorentz-
covariant way

» For example, we can define the constant vector field v* = (1,0,0,0)
that singles out the time direction, and write terms in the action such as

(v 9,0)°
 Here we are describing explicit SUSY breal_dng IS superspace using
background superfields with an explicit €, 6 dependence



How to generate soft SUSY breaking terms

* \We describe explicit supersymmetry breaking is superspace. To this
end, we need background superfields that have an explicit &

dependence (but no x dependence)

 We consider a suitable term in superspace and we promote the
constant parameter in the term to a background superfield with explicit

6 dependence

e Integration in 6, 0 yields soft SUSY breaking terms



Overview of soft terms

bkgr supertield superfield term in components mass dim.’s

U/ = (m?);? 0°0* [d*0d*0U (BT e2V),; B (m?);? X; XV U7 =0 (m?)7] = 2
Uij = b;j 07 [d*0U;; " ®’ + h.c. bi; X' X7 + h.c. Uil =1 bij] = 2
Uijk = aijr 0 [ d?0 Uy, @ ®7 % + h.c. aiik X' X7 XF +he. (Ul =0 agje] =

U; = e; 62 [d?*0U; ®* + h.c. e; X'+ h.c. U;| =2 ei] =3

Uy = M, 6? [d?0 Uy 5,0 W W' + h.c. My 6y A AP +hc.  [Uy]=0 M, =1

Notation: @' = chiral superfields; e”V = factors for gauge invariance in
superspace; 7 ¢, = chiral superfields with the field strength of the gauge fields



Overview of soft terms

bkgr supertield superfield term in components

U/ = (m?);? 0°0* [d*0d*0U (BT e2V),; B (m?);? X; XV

U;j = b;j 6 [d*0U;; " ®’ + h.c. bi; X' X7 + h.c.

Uijk = aijr 0 [ d?0 Uy, @ ®7 % + h.c. aiik X' X7 X* +h.c.
U, = e; 67 f d?0 U; ®* + h.c. e; X'+ h.c.

Uy = My 62 [d?0Uy 50 W WP + h.c. M) 6ap A* AP + h.c.

mass dim.’s

U] =0
Uil =1
Uijk] =0
Ui] =2
Uy =0

 Why are these terms soft? The proof relies on power-counting for Feynman

diagrams in superspace

* Heuristic explanation: these soft terms come from terms in superspace that are
renormalizable; the mass dimension of the background superfield U is non-negative
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SUSY quantum mechanics

SUSY exists in various spacetime dimensions, including in 0+1 dimensions, i.e. guantum
mechanics

In 0+1 dimensions, the analog of the 4d Poincaré group consists of time translations (generated

by PY = H). There are no “rotations”, no “boosts”, no notion of spin in the usual sense. We still
distinguish bosons and fermions by their statistics (commuting vs anticommuting)

We know that the structure of the SUSY algebra in 4d is very roughly [P, O] = 0 and
10,0y ~P+Z

The SUSY algebra in 0+1 dimensions has a similar structure:
(Q,H]=0 , {QLQ)y=H&"+Z' | 1=1,.,/

The operators Q' are Hermitian, (Q1)" = Q! (they are “real” supercharges). The central charges
Z" commute with everything. Contrary to their 4d cousins, they are symmetric, Z" = Z/!



SUSY quantum mechanics

General properties of a SUSY QM model (for simplicity, without central
charges):

1. The Hilbert space decomposes into the direct sum of “bosonic” and
“fermionic” subspaces

H=H>PpH"
2. The fermion number operator (—1)" is defined to be the operator that

has eigenvalue + 1 with eigenspace # 5 and eigenvalue — 1 with
eigenspace #*

3. The Hamiltonian commutes with (— 1) it sends bosonic states to
bosonic states, and fermionic states to fermionic states



SUSY quantum mechanics

General properties of a SUSY QM model (for simplicity, without central
charges):

4. The model has supercharge operators QI defined in the Hilbert space
that satisfy the following properties:

* they are Hermitian
. they anticommute with (— 1)": they enchange bosons and fermions
. they commute with the Hamiltonian: [Q’, H] = 0

. their anticommutator gives the Hamiltonian: {Q’, 0’} = H 6"



Spectrum in SUSY QM

« We are interested in the situation in which the Hamiltonian H has a
discrete spectrum:

E,<E <..<E <..

« The groundstate energy £, is always non-negative. It is 0 iff SUSY is
unbroken. This follows from {Q’, 0’} = H 6"

H=(Q"=0"" "+ " 0!



