
Supersymmetry and Supergravity — Problem Sheet 3
MMathPhys, University of Oxford, HT2021, Dr Federico Bonetti

These problems refer to material covered in Lectures 1 through 16. They are due by Saturday before

the class on week 7 by 11 am. Links to submit:

TA A. Boido: https://cloud.maths.ox.ac.uk/index.php/s/WP8kazik5pNZjmi

TA J. McGovern: https://cloud.maths.ox.ac.uk/index.php/s/oBKgZcaE9F4bw3z

1 Action of Lorentz generators in superspace

Let us consider flat superspace, defined as (super-Poincaré group)/(Lorentz group), with coset repre-

sentative

G(x, θ, θ) = exp(−i xµ Pµ + i θαQα + i θα̇Q
α̇
) . (1)

Recall that the super-Poincaré group acts on superspace from the left. An element g0 of the super-

Poincaré group induces a motion (xµ, θα, θα̇)→ (x′µ, θ′α, θ
′
α̇) in superspace according to

g−10 G(x, θ, θ) = G(x′, θ′, θ
′
)H(x, θ, θ; g0) , (2)

where H(x, θ, θ; g0) is a compensating Lorentz transformation.

1.a Consider

g0 = exp(12 i λ
µν Jµν) , (3)

where λµν = λ[µν] are constant parameters. Working at linear order in λµν , determine the

associated motion in superspace: (xµ, θα, θα̇)→ (x′µ, θ′α, θ
′
α̇) = (xµ + δxµ, θα + δθα, θα̇ + δθα̇).

1.b The differential operator associated to this motion is superspace is

δxµ ∂µ + δθα
∂

∂θα
+ δθα̇

∂

∂θα̇
≡ 1

2 i λ
µν Jµν , ∂µ ≡

∂

∂xµ
. (4)

Verify that Jµν is given by the expression

Jµν = −i (xµ ∂ν − xν ∂µ) + i (σµν)β
α θβ

∂

∂θα
+ i (σµν)β̇ α̇ θβ̇

∂

∂θα̇
. (5)

Hint: The following commutators can be useful:

[Jµν , Pρ] = i ηµρ Pν − i ηνρ Pµ , [Jµν , Qα] = −i (σµν)α
β Qβ , [Jµν , Q

α̇] = −i (σµν)α̇β̇ Q
β̇ . (6)

2 Chiral superspace and chiral superfields

The “standard coordinates” (xµ, θα, θα̇) in superspace are defined by the coset representative G(x, θ, θ)

in (1). We can also introduce “chiral coordinates” (yµ, ϑα, ϑα̇) and “antichiral coordinates” (ŷµ, ϑ̂α, ϑ̂α̇).

They are defined by the relations

exp(−i xµ Pµ + i θαQα + i θα̇Q
α̇
) = exp(i ϑαQα) exp(−i yµ Pµ) exp(i ϑα̇Q

α̇
)

= exp(i ϑ̂α̇Q
α̇
) exp(−i ŷµ Pµ) exp(i ϑ̂αQα) (7)
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2.a Compute (yµ, ϑα, ϑα̇) and (ŷµ, ϑ̂α, ϑ̂α̇) in terms of (xµ, θα, θα̇). You should find

ϑα = θα , ϑα̇ = θα̇ , yµ = xµ + i θ σµ θ , (8)

ϑ̂α = θα , ϑ̂α̇ = θα̇ , ŷµ = xµ − i θ σµ θ . (9)

Verify that yµ and ŷµ are complex conjugates of each other.

2.b Act on

exp(i ϑαQα) exp(−i yµ Pµ) exp(i ϑα̇Q
α̇
) (10)

from the left with exp(−i ξαQα−i ξα̇Qα̇). Find the infinitesimal motion (δyµ, δϑα, δϑ
α̇
) induced

by this action. The corresponding differential operator is

δyµ
∂

∂yµ
+ δϑα

∂

∂ϑα
+ δϑα̇

∂

∂ϑα̇
≡ i ξαQα + i ξα̇Q

α̇
. (11)

Use this relation to find the expressions of the differential operators Qα, Qα̇ in the coordinate

system (yµ, ϑα, ϑ
α̇
).

In a similar way, consider now the right action of exp(−i ξαQα − i ξα̇Qα̇) on (10). Find the

corresponding motion (δRy
µ, δRϑ

α, δRϑ
α̇
), where R is stand for “right action”. The associated

differential operator is

δRy
µ ∂

∂yµ
+ δRϑ

α ∂

∂ϑα
+ δRϑα̇

∂

∂ϑα̇
≡ −ξα̇D

α̇ − ξαDα . (12)

Use this relation to find the expression of the SUSY covariant derivatives Dα, Dα̇ in the coordi-

nate system (yµ, ϑα, ϑ
α̇
).

Check that the expressions for Qα, Qα̇, Dα, Dα̇ in the coordinate system (yµ, ϑα, ϑ
α̇
) can also

be obtained from the expressions in the coordinate system (xµ, θα, θ
α̇
), which read

Qα = i

[
∂

∂θα
− i (σµ θ)α

∂

∂xµ

]
, Qα̇ = i

[
− ∂

∂θ
α̇

+ i (θ σµ)α̇
∂

∂xµ

]
,

Dα =
∂

∂θα
+ i (σµ θ)α

∂

∂xµ
, Dα̇ = − ∂

∂θ
α̇
− i (θ σµ)α̇

∂

∂xµ
. (13)

Change coordinates using the transformation between (yµ, ϑα, ϑ
α̇
) and (xµ, θα, θ

α̇
) and the chain

rule.

