
Supersymmetry and supergravity
Lecture 1



Introduction
• Symmetries are a powerful tool in the study of quantum systems

• Our focus: relativistic QFTs and their continuous symmetries

• Examples of symmetries familiar from particle physics


- Poincaré symmetry 

- Internal/flavor symmetries (e.g. baryon, lepton numbers in SM)


• These symmetries map bosons to bosons and fermions to fermions

• Supersymmetry (SUSY) is a generalization in which bosons and fermions are 

transformed into each other

• Bosonic fields/particles are combined with fermionic fields/particles into representations 

of SUSY (supermultiplets)

• When SUSY is combined with GR we get supergravity (SUGRA)



Motivation
From a particle physics/phenomenology point of view:

• If SUSY is a symmetry in Nature, it must be broken at the energies we can probe in experiment 

(observed particles do not fit into supermultiplets)

• Nonetheless, SUSY can help solve some puzzles in the SM. For example:


‣ Hierarchy problem

In the SM, the mass of the Higgs field receives 1-loop corrections that are quadratic in the cutoff 
scale : . Puzzle:


Why is  much smaller than  or  ? 

The new particles and interactions required by (broken) SUSY improve the 1-loop correction to 
the Higgs mass:  


‣ GUT scenarios: SUSY can improve gauge coupling unification


‣ SUSY can provide candidates for dark matter 

Λ δm2
H ∼ Λ2

mH ≈ 125 GeV ΛGUT ∼ 1016 GeV ΛPlanck ∼ 1019 GeV

δm2
H ∼ log Λ



Motivation
From a formal QFT point of view:

• SUSY improves the UV behavior of QFTs


• E.g.: the so-called 4d  super-Yang-Mills theory is an interacting QFT that 
is free of UV divergences!


• SUSY allows analytic control beyond perturbative regime


• understanding of confinement in 4d  gauge theories (Seiberg-Witten)


• computing the path integral exactly and analytically using supersymmetric 
localization


• exploring strong coupling/weak coupling dualities

• many more examples…

$ = 4

$ = 2



Motivation
From the point of view of string theory:

• String theory “predicts” SUGRA in ten spacetime dimensions (from self-consistency of the 

theory)

• SUSY gauge theories live on D-branes

• SUSY is a powerful tool for studying string constructions 


• e.g.: the landmark Strominger-Vafa computation of BH microstates in string theory 
relies on SUSY


SUSY has interesting connections with mathematics

• SUSY quantum mechanics and the proof of the Atiyah-Patodi-Singer index theorem

• Witten’s topological twist of 4d SUSY theories and Jones polynomials in knot theory

• many more…



Historical timeline

• 1967: Coleman-Mandula theorem (see below)

• 1971: SUSY on the 2d worksheet of strings

• 1971: SUSY in 4d QFT in the work of Gol’fand and Likhtman

• 1973: spontaneous SUSY breaking in the work of Volkov and Akulov

• 1974: SUSY in 4d QFT independently rediscovered by Wess and Zumino

• 1975: Haag-Lopuszanski-Sohnius theorem (see below)



Symmetries of the S-matrix
Relativistic QFT in 4d: Poincaré algebra


                 


                                  


                 


The generators  and  are represented by Hermitian operators acting on the Hilbert space of the 
theory,  , 


We can also have “internal symmetries”: their generators are translational invariant Lorenz scalars


                           


Natural questions:

• What is the most general continuous symmetry of a relativistic QFT?


• Can we have extra generators that are not  and  but carry spacetime indices, eg ?

[Jμν, Jρσ] = i ημρ Jνσ − i ηνρ Jμσ − i ημσ Jνρ + i ηνσ Jμρ

[Jμν, Pρ] = i ημρ Pν − i ηνρ Pμ [Pμ, Pν] = 0
μ, ν, … = 0,1,2,3 ημν = diag(−1,1,1,1)

Jμν = − Jνμ Pμ
(Jμν)† = Jμν (Pμ)† = Pμ

[Jμν, TA] = 0 [Pμ, TA] = 0 [TA, TB] = i fAB
C TC

Jμν Pμ Xμ



Symmetries of the S-matrix
Coleman-Mandula theorem

Consider a 4d relativistic QFT such that


(i) there are only a finite number of particles associated to 1-particle states of a given mass

(ii) there is an energy gap between the vacuum and 1-particle states

(iii) the S-matrix is non-trivial and analytic


Then the most general symmetry generators of the S-matrix are the Poincaré generators, plus possibly internal 
symmetries (and the latter generate a finite-dim. compact Lie algebra)


for a proof see e.g. Weinberg vol 3


Intuitive argument: in a 2-to-2 scattering process, Poincaré invariance implies that the amplitude is a function 
of one variable only (the scattering angle). If we had a conserved charge with spacetime indices, the amplitude 
woould be further constrained, and it could not be an analytic function.