Spectrum in SUSY QM

Let us fix our attention on the supercharge Q = Q1

If out SUSY QM has extended SUSY, and if we choose Q2, or Q3,
we get similar conclusions

The crucial properties of @ are
O"'=0 , G’=H

Claim #1: eigenstates with non-zero energy always come in boson-
fermion pairs

Claim #2: all energy eigenstates of zero energy are annihilated by @



Spectrum in SUSY QM

Claim #1: eigenstates with non-zero energy always come in boson-fermion pairs

e Suppose | ‘PB) is a bosonic eigenstate of energy E, # (0. Let us define
| WYY = @ | PP). This state:
> Non-zero: its norm-squared is
(PP Q" 0| ¥P) = (¥B| Q% ¥B) = E, (¥P | ¥P)
> A fermionic eigenstate of energy £,
» Such that, acting with @ on it, we recover | ‘PB) (up to a non-zero constant)
Q|¥F) = Q| ¥B) = E, | ¥P)

. The states | PP), | PF) := @ | ¥P) form a “long” multiplet of the supercharge @



Spectrum in SUSY QM

Claim #2: all energy eigenstates of zero energy are annihilated by @
* This follows from
(PIH|Y) =(¥|Q" Q|¥) = l|Q|¥)I’

* We can say that eigenstate of zero energy form a “short” multiplet of the
supercharge @



The Witten index

* Non-zero energy eigenstates always appear in boson-fermions pairs
o States with zero energy need not be paired up

* In particular, the number of bosonic groundstates can be different from
the number of fermionic groundstates, and we can define the Witten
Index

_ B _F
I—nO 1,




The Witten index as a trace

We can write the Witten index as a trace over the Hilbert space
[=Troy ,(—Dfe??  p>0

The positive parameter [ gives a “convergence factor” that makes the
trace well defined

The RHS is actually independent of f: taking the trace, the contributions

of states with £, > () cancel in pairs between bosons and fermions. Only
groundstates give a non-zero contribution

We can then take the limit f — O™. For this reason the Witten index is
usually written simply as

I =Tro(—1)F



The Witten index in four dimensions

e Can we define the Witten index in a 4d SUSY QFT?

 \WWe need to be able to count state in a meaningful way, which requires a
discrete energy spectrum

 To obtain a discrete spectrum, we put the QFT on a spatial “box” of side
L. More precisely, we consider the theory on T3 with periodic boundary
conditions for all fields (bosons and fermions)

o SUSY would be violated if we used different boundary conditions for
bosons and fermions
 The box breaks Lorentz symmetry, but translational invariance is

preserved. This is necessary, because we know that {Q, O} ~ P so
breaking translations would break SUSY



The Witten index in four dimensions

» The role of the supercharge @ can be played by any linear combination

of the Q s, O ’s that satisfies the properties
C'=0, @=H=P’

e Just like in the QM toy model, states with non-zero energy are paired up
INn boson-fermion pairs, while states with zero energy are not necessarily
paired up




The Witten iIndex Is robust

Let us imagine a small deformation of some parameter in the SUSY QFT (say, a superpotential
coupling) or a small deformation in the size L of the “box”

What can happen to the spectrum of the theory?

States with positive energy can start shifting. It might happen that some of them go down to zero

energy. This must happen to a boson-fermion pair, so the index I = n(])3 — (1; IS not affected

States with zero energy might acquire a non-zero energy. If they do, they must do so in pairs,

because they cannot leave the energy level £, = 0 without a superpartner under the action of @.

So again [ = n(l)3 — ng is not affected

Lesson: the Witten index is invariant under small deformations of the parameters

o0
»e-6¢ — e
0000

e




The Witten index can rule out SUSY breaking

e Suppose we are able to compute the Witten index of a 4d SUSY QFT in a box of size

L, and we get a non-zero result: [ = n(])3 — ng * 0

« We must have n(])3 =+ () and/or ng =+ ()

* As we increase the size of the box, some of the groundstates might pair up and go to

a higher energy level, but this cannot happen to all of them, because

[ = n(l)3 — ng #+ (). SUSY is unbroken in a box of size L, for any finite L

* This means that the vacuum energy of the theory on a box of size L is exactly zero,
for any finite L

 The vacuum energy must remain zero in the infinite volume limit. As a result, SUSY is
unbroken in the infinite volume limit

* This is a non-perturbative argument. It can be used to rule out dynamical SUSY
breaking by non-perturbative effects (ho matter how small or hard to compute)
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The MSSM: main idea

The Minimal Supersymmetric Standard Model is a SUSY gauge theory
with the same gauge group as the Standard Model, and minimal field
content to account for all known particles

The SUSY particles of known particles are often called superpartner or
“sparticles”

The SUSY partners of leptons, quarks are usually called sleptons,
squarks

The SUSY partners of gauge bosons have a -ino suffix, e.g. photino,
guino, W-ino, etc...