2.c A chiral superfield is expanded in chiral coordinates as

Φ(y, ϑ ϑ) = X(y) +
√

2ϑψ(y) + ϑϑF (y) . (14)

Derive the expansion of Φ in the standard coordinates (x, θ, θ):

Φ = X(x) + i θ σµ θ ∂µ(x) + 1
4 (θ θ) (θ θ) ∂µ∂µX(x)

+
√

2 θαψα(x)−
√
2
2 i (θθ) (∂µψ σ

µ θ) + θ θ F (x) . (15)

Hint: the following identities can be useful,

θα θβ = −1

2
εαβ θ θ , (θ σµ θ)(θ σν θ) = −1

2
(θ θ) (θ θ) ηµν . (16)
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3 Supersymmetric version of the Higgs mechanism in SQED

Let us consider SQED with one flavor. The model is a gauge theory with gauge group U(1), one chiral

multiplet (X+, ψ+, F+) of charge +1 and one chiral multiplet (X−, ψ−, F−) of charge −1. We set the

superpotential to zero and we do not include any FI term. After eliminating the auxiliary fields, the

Lagrangian for the component fields reads

L = −DµX+DµX
+ −DµX−DµX

− − i ψ+ σµDµψ
+ − i ψ− σµDµψ

−

− 1
4 F

µν Fµν − i λ σµ ∂µλ+
[
i
√

2 g (X+ ψ+ λ−X− ψ− λ) + h.c.
]

− 1
2 g

2 (X+X+ −X−X−)2 . (17)

The gauge covariant derivatives are

DµX
± = ∂µX

± ± i g AµX± , Dµψ
± = ∂µψ

± ± i g Aµ ψ± . (18)

3.a Let v be a positive constant. Verify that the VEVs

〈X+〉 = v , 〈X−〉 = v (19)

give a supersymmetric vacuum of the model and that the U(1) gauge symmetry is spontaneously

broken in this vacuum.

3.b We want to study the spectrum of scalar modes in the spontaneously broken phase. To this end,

it is convenient to perform the following field redefinitions,

X+ =
eia

2
(S + ϕ1 + i ϕ2) , X− =

e−ia

2
(S − ϕ1 + i ϕ2) , (20)

where a, S, ϕ1, ϕ2 are real scalar fields. Rewrite the kinetic terms for X± and the scalar

potential, which are given by

Lkin,X± = −DµX+DµX
+ −DµX−DµX

− , V = 1
2 g

2 (X+X+ −X−X−)2 , (21)

in terms of the real scalars a, S, ϕ1, ϕ2 and the gauge field Aµ. Verify that the real scalars

S, ϕ1, ϕ2 have canonical kinetic terms and that Aµ and a enter Lkin,X± in the combination

Vµ = Aµ + g−1 ∂µa.

3.c In terms of the scalar fields a, S, ϕ1, ϕ2, the field that gets a non-zero VEV is S. Find 〈S〉 by

comparing (19) and (20). We expand the scalar field S around its VEV as S = 〈S〉 + δS. Use

the expressions for Lkin,X± and V derived in the previous point to verify that: the vector V µ

has m2 = 4 g2 v2; the scalar ϕ1 has m2 = 4 g2 v2; the scalars δS, ϕ2, a are massless.

3.d We now consider the spectrum of fermions in the model. To this end, it is convenient to perform

the field redefinitionψ+

ψ−

λ

 = U

Ψ0

Ψ1

Ψ2

 , U =


1√
2

1
2 e

iπ/4 −1
2 e
−iπ/4

1√
2
−1

2 e
iπ/4 1

2 e
−iπ/4

0 1√
2
eiπ/4 1√

2
e−iπ/4

 . (22)
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Verify that U is unitary, which implies that Ψ0, Ψ1, Ψ2 have canonical kinetic terms. Plugging

(19) into the Yukawa couplings in (17), verify that the mass terms are diagonal when written in

terms of the new fermionic fields Ψ0, Ψ1, Ψ2. Verify that Ψ0 is massless, while Ψ1 and Ψ2 both

have |m| = 2 g v.

Interpretation: The massless real scalar a is the pseudo-Goldstone boson. It is “eaten” by the massless

vector Aµ to yield a massive vector. The latter is described by the gauge-invariant combination

Vµ = Aµ + g−1 ∂µa. The massive vector Vµ, together with the real scalar ϕ1 and the fermions Ψ1,

Ψ2 forms a massive vector multiplet of 4d N = 1 supersymmetry. The massless scalars δS and ϕ2,

together with the fermion Ψ0, form a massless chiral multiplet. This example illustrates some general

feature of the SUSY version of the Higgs mechanism. If gauge invariance is broken, but SUSY is

unbroken, for each broken generator of the gauge group a massless vector multiplet eats a massless

chiral multiplet to yield a massive vector multiplet.
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