NB: if we only have massless particles, the most general symmetry is conformal symmetry + internal symmetry


In this case we do have an extra generator with spacetime indices: conformal boost Kμ



Evading the no-go theorem
• We evade the no-go theorem by allowing both for commutation and anticommutation 

relations between symmetry generators

• Commutator and anticommutator of operators


   ,   

• Anticommutation relations are familiar from canonical quantization of free Dirac field     


         


• The algebra has both bosonic and fermionic generators, with

[ boson, boson ] = boson      [ boson, fermion ] = fermion   


    { fermion , fermion } = boson 

• Mathematical formalism: Lie superalgebras

[A, B] = AB − BA {A, B} = AB + BA

ψ(x) ∼ ∑
s=± ∫ d3p

2p0 [b(p, s)u(p, s)eipx + d†(p, s)v(p, s)e−ipx] {b(p, s), b†(p′ , s′ )} ∼ δ3(p − p′ ) δs,s′ 

{d(p, s), d†(p′ , s′ )} ∼ δ3(p − p′ ) δs,s′ 



Evading the no-go theorem
Haag-Lopuszanski-Sohnius theorem

Same assumptions as Coleman-Mandula, but allowing for a Lie superalgebra of symmetry 
generators.

Conclusion: the most general Lie superalgebra of symmetries of the S-matrix is a “Poincaré 
supersymmetry algebra”, possibly “extended” and with the inclusion of “central charges” (we 
will unpack the terminology)

Bosonic generators:


  , , and internal symm. gen’s   (same properties as in Coleman-Mandula)


Fermionic generators (aka supercharges):          


,  that transform as spinors under Lorenz transformations

NB: if we only have massless particles, we can have superconformal symmetry

Jμν Pμν TA

Qα Q ·α



A first look at the SUSY algebra
Minimal SUSY in 4d: the supercharges form one Weyl spinor (4 real dof’s)


 ,      ,   ,      

(We will review 2-component notation for 4d spinors later). The supercharges are translationally invariant:


  ,      

The crucial part of the SUSY algebra are the QQ anticommutators: 


                         

Remarks:

• The object  is an invariant tensor of the Lorentz group (a chiral block of 4d gamma matrices). We follow the 

conventions of Wess-Bagger:


 ,         ,         ,         


• The anticommutator  is the distinctive feature of supersymmetry algebras (as opposed to more 
general Lie superalgebras). Motto: “supercharges are the square root of translations”  


• Single-particle states fall into irreps of the SUSY algebra, called supermultiplets

Qα Q ·α = (Qα)† α, β = 1,2 ·α, ·β = 1,2

[Pμ, Qα] = 0 [Pμ, Q ·α] = 0

{Qα, Qβ} = 0 {Q ·α, Q ·β} = 0 {Qα, Q ·β} = 2 σμ
α ·β Pμ

σμ
α ·β

σ0 = (−1 0
0 −1) σ1 = (0 1

1 0) σ2 = (0 −i
i 0 ) σ3 = (1 0

0 −1)
{Q, Q} ∼ P



1. All states in a supermultiplet have the same mass

Follows from the fact that  commutes with  , 


2. Any supermultiplet contains an equal number of bosonic and fermionic dof’s

Define the fermion number operator : it has eigenvalue +1 (resp. —1) on bosonic (resp. fermionic) states. Since 
acting with one    or   takes a boson to a fermion and vice versa, we have


    ,      

Consider a supermultiplet and restrict to 1-particle states with definite non-zero eigenvalue  of  (we can do it because 
the supercharges commute with P). We have a finite number of states with definite  so the trace is well-defined


Use the SUSY algebra:





Lesson: for a given non-zero eigenvalue  of  we must have an equal number of bosonic and fermionic dof’s.