The MSSM: main idea

The MSSM is usually thought of as a low-energy effective action of a
more complete UV theory

In the most promising scenarios, SUSY is spontaneouly broken by non-
perturbative effects (dynamical SUSY breaking) in a “hidden sector”

SUSY breaking is then transmitted to the “visible sector”, i.e. the MSSM

In order to describe these phenomena in a model-independent way, we
consider the MSSM supplemented by soft SUSY breaking terms



Reminder on the SM

The SM is a gauge theory with gauge group SU(3) X SU(2) X U(1)y
The SU(3) factor is the color gauge symmetry of QCD

The SU(2) X U(1)y factor is the gauge symmetry of electroweak interactions. It is
spontaneouly broken to a U(1) gauge group, identified with electromagnetism

Caveat on notation: so far, following Wess-Bagger, we have used a bar to denote the
complex conjugate of a Weyl spinor (Hermitian conjugate if it is an operator). E.Q.

W, = (WQ)T. In the MSSM literature, it is customary to use the bar as part of the name
of a field. One then uses { for Hermitian conjugation

Example: given a positive-chirality Weyl spinor €, (the bar is part of the name), its
conjugate is

M, = ()"



Reminder on the SM

The matter content of the SM is summarized as follows ( |:I ’ |:I )1/6
left-handed quarks 0k (O, ) / / T
right-handed up-type quarks it (_ ,®)_ o3 rep of SU(3) U(1)y charge
right-handed down-type quarks ik (O, *). 13 rep of SU(2)

left-handed leptons L' (e, [D)_1p

right-handed electron-type leptons ¢’ (o,9)

Higgs doublet H (e, L1

Remarks:

* All spinors are positive-chirality Weyl spinors. The bars are part of the name. We suppress spacetime and
gauge indices.

 Theindexi = 1,2,3 is a generation label

« The SM is a chiral gauge theory. It is free of gauge anomalies, gravitational anomalies, Witten's SU(2) anomaly



Reminder on the SM

We consider all possible terms in the Lagrangian that are allowed by gauge
symmetry and renormalizability

1. YM terms for the SU(3) X SU(2) X U(1)y gauge fields

2. Theta angle terms (they are only relevant for non-perturbative effects)

3. Kinetic terms for the fermions. We write them in a basis that is diagonal
wrt the generation index 1

¢>5-iQ'e"D,Q —iu "D —id o Dd + ...
4. Kinetic term and scalar potential for the Higgs doublet:
Y>-D'H'DH-V , V=-m"H' H+A(H H)



Reminder on the SM

5. Yukawa couplings. Since we have already diagonalized the kinetic terms, these couplings in
general mix the generation labels 1, j

LD )y QH W+ (5 Q'HP + (v); L'H& +h.c.
e |f we restore the fundamental indices of SU(2) gauge, the SU(2) index contraction is
(0" (HT)I in the first term, and ¢;; (OY H’, €7 (LY H’ in the second and third terms. Here
€;;7 is the antisymmetric invariant of the SU(2) gauge group

* |[n the SM there is no notion of “holomorphy”, and we can write Yukawa couplings of
positive-chirality Weyl spinors both to A and to H f

. Curiosity: if we turn off all Yukawa couplings, we get a global SU(3)> symmetry rotating the
i = 1,2.3 labels of the five fermions Q', i", d', L}, &'. This enhanced global symmetry at

Yukawa = 0 explains why it is natural for Yukawa couplings to be very small (e.g. ~ 107 for
the electron)



After EW breaking

 The "wrong” sign of the mass of the Higgs induces a VEV which breaks the
SU(2) gauge symmetry. The gauge fields of SU(2) X U(1)y are reorganized
iInto the massless neutral photon Aﬂ, the massive neutral Zﬂ, and the massive

charged W/f

 Let us give a name to the components of our SU(2) doublets:

() o) o)

 Up to a gauge transformation we align the VEV of the Higgs as

)



After EW breaking

The Yukawa couplings yield mass terms: up to numerical factors
Z DOv(y,)u u]+v(yd) d’df+v(ye e'e/+h.c.

Observed particles correspond to mass elgenstates We diagonalize the mass terms
using independent unitary rotations on u', it", d', d', é', &'

The kinetic terms remain diagonal in the generation indices 1

The couplings of the fermions to Aﬂ, Zﬂ also remain diagonal. In the SM, there are no
flavor changing neutral currents (FCNC) at tree-level

The coupling of the leptons to W/f are also diagonal. The couplings of quarks to Wj,
however, are not diagonal in the generation indices:

V"j W; uf ' d/ V’:]- - unitary CKW matrix



Some flavor structure in the SM

 The SM has important accidental symmetries:

> three separate “lepton numbers” for each generationi = 1,2,3
> “baryon number”

* Flavor changing neutral currents (FCNC) are naturally suppressed: we have
seen that they do not arise at tree-level. They arise at 1-loop level, but they
are suppressed by the so-called “GIM mechanism”, which is a
consequence of the unitarity of the CKM matrix

 None of these appealing features were put in by hand!

o Caveat: I’'m describing the SM with massless neutrinos, which is clearly
Incomplete because we know that neutrinos are massive. Flavor physics is
more complicated with massive neutrinos



The matter content of the MSSM

» We use vector superfields for the gauge group SU(3) X SU(2) X U(1)y

* We recycle the table of matter fields we had before, reinterpreting all the entries as chiral superfields

left-handed (s)quarks Qi (O, e
right-handed up-type (s)quarks Tk (O,e)_ 2/3
right-handed down-type (s)quarks d' (O, ).
left-handed (s)leptons L' (e )_1/2
right-handed electron-type (s)leptons &' (o )
Higgs doublet no.1 H, ( .[1)_1n
Higgs doublet no.2 H, (e, D
Remarks:

» We have to include two Higgs doublets to avoid gauge anomalies and a Witten SU(2) anomaly



Renormalizable SUSY interactions

We consider all possible terms in the Lagrangian that are allowed by gauge symmetry,
SUSY, and renormalizability

1. SYM terms for the SU(3) X SU(2) X U(1), gauge fields

2. Theta angle terms (they are only relevant for non-perturbative effects)

3. Kinetic terms for all the non-Higgs chiral superfields. We write them in a basis that is
diagonal wrt the generation index 1

<L D szé’dz@(Q; e’V E' + L_tj eV i + c?:f e?V d' + )
4. Kinetic terms for the Higgs doublets chiral superfields

Z D szﬁ d2§<H; eV H + H; e”’ Hd)



Renormalizable SUSY interactions

5. Superpotential couplings that mimic the SM Yukawa couplings:
LD szﬁ[(yu)lj Q'H,i# + (y); Q' Hyd + (y,);; L'Hy&'| +h.c.

Notice that holomorphy forbids a term of the form QiHT u, which is another reason
why we need both H,and H,,

6. Two superpotential couplings involving the Higgses with dimensions of mass:

Lk = sze[//tHqu+ L'H,|+h.c.

/. More “Yukawa-like” terms in the superpotential:

ZLbad Yukawa = sze [aljk QiLj d* + ﬁzj’k L'L)e" + 5zjk d d b_tk] +h.c.



“Bad” interactions

The superpotential terms

a Q' Ud + py L'/ & + 6, d d i + ;L' H,

are all “bad”: they induce baryon and lepton violation at tree-level

The couplings @ and o0 induce processes that make the proton decay into a meson and an

antilepton (e.g. a 7” and a positron). The experimental bounds on proton decay imply the
estimate

lal|6] < 1072
There is no obvious reason why the “good” Yukawas should be not too small (to account for
known particle masses) while suppressing these “bad” Yukawas
The pu term u H, H ; can be problematic. It induces quadratic terms in the scalar potential for

the Higgses. i Is a mass parameter and one has to ensure that it is naturally at the EW scale,
as opposed to, say, the Planck scale



R-parity

In order to forbid “bad” terms at tree-level we can postulate new global symmetries

One promising candidate is “R-parity”. In general, it is not related to the U(1), symmetries
that we have discussed so far