Pμ Pμ Qα Q ·α

( − )NF

Qα Q ·α
( − )NF Qα + Qα ( − )NF = 0 ( − )NF Q ·α + Q ·α ( − )NF = 0

pμ Pμ
pμ

σμ
α ·β Tr(( − )NF Pμ) = σμ

α ·β pμ Tr(( − )NF) = 0
pμ Pμ

Some physical implications

<latexit sha1_base64="oYmXHYuctHbPaTaOvpMVygjq3CU="></latexit>

Tr
⇣
(�)NF {Q↵, Q�̇}

⌘
= Tr

⇣
(�)NF Q↵ Q�̇ + (�)NF Q�̇ Q↵

⌘
q

= Tr
⇣
Q↵ Q�̇ (�)NF +Q↵ (�)NF Q�̇

⌘

= 0

cyclic property of trace

  anticommutes with  Q ·β ( − )NF



1. The Hamiltonian in a SUSY theory is a sum of squares

We just need to spell out the  and  components of 


  ,      


  


2. The vacuum energy is an order parameter for SUSY breaking

By definition, SUSY is unbroken in the vacuum if 


  ,     

From the above expression for  we have


   and              

Indeed, .

NB: In ordinary QFT we can shift freely the (renormalized) zero-point of energy. In a SUSY theory the 
zero-point of energy is physical (compare with GR and cosmological constant). 

(α, ·β) = (1,1) (α, ·β) = (2,2) {Qα, Q ·β} = 2 σμ
α ·β Pμ

Q1 (Q1)† + (Q1)† Q1 = 2 (−P0 + P3) = 2 (P0 + P3)
Q2 (Q2)† + (Q2)† Q2 = 2 (−P0 − P3) = 2 (P0 − P3)
Q1 (Q1)† + (Q1)† Q1 + Q2 (Q2)† + (Q2)† Q2 = 4 P0

Qα |0⟩ = 0 Q ·α |0⟩ = 0
P0

Qα |0⟩ = 0 Q ·α |0⟩ = 0 ⇔ ⟨0 |P0 |0⟩ = 0
⟨0 |P0 |0⟩ = 1

4 ∥Q1 |0⟩∥2 + 1
4 ∥(Q1)† |0⟩∥2 + 1

4 ∥Q2 |0⟩∥2 + 1
4 ∥(Q2)† |0⟩∥2

Some physical implications
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Reminder: Lie algebras
Def. A Lie algebra over  (resp. ) is a vector space  over  (resp. ) equipped with a bilinear 
operation  such that for all    


                                                  (anticommutativity)


              (Jacobi identity)


Def. An associative algebra over  (resp. ) is a vector space  over  (resp. ) equipped with a 
bilinear operation  (denoted by juxtaposition) such that for all    


                                                  (associativity)


NB: If  is an associative algebra, we can equip it with a natural Lie bracket using the commutator




The Jacobi identity follows from associativity.

ℝ ℂ V ℝ ℂ
[ ⋅ , ⋅ ] : V × V → V x, y, z ∈ V

[x, y] = − [y, x]
[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

ℝ ℂ V ℝ ℂ
V × V → V x, y, z ∈ V

x (y z) = (x y) z
V

[x, y] = x y − y x



Reminder: Lie algebras
Consider a finite-dim. Lie algebra  and choose a basis . The Lie 
bracket on  is determined by the Lie bracket of basis elements


                structure constants

The Jacobi identity gives a non-linear constraint on the structure constants





Adjoint representation: action of  on itself via Lie bracket


  ,     

V {ea}
V

[ea, eb] = fab
c ec fab

c = − fba
c

f[ab|
d fc]d

e = 0
V

adXY = [X, Y] (adX)a
b = Xc fcb

a



Super vector spaces
Def. A -graded vector space (aka super vector space) over  (resp. ) is a vector space 

 over  (resp. ) together with a decomposition of V of the form





Every element in  is written uniquely as a sum of an element in  and an element in . 


Non-zero elements  are called “even” or “bosonic”; we assign to them degree 
 mod 2


Non-zero elements  are called “odd” or “fermionic”; we assign to them degree 
 mod 2


Example:  is  with the standard basis, where the first  basis elements span  
and the other  basis elements span . Similar story for .

ℤ2 ℝ ℂ
V ℝ ℂ

V = V0 ⊕ V1

V V0 V1

x ∈ V0
|x | = 0

x ∈ V1
|x | = 1

ℂn|m ℂn+m n V0
m V1 ℝn|m



Lie superalgebras
Def. A Lie superalgebra over  (resp. ) is a -graded vector space  
over  (resp. ) equipped with a bilinear operation  
(known as the superbracket) such that

• the -grading is preserved by the superbracket 


if ,  are homogeneous of degrees ,       

then     is homogeneous of degree  mod 2     


• the superbracket is super-anticommutative

 


• the superbracket satisfies the super Jacobi identity

  

ℝ ℂ ℤ2 V
ℝ ℂ [ ⋅ , ⋅ } : V × V → V

ℤ2
x y |x | |y |

[x, y} |x | + |y |

[x, y} = − ( − )|x||y| [y, x}

( − )|x||z| [x, [y, z}} + ( − )|z||y| [z, [x, y}} + ( − )|y||x| [y, [z, x}} = 0



Lie superalgebras
Def. An associative superalgebra over  (resp. ) is a -graded vector space  
over  (resp. ) equipped with a bilinear operation  (denoted by 
juxtaposition) such that

• the -grading is preserved by the product 


if ,  are homogeneous of degrees ,       

then   is homogeneous of degree  mod 2     


• the product is associative  

  


NB: If  is an associative superalgebra, we can equip it with a natural Lie 
superbracket using the supercommutator


 

The super Jacobi identity follows from associativity.