In superspace, R-parity is by definition a transformation of the form
R®(x,0,0)R™! = 55 D(x, — 9, — 0)
where sy, is the intrinsic R-parity of the superfield ©
If we choose
> s¢ = + 1 for all vector superfields and for the Higgs chiral superfields H , H
» s = — 1 for all the other chiral superfields Qi, it d'. L, &

then the known particles of the SM have parity + 1 while their unobserved SUSY partners
have parity — 1



R-parity

» s¢ = + 1 for all vector superfields and for the Higgs chiral superfields H,, H

> S = — 1 for all the other chiral superfields O, i, d, L,e
* |f we postulate this discrete global symmetry, the “bad” couplings

a; Q' Ud + py L' e + 6. d d it* + kL' H,

are all forbidden. The i term is still allowed

e Other consequences of R-parity:
> Scattering of known particles can only produce superpartners in pairs

> The lightest superpartner (LSP) is stable: it cannot decay. If it has the right
quantum numbers (e.g. has zero electric charge), the LSP can be a candidate

for dark matter



MSSM with soft breaking

* The MSSM is supplemented by explicit SUSY breaking by soft terms

* To write the SUSY breaking terms in components, we use the following
convention, popular in the MSSM literature:

> component fields with no tilde are the known particles (or Higgs like
scalars)

> component fields with a tilde are the unobserved superpartners



MSSM with soft breaking

Schematically, they soft SUSY breaking terms fall into the following classes:
 (Gaugino mass terms, e.q.

>MGG+h.c.

. where G is the “gluino”, i.e. the gaugino partner of the gluon (gauge field of SU(3))

 “A-terms”: trilinear couplings among scalar fields, one of which is a Higgs scalar and the other two are
sleptons and/or squarks. E.qg.

< DA Q'H,
 “Real” mass terms for the squarks and sleptons, as well as Higgses, e.qg.
N St S N \j 2 \]
Z D (m?); Q;L O, <£D (mHu)’j HJ H, , <D (de)’j H; H,
e “Complex" mass term for the Higgses,

£ D>b H;H,+h.c.

* This looks like the u term, but is not a term in the scalar potential, rather than the SUSY superpotential
 The MSSM with R-parity and soft SUSY breaking has 105 more parameters than the SM!



Gauge coupling unification

One can use the RG equations and the three beta functions for the gauge couplings of the factors SU(3),
SU(2), U(1)y to extrapolate the experimentally measured values of the couplings to higher and higher
energies

Gauge coupling unification is the idea that the three individual couplings should become one at sufficiently
high energies. The low energy gauge group SU(3) X SU(2) X U(1)y is interpreted in these scenarios as

coming from spontaneous breaking of a bigger gauge group (e.g. SU(5)). Such scenarios are referred to as
Grand Unification Theories (GUT)

In the SM, as we approach higher energies, the three couplings come close to approaching the same
value, but they don’t quite match

In the MSSM, the situation is improved considerably. If the masses of the SUSY partners are approx
3 GeV < M¢yqy < 100 TeV, the three couplings come extremely close to unifying at a scale

Mgyt =~ 2 % 10'° GeV. Cfr with the Plank mass Mp, =~ 10" GeV

Precise tests of gauge coupling unifications are hard because of “threshold effects”, which happen as we

approach higher and higher energy when we approach the mass of the superpartners (and possibly other
unobserved massive particles)



Challenges of the MSSM

* [he u-problem

The SUSY preserving mass term p has to satisfy stringent inequalities in
relation to the soft SUSY breaking masses b, mé ; méd. To get a scalar

potential for the Higgses that gives stable vacua with non-sero VEVs (so
that EW gauge symmetry is broken) we need

2b <2|\pl*+my +my , b*> (|| +mp)(| @] +my)

Problem: find a mechanism to engineer u, b, mé , méd that obey these
constraints



Challenges of the MSSM

* Individual lepton humbers can be violated too much

In the SM we have individual lepton number conservation for the three

generations. This forbids for example a decay of the formuy  — e .
For generic values of the parameters, the MSSM has a slepton mass
matrix that mixed the three generations by an amount that is too large to

be compatible on bounds on decayssuchasuy — e y



Challenges of the MSSM

* CP violation can be too strong

CP violation comes from complex phases in the Lagrangian that cannot
be removed by field redefinitions. In the SM, the CKM matrix gives us
one complex phase. In the MSSM, the soft SUSY breaking A-terms can
potentially give more complex phases. This can result in a violation of
CP that is too strong (for example, an electric dipole moment for the
neutron that is too large to fit experiment)



Challenges of the MSSM

* FCNCs and not-strong-enough GIM suppression

In the SM there are not tree-level FCNCs, and the GIM mechanism

suppresses them at 1-loop. In the MSSM, the soft SUSY breaking terms
can invalidate the GIM suppression mechanism. This would give too

strong FCNC effects that contradict for instance the data on KK
mixing



Challenges of the MSSM

* Roughly speaking, the soft masses and A-terms are required to be
“aligned” to the “good” Yukawa couplings in a special way to avoid
unwanted effects

* We are over-simplifying. The phenomenology of the MSSM is extremely
rich but we will not explore it further in these lectures
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Supergravity: main ideas

So far we have considered theories that are invariant under global (a.k.a. rigid)
SUSY

The SUSY parameters &, é?“ are constants, independent of the spacetime
position

NB: In deriving the SUSY current, we have sometimes treated £, é?“ as
spacetime dependent. This is just a formal trick

It is natural to ask: can we “gauge SUSY”? This would mean finding a theory
that is invariant under a set of SUSY transformations in which the parameters

E%, E% can be arbitrary functions of spacetime

The answer is positive, but there is a price to pay: we must necessarily include
dynamical gravity in the picture. The resulting theory Is a supergravity theory



Supergravity: main ideas

Intuitively, we can see this from the SUSY algebra. The commutator of two
SUSY variations is a translation. If the parameters of the SUSY transformations

are promoted from constants to arbitrary functions of spacetime, the same
must happen to the parameters of translations

A rigid translation with parameter a* is x'* = x* + a*

A translation in which the parameter a* is promoted to an arbitrary function of

x* is nothing but a general coordinate transformation x* = x'#(x)
(diffeomorphism)

A theory that is invariant under diffeomorphisms necessarily contains the metric
g,, as a dynamical field, and Is thus a theory of dynamical gravity

These arguments are heuristic, but lead to the correct conclusions



The gravitino

Let us consider a QFT in flat spacetime, and let us imagine to couple it to dynamical gravity. At
linear order, we consider small metric fluctuations around the Minkowski metric,

8w = M T h/w. The symmetric field hﬂy describes the graviton, which is a massless particle of
helicity £2

At linear order, the metric fluctuation /1, couples to the stress tensor of the QFT. Schematically:
Zz int,lin — h,uv ™

If we want to gauge SUSY, we expect to need a field that can couple in a similar way to the
SUSY current J/.. We then see that the “gauge field for SUSY” should be a vector-spinor, so
that schematically

ZLinttin =W, Sy + WL T
This expectation is correct: all supergravity theories contain a vector-spinor field known as
gravitino. One finds that this field corresponds to massless particles of helicities =3/2



The gravitino

» We can see why we should expect particles of helicity =3/2 from the
structure of SUSY multiplets, too

e In4d A = 1, massless multiplets consists of pairs of helicities

(4,4 — 1/2). We need helicities =2 to describe the graviton. At the

same time, we want to avoid particles with helicities higher than 2 In
absolute value, because it is not known how to describe interactions for

such fields. We must then choose
(2,3/2) and (—3/2,—2) for CPT



The on-shell gravity multiplet

The graviton has 2 on-shell d.o.f.’s: helicities =2
The gravitino has 2 on-shell d.o.f.’s: helicities =3/2

The on-shell supergravity multiplet of minimal 4d ./ = 1 supergravity is
very simple:

on-shell gravity multiplet (gﬂ,,, l//,m)

In 4d with // > 2 and in more than 4 dimensions the on-shell gravity
multiplets contain also massless fields corresponding to particles of

helicities =1 and/or O



Caveat on notation

For the rest of this lecture, | will switch to 4-component notation for spinors, including the
gravitino and the SUSY parameters

The 4-component gravitino is a Majorana vector-spinor. It is given in terms of the 2-component
gravitino by the usual relation

Vo
W,u 4—comp — l/_/,ud
The SUSY parameter will be denoted € and is a 4-component Majorana fermion
Both y/, and € are Grassmann-odd

A bar over a 4-component Majorana fermions denotes either Dirac conjugate, or Majorana
conjugate, which are equal thanks to the Majorana condition. Up to convention-dependent
phase factors we can write

=y y=y'C



Spinors in curved spacetime

In SUGRA, gravity is dynamical. The geometry of spacetime is
determined by Einstein’s equation

In order to formulate SUGRA, we have to consider spinors in an
arbitrary curved spacetime

Let us discuss the “physicist’s approach” to this problem: we will be
writing local expressions for the covariant derivatives of spinor fields

Spinors in curved space(time) can be rigorously defined using a more
refined mathematical language

The new tool we need is a reformulation of GR via the “vielbein
formalism”



Vielbeln formalism

The name comes from the German for “many legs”. In 4d, sometimes it is called a
vierbein, from the German for “four legs”.