ℝ ℂ ℤ2 V
ℝ ℂ V × V → V

ℤ2
x y |x | |y |

x y |x | + |y |

x (y z) = (x y) z
V

[x, y] = x y − ( − )|x||y| y x



• The associative superalgebra 


We consider the super vector space . Any linear map  can be decomposed uniquely into a 
parity-preserving part, and a parity-reversing part. In block-matrix notation: 


parity-preserving  =  ,           parity-reversing  =  


where  is ,  is ,  is ,  is . We declare the parity-preserving transformations to be 
even/bosonic, the parity reversing transformations to the odd/fermionic. The standard matrix multiplication 
preserves the odd/even grading. We get the associative superalgebra .

It becomes a Lie superalgebra with the supercommutator. 


Given  and  their supercommutator is


*+(n |m; ℂ)
ℂn|m ℂn|m → ℂn|m

(A 0
0 D) (0 B

C 0)
A n × n B n × m C m × n D m × m

*+(n |m; ℂ)

M1 = (A1 B1
C1 D1) M2 = (A2 B2

C2 D2)
( (A1 A2 − A2 A1) + (B1 C2 + B2 C1) (A1 B2 − A2 B1) + (B1 D2 − B2 D1)

(C1 A2 − C2 A1) + (D1 C2 − D2 C1) (C1 B2 + C2 B1) + (D1 D2 − D2 D1))

Some examples with matrices



Some examples with matrices
• The Lie superalgebra 


We start from  and we define the supertrace





It does not depend on a choice of basis in the homogeneous subspaces ,  of . One can 
verify that the super trace of any super commutator is zero. So  is also a Lie superalgebra 
with the supercommutator. 


• The Lie superalgebra 


In the special case , the identity matrix  is an element of  (its supertrace is zero). Its 
supercommutator with anything is zero. We say that  generates a 1-dim ideal of . We can 
consider the quotient of  by this ideal (i.e. we mod out all matrices that are a multiple of ). 
The resulting superalgebra is denoted .

,+(n |m; ℂ)
*+(n |m; ℂ)

sTr (A B
C D) = Tr A − Tr D

ℂn ℂm ℂn|m

,+(n |m; ℂ)

-,+(n |n; ℂ)
m = n . ,+(n |n; ℂ)

. ,+(n |n; ℂ)
,+(n |n; ℂ) .

-,+(n |n; ℂ)



Some remarks
• There is a classification of simple Lie superalgebras over  (V. Kac 1977) which is 

similar to the classification of simple Lie algebras


• A nice survey of superalgebras over  and their real forms can be found eg in in 
arXiv 9607161


• The SUSY algebra is not a simple Lie superalgebra…


• … but simple Lie superalgebras are found in the study of superconformal 
theories


• Superconformal algebras were classified by W. Nahm 1978


➡ they only exist in spacetime dimension

ℂ

ℂ

≤ 6



Lie superalgebras: structure constants
Let us choose a basis  of  and a basis  of .


The super Lie bracket on  is determined by the super Lie bracket of basis 
elements. It is customary to write the superbracket as  if we consider 
two even elements or one even and one odd element, and to write it as  
if we consider two odd elements. The “structure constants” of the super Lie 
bracket wrt to the bases ,  can be defined as


               


Super anticommutativity:


           

{ea} V0 {εi} V1

V
[ ⋅ , ⋅ ]

{ ⋅ , ⋅ }

{ea} {εi}
[ea, eb] = fab

c ec [ea, εi] = − [εi, ea] = (Ma)j
i εj {εi, εj} = (Ba)ij ea

fab
c = − fba

c (Ba)ij = + (Ba)ji



Lie superalgebras: structure constants
               


Implications of super Jacobi:

• Three bosonic generators


 


i.e. the even subspace  is an ordinary Lie algebra


• One fermionic generator and two bosonic generators


 


i.e. the matrices  form a representation  of the Lie algebra 

[ea, eb] = fab
c ec [ea, εi] = − [εi, ea] = (Ma)j

i εj {εi, εj} = (Ba)ij ea

fab
d fcd

e + cyclic in abc = 0
V0

(Ma)i
k (Mb)k

j − (Mb)i
k (Ma)k

j = fab
c (Mc)i

j

Ma r V0



Lie superalgebras: structure constants
               


Implications of super Jacobi:

• Two fermionic generators and one bosonic generator


      


i.e. the structure constants  are invariant tensors of the rep.
  of the even part of the superalgebra


• Three fermionic generators


 


i.e. a non-linear constraint on the ,  matrices

[ea, eb] = fab
c ec [ea, εi] = − [εi, ea] = (Ma) j

i εj {εi, εj} = (Ba)ij ea

fcb
a (Bb)ij − (Mc)k

i (Ba)kj − (Mc)k
j (Ba)ik = 0

(Ba)ij = (Ba)ji
ad ⊗ (r* ⊗sym r*)

(Ba)ij (Ma)ℓ
k + cyclic in ijk = 0

Ma Ba
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Reminder: reps of Lorentz algebra 
The Lorentz algebra:


    ,       ,        


We can arrange the 6 generators  into two commuting sets of angular momentum generators


   ,           ,            


  ,                 ,              


We label irreps by a pair of integer or half-integer spins ,  


Examples:


•  and  are positive and negative chirality spinor irreps


•  is the vector representation


•  and  are the imaginary (anti)self dual parts of an antisymm. tensor 

[Jμν, Jρσ] = i ημρ Jνσ − i ηνρ Jμσ − i ημσ Jνρ + i ηνσ Jμρ μ, ν, … = 0,1,2,3 ημν = diag(−1,1,1,1)
Jμν = − Jνμ

"i = (J23, J31, J12) #i = (J10, J20, J30) i = 1,2,3
"±

i = "i ± i #i ["±
i , "±

j ] = i ϵijk "±
k ["+

i , "−
j ] = 0

( j1, j2) j1, j2 = 0, 1
2 ,1, 3

2 , …

( 1
2 ,0) (0, 1

2 )

( 1
2 , 1

2 )

(1,0) (0,1) T±
μν = 1

2 (Tμν± i
2 ϵμνρσTρσ)



Some notation and conventions
Consider an operator in a representation  of the Lorentz group with indices 





The matrices  furnish a representation of the abstract Lorentz algebra


 


       


NB: The generators  are hermitian operators  in the (infinite dim) 
Hilbert space. The matrices  are finite-dim but not hermitian.


Recall: there are no unitary finite-dim reps of the Lorentz group.

r $, ℬ
[Jμν, &$] = − (Sr

μν)$
ℬ &ℬ

(Sr
μν)$

ℬ

[Jμν, Jρσ] = (i ημρ Jνσ − (μ ↔ ν)) − (ρ ↔ σ)
(Sr

μν)$
( (Sr

ρσ)(
ℬ − (Sr

ρσ)$
( (Sr

μν)(
ℬ = (i ημρ (Sr

νσ)$
ℬ − (μ ↔ ν)) − (ρ ↔ σ)

Jμν (Jμν)† = Jμν
(Sr

μν)$
ℬ



Some notation and conventions

If  are the (real) parameters of an infinitesimal Lorentz transformation, we write


 


In this language the Lorentz algebra is encoded in the commutator of two variations:

        where        

λμν = − λνμ

δλ&$ = i
2 λμν (Sr

μν)$
ℬ &ℬ

δλ1
δλ2

&$ − δλ2
δλ1

&$ = δλ3
&$ λμν

3 = λμρ
1 λ2ρ

ν − (1 ↔ 2)



Reminder: reps of Lorentz group in 4d
Example: vector representation


    ,          


The JJ and JP commutators can be written as


   ,      


These commutators simply mean that ,  transform under the Lorentz group as expected 
from their indices:


    


         

(Svec
μν )ρ

σ = − i δρ
μ ηνσ + i δρ

ν ημσ
i
2 λμν (Svec

μν )ρ
σ = λρ

σ

[Jμν, Jρσ] = − ((Svec
μν )ρ

τ Jτσ + (Svec
μν )σ

τ Jρτ) [Jμν, Pρ] = − (Svec
μν )ρ

τ Pτ

Jρσ Pρ

δλJρσ = i
2 λμν((Svec

μν )ρ
τ Jτσ + (Svec

μν )σ
τ Jρτ) = λρ

τ Jτσ + λσ
τ Jρτ

δλPρ = i
2 λμν (Svec

μν )ρ
τ Pτ = λρ

τ Pτ



Gamma matrices
The basic “building blocks” to construct general representations are obtained via spinorial representations.