In the vielbein formalism, the metric g, (x) is written in terms of the flat, constant

Minkowski metric 7, and a positition-dependent square matrix e (x)

glm/(x) — ;/]ab ealu(x) eby(x)
The inverse of eaﬂ(x) is denoted e '(x) and satisfies
e“ﬂ(x) e (x) = 5/’; , e“ﬂ(x) e, (x) = o0,
The u, v indices are called “curved indices”. They are always raised/lowered with gﬂy(x)

The a, b indices are called “flat indices”. They are always raised/lowered with 77,



Spin connection

 Using the vielbein e“ﬂ(x) and its inverse e *(x) one constructs the so-

called spin connection a)ﬂab(x). It has one curved index and two flat
indices. It Is antisymmetric in its flat indices:

a)luab(x) — = Iuba(x)
« There is an explicit formula for @ ab(x) in terms of e“ (x) e (x)

0, = 3" (0,e", = 0,¢") =5 " (9e, = 9, ¢ >——e“ﬂeb"e“ (9pe = 9otcp)

« Recall: we raise/lower flat indices with 77, so a) — n“cﬂb d D4

e = e, and so on



Covariant derivative of a spinor field

» Suppose €(x) is a spinor field, i.e. a spinor that depends on the position x on
spacetime

o In an arbitrary curved spacetime, the partial derivative dﬂe does not transform

covariantly. It must be amended with a term including the spin connection
constructed from the vielbein:

— 1 ab
V€ =0,+5w,,77€

 Here y“b — y[“ yb] where the y“ are the gamma matrices of Minkowski spacetime

(y% v’} =20
» NB: y“ is a constant matrix that does not depend on x, just like 77,

« The formula for Vﬂe holds in any dimension for Dirac or Majorana spinors



The universal part of the SUGRA action

* The Einstein-Hilbert term describes the “kinetic terms” of GR in any spacetime
dimension. We write it in 4d for definiteness:

2 K2

 Here R is the Ricci scalar constructed from the metric (which is in turn constructed

from the vielbein e“ﬂ). K’ is a parametrization of Newton’s constant.

* The analog of the Einstein-Hilbert action for the gravitino is the Rarita-Schwinger
action. It contains the "kinetic terms” of the gravitino i, in all SUGRA models

* The Rarita-Schwinger action reads (we write it in 4d for definiteness)

|
— 4 —— — _ULp
Skrg = 5o [d X gy, Vyl//p



The Rarita-Schwinger term

SRS = — 2 J'd4x\/ gy, "V

d4x, /— g Is the volume form constructed from the metric (constructed from the
vielbein), familiar from the Einstein-Hilbert term

The covariant derivative V , is defined by
1 b
VVV/,O — Oyl//p+z a)mb ya l//p
The object y#*¥ is by definition
b b
Y =et el ey y =ylytye

NB: y%¢ is a constant, but ¥#*” depends on x because of the three e /'(x) factors



The action of minimal SUGRA in 4d

The action of 4d minimal SUGRA takes the form

1
S = 5 J'd4x\/ [R W, rHr Vyl//p] (terms with four y,'s)

It Is invariant under local SUSY transformations:

l _ 4

a
Osusy €'y = 5 €7y,

Osusy ¥, = V€ + (terms with one € and two y,'s)



The action of minimal SUGRA in 4d

1

S = 5 Jd4x,/ [R W, rHr Vyl//p] (terms with four y,'s)

1 —
a _ a
5SUSY6/¢_3€Y l//ﬂ ’

Osusy ¥, = V€ + (terms with one € and two y,'s)

e We do not write down the 4-fermi terms in the action and the 3-fermi term in
the SUSY variation because they are quite involved

 The point is: they are completely determined by invariance under local SUSY

 NB: we are describing on-shell SUSY. The algebra of SUSY variations closes
only using the equations of motion

e There exist various off-shell formalisms for minimal 4d SUGRA



General structure of SUGRA actions

* The action for any SUGRA model takes the following schematic form:
S — SB + SF

» g is the part of the action that contains bosonic fields only. It always contains the
EH term, plus extra terms in the presence of bosonic matter fields (scalars, vectors)

» Sp is the part of the action that contains fermionic fields. It always contains the RS
term for the gravitino.

» Simple observation: Sy always contains an even number of fermionic fields

 The local SUSY variations in any SUGRA model take the schematic form

Ogygy(boson) = terms with one € and an odd # of fermions

|

L of fermions

Ogqyy(fermion) = terms with one € and an even



SUSY solutions of SUGRA theories

* We are usually interested in studying solutions of SUGRA theories In
which only the bosonic fields are activated (e.g. a non-trivial metric

g/w(x) or a non-trivial profile for scalar fields, if present)

* We set all fermionic fields to zero. This is always consistent with the
EOMs because all terms in the action have either 0 fermions, or an even
number of fermions

* By definition, we say that a solution to a SUGRA theory is

supersymmetric if a spinor €(x) can be found such that

o) (all fields) = (
SUSY evaluated at the solution



SUSY solutions of SUGRA theories

%) (all fields) ‘ = (
SUSY evaluated at the solution

* |n practice, the SUSY variations of bosons evaluated at the solution are
automatically zero, because Oqyjgy(boson) contains an odd number of
fermions

* The only variations to check are those of the fermions:

o) (all fermionic fields) =0
SUSY evaluated at the solution

* These are the BPS equations of the SUGRA theory




Example in minimal SUGRA

We have seen that the bosonic action Sy is simply the EH term. If we set the

gravitino to zero, the EOM for the metric is simply the vacuum Einstein equation
without cosmological constant

R, =0

What are the BPS equations of this SUGRA model? We take the SUSY variation
of the gravitino

Osusy ¥, = V€ + (terms with one € and two y,'s)
We neglect terms with two gravitini and we get the simple condition
V,e=0

A spinor field e(x) that satisfied the above PDE is called a Killing spinor




Trivial example: Minkowski spacetime

* A trivial example of supersymmetric solution is Minkowski spacetime:
8, (X) =1,

» The vielbein in this case can taken to be a constant: e (x) = 0%,
» The spin connection is zero because all derivatives of e“ﬂ(x) vanish
 The Killing spinor equation reduces to 8/46()6) = () which is solved by

e(x) = constant



Supergravity and renormalizabity

e Just like GR, SUGRA models are non-renormalizable

* At the quantum level they make sense as low-energy effective actions
valid below some cutoff (typically the Planck mass). For energies higher
than the cutoff we need a UV completion

* In many interesting cases the UV completion is provided by
constructions in string theory or M-theory



Supergravity and string theory

SUGRA theories are used to describe the low-energy dynamics of string
theory and M-theory

Supersymmetric solutions of SUGRA theory are a powerful window into
the dynamics of string/M-theory setups

Even though SUGRA is only a low-energy approximation of the full
string/M-theory setup, supersymmetric solutions of SUGRA are usually
protected against quantum corrections

We can trust the conclusions of an analysis in the SUGRA
approximation to learn more about string/M-theory setups



Matter-coupled supergravity

It is possible to construct matter-coupled 4d ./ = 1 models that
contain the gravity multiplet, together with arbitrary chiral multiplets and
vector multiplets

These models can be quite complicated and we will not be able to
study them in detall

Let us highlight some important qualitative differences between rigid
SUSY models and SUGRA models

For simplicity, we ignore vector multiplets and we consider chiral
multiplets only



Matter-coupled supergravity

* |n rigid SUSY, the data of a model with chiral multiplets are the Kahler
potential K and the superpotential W. The scalar potential is

_0W oW
rigid SUSY: V=gl — —
0X! 0X/
. Here gY is the inverse of the Kahler metric 8i7 = 0°K/(0X'0X7)

* In SUGRA with chiral multiplets, the defining data is still K and W, but
the scalar potential has a different form:

V=eX(g"DWDW-3|W|*) , DW=—+—W



Matter-coupled supergravity

V=eX(g"DWDW-3|W|*) , DW=—+—W

The potential is not positive-definite!

The value of the potential at the minumum is the cosmological constant.
If we want Minkowski spacetime, we have to choose the scalar VEVs In

such a way that V = 0

We can have V = 0 and also break SUSY, contrary to rigid models

Is it possible to have a “super-Higgs” effect: SUSY is spontaneously
broken; the would-be Goldstino is eaten by the gravitino, to get a
massive spin-3/2 field