We start from the Clifford algebra




We work with 4d gamma matrices in a “chiral basis”:


      ,            


where the standard Pauli matrices are


  ,           ,        


NB:  is antihermitian; , ,  are hermitian.

The chirality matrix is


   ,              

γμ γν + γν γμ = 2 ημν )4

γμ = ( 0 i σμ

i σμ 0 ) σ0 = − )2 σ1 = + σx σ2 = + σy σ3 = + σz

σ0 = − )2 σ1 = − σx σ2 = − σy σ3 = − σz

σx = (0 1
1 0) σy = (0 −i

i 0 ) σz = (1 0
0 −1)

γ0 = − γ0 γ1 = γ1 γ2 = γ2 γ3 = γ3

γ5 = i γ0 γ1 γ2 γ3 = ()2 0
0 −)2) γ5 γμ + γμ γ5 = 0



Lorentz generators
• Using the gamma matrices we construct a representation of the Lorentz algebra:


                




• The transformation law of a 4-component Dirac spinor is


 


• This representation is reducible. This is manifest in the chiral basis


 ,           ,                 

SDirac
μν = − i

4 (γμ γν − γν γμ)
SDirac

μν SDirac
ρσ − SDirac

ρσ SDirac
μν = (i ημρ SDirac

νσ − (μ ↔ ν)) − (ρ ↔ σ)

δλΨ = i
2 λμν SDirac

μν Ψ

γμ = ( 0 i σμ

i σμ 0 ) SDirac
μν = (

i σμν 0
0 i σμν)

σμν = 1
4 (σμ σν − σν σμ)

σμν = 1
4 (σμ σν − σν σμ)



Lorentz generators
The chiral blocks  and  furnish irreps of the Lorentz algebra: we identify 
them with the  and   reps.

Check: earlier we defined 


   ,           ,              

These expressions imply that

in the rep       we have 


     ,        :       this is 


in the rep       we have 

     ,        :       this is 

i σμν i σμν

( 1
2 ,0) (0, 1

2 )

"i = (J23, J31, J12) #i = (J10, J20, J30) "±
i = "i ± i #i

Jμν → i σμν

"+
i = ( 1

2 σx, 1
2 σy, 1

2 σz) "−
i = (0,0,0) ( 1

2 ,0)
Jμν → i σμν

"+
i = (0,0,0) "−

i = ( 1
2 σx, 1

2 σy, 1
2 σz) (0, 1

2 )



Spinor indices
We decompose a 4-component Diral spinor  into two chiral Weyl spinors


    ,     ,              (Van der Waerden notation)


Remarks: 

1. Notice the dotted/undotted VS upper/lower arrangement of spinor indices

2. At this point the bar on  is just part of the name of the Weyl spinor

The index structure on the chiral blocks of the gamma matrices is


  ,                 


The Lorentz variations of ,  are


   ,              

Ψ

Ψ = (ψα

χ ·α) α, β = 1,2 ·α, ·β = ·1, ·2

χ ·α

γμ = (
0 i (σμ)α ·β

i (σμ) ·αβ 0 ) SDirac
μν = (

i (σμν)α
β 0

0 i (σμν) ·α ·β)
ψα χ ·α

δλψα = − 1
2 λμν (σμν)α

β ψβ δλ χ ·α = − 1
2 λμν (σμν)

·α ·β χ
·β



Spinor indices and SL(2,ℂ)
• Define the antisymmetric symbols (we follow the conventions of Wess-Bagger)


   ,         ,       ,       


• These symbols are invariant under the action of the Lorentz generators:

  ,         


   ,        


• The tensors  ,  are the invariant tensors of the group 


    for        


• Interpretation: spinor indices are indices of the fundamental 2-dim representation of 

ϵαβ = (0 −1
1 0 ) ϵαβ = ( 0 1

−1 0) ϵ ·α ·β = (0 −1
1 0 ) ϵ ·α ·β = ( 0 1

−1 0)
(σμν)α

γ ϵβγ + (σμν)β
γ ϵγα = 0 (σμν)γ

α ϵβγ + (σμν)γ
β ϵγα = 0

(σμν) ·γ ·α ϵ ·γ ·β + (σμν) ·γ ·β ϵ ·α ·γ = 0 (σμν) ·α ·γ ϵ ·γ ·β + (σμν)
·β ·γ ϵ ·α ·γ = 0

ϵαβ ϵαβ SL(2,ℂ)
Mα

β Mγ
δ ϵαγ = (det M) ϵβδ = ϵβδ M ∈ SL(2,ℂ)

SL(2,ℂ)



Spinor indices and complex conjugation
• Dotted and undotted indices are exchanged by complex conjugation: 


1. Start from   transforming as     and define 



2. Using the identity  , we have   


3. Compare with the transformation property 


• The object  does indeed transform in the dual rep of the object  (inverse 
transpose). This confirms that complex conjugation takes a lower/upper undotted 
index to a lower/upper dotted index


• Convention: alway present a spinor with a dotted index as complex conjugate of a 
spinor with an undotted index. In this way, spinors with dotted indices have a bar

ψα δλψα = − 1
2 λμν (σμν)α

β ψβ
ψ ·α ≡ (ψα)*

(σμν)† = − σμν δλψ ·α = + 1
2 λμν (σμν)

·β ·α ψ ·β

δλ χ ·α = − 1
2 λμν (σμν)

·α ·β χ
·β

ψ ·α χ ·α



Raising/lowering spinor indices
We can use the non-degenerate invariant tensors , , ,  to raise/lower van der 
Waerden indices (just like we use ,  to raise vector indices). Since these invariant tensors 
are antisymmetric we must be extra careful with minus signs! 

We follow the raising/lowering conventions of Wess-Bagger:


  ,           ,          ,               


Objects with upper/lower  indices transform in dual representations:

  ,                    


 ,        


For example, we can use  and check


 

ϵαβ ϵαβ ϵ ·α ·β ϵ ·α ·β

ημν ημν

ψα = ϵαβ ψβ ψα = ϵαβ ψβ λ ·α = ϵ ·α ·β λ ·β λ ·α = ϵ ·α ·β λ
·β

α
δλψα = − 1

2 λμν (σμν)α
β ψβ δλψα = + 1

2 λμν (σμν)β
α ψβ

δλ χ̄ ·α = − 1
2 λμν (σμν)

·α ·β χ̄
·β δλ χ̄ ·α = + 1

2 λμν (σμν)
·β ·α χ̄ ·β

(σμν)γ
α ϵβγ + (σμν)γ

β ϵγα = 0
δλ(ϵαβψβ) = − 1

2 ϵαβ λμν (σμν)β
γ ψγ = + 1

2 λμν (σμν)β
α ϵβγ ψγ



Raising/lowering spinor indices
• We form Lorentz scalars by contracting upper and lower spinor indices


  ,        


• Every time that we have a pair of contracted indices arranged as   we can turn it into 
 ; the price to pay is a minus sign. (Same with dotted indices)


  ,      


• The tensor  with its indices raised gives :


 


• Invariance of  is equivalent to the fact that the Lorentz generators are symmetric in its 
spinor indices:


   ,          

ψα χα ψ ·α χ ·α

α
α

α
α

ψα χα = − ψα χα ψ ·α χ ·α = − ψ ·α χ ·α
(σμ)α ·β (σμ) ·αβ

(σμ) ·αβ = ϵ ·α ·γ ϵβδ (σμ)δ ·γ

ϵαβ

(σμν)αβ = + (σμν)βα (σμν) ·α ·β = + (σμν)
·β ·α



Index structure for generic irrep ( j1, j2)
The irrep  has  symmetrized undotted indices and  symmetrized dotted indices. Upper or 
lower is a matter of taste, because we can unambiguously raise/lower them. If we use all lower indices:





       


                                   


Under complex conjugation dotted and undotted indices are exchanged:





An object with an equal number of dotted/undotted indices can be real. Eg: 4-vector rep


                  ,            

( j1, j2) 2j1 2j2

&α1…α2j1
·α1… ·α2j2

= &(α1…α2j1)(
·α1… ·α2j2)

δλ&α1…α2j1
·α1… ·α2j2

= − 1
2 λμν (σμν)α1

β &βα2…α2j1
·α1… ·α2j2

− …− 1
2 λμν (σμν)α2j1

β &α1…α2j1−1β ·α1… ·α2j2

+ 1
2 λμν (σμν)

·β ·α1
&α1…α2j1

·β ·α2… ·α2j2
+ …+ 1

2 λμν (σμν)
·β ·α2j2

&α1…α2j1
·α1… ·α2j2−1

·β

[&α1…α2j1
·α1… ·α2j2]

†
= (&†) ·α1… ·α2j1α1…α2j2

&α ·β = (σμ)α ·β &μ (&μ)† = &μ [&α ·β]
†

= &β ·α



Majorana VS Weyl spinors
A Dirac spinor has 8 real dof’s and is written as





where  and  are independent complex chiral spinors. We can halve the number of dof’s in a Lorentz covariant 
fashion by setting  so that


      where        


In terms of the 4-component spinor  this reality condition is the Majorana condition:

 = Dirac conjugate = Majorana conjugate =  


where  is the charge conjugation matrix


 ,               ,               ,             


One Majorana 4-component spinor is equivalent to one Weyl spinor. They both have 4 real dof’s. This is the 
minimal number of dof’s for a spinor in 4d. Using the 4-component or 3-component notation is a matter of taste.

Ψ = (ψα

χ ·α)
ψα χ ·α

χα = ψα

Ψ = (
ψα

ϵ ·α ·β ψ ·α) ψ ·α := (ψα)*

Ψ
Ψ† (−i γ0) ΨT C

C

C = (ϵαβ 0
0 ϵ ·α ·β) (γμ)T = − C γμ C−1 CT = − C C† C = )4



Caveat on notation

• The objects  ,  ,   ,    and the conventions to raise/
lower ,  indices are all the same as in Wess-Bagger.


• We also decompose 4-component spinors into 2-component spinors as in 
Wess-Bagger


• We have slightly different conventions for 4-component spinors and gamma 
matrices:


        vs        

(σμ)α ·β (σμ) ·αβ (σμν)α
β (σμν) ·α ·β

α ·α

γμ
here = ( 0 i σμ

i σμ 0 ) γμ
WB = ( 0 σμ

σμ 0 )



The homomorphism  SL(2,ℂ) → SO+(3,1)
• Weyl spinors exist in every even spacetime dimensions, but the 

identification of spinor indices with  indices is special to 4d in 
Lorentzian signature


• Mathematical statement:

Lie algebra isomorphism        


• The analogous statement for the Lie groups is that there is a group 
homomorphism 


 

• Notation:  is the identity connected component of  

(proper orthochronous Lorentz transf)

SL(2,ℂ)

/0(3,1) ≅ /2(2,ℂ)

ϕ : SL(2,ℂ) → SO+(3,1)
SO+(3,1) SO(3,1)



The homomorphism  SL(2,ℂ) → SO+(3,1)
More on the map :

1. The set of all  hermitian matrices is a real vector space of dim 4, hence it is 

isomorphic to  as a vector space. We can write the isomorphism explicitly using 


           such that         


2. The group  acts on  hermitian matrices as

  ,           ,       


3. Since , we have , which means that  and  must be related 
by a Lorentz transformation


  ,         

4. The map  is a group homomorphism; one can prove that its image is  

and that it is 2-to-1

ϕ : SL(2,ℂ) → SO+(3,1)
2 × 2
ℝ4 (σμ)α ·β

M = σμ xμ det M = ημν xμ xν

SL(2,ℂ) 2 × 2
M′ = A M A† A ∈ SL(2,ℂ) M′ = σμ x′ 

μ

det A = 1 det M = det M′ xμ x′ 
μ

x′ 
μ = Λμ

ν xν Λμ
ν ∈ O(3,1)

A ↦ Λμ
ν SO+(3,1)



Supersymmetry and supergravity
Lecture 4



The structure of the SUSY algebra
• Our goal: find a Lie superalgebra that extends Poincaré and is compatible with non-trivial 

scattering 

• The bosonic subalgebra is constrained by Coleman-Mandula:


Poincaré  generators:   ,      ;      internal compact symm:      


• From the general axioms of a Lie superalgebra, we know that the odd generators are in 
representations of the even part of the Lie superalgebra


• Odd generators fall into Lorentz irreps ; their complex conjugates are in the  irrep


   ,             ,         


here  is an index for some finite-dim rep of the internal symmetry, and bar  is the conj. rep.


• What are the viable options for  and ?

Jμν Pμ TA

( j1, j2) ( j2, j1)
QI

α1…α2j1
·β1…

·β2j2
QI ·α1… ·α2j1β1…β2j2

I = 1,…, !

I I
j1 j2



The structure of the SUSY algebra
• Let us consider the ,  anticommutator. It must be Lorentz-covariant. From the composition of 

angular momenta, the ,  anticommutator contains the irrep , and possibly others.


• We also notice that





(no sum over ) is a positive-definite op. in the Hilbert space of the theory. If the generators ,  are 
non-zero, this anticommutator cannot be zero


• The bosonic generators we have are  in the ,  in the , and  in the . We 
learn that


 


• Spin-statistic tells us that the odd generators ,  should have half-integer spin.


Lesson: odd generators ,  can only be in the  or  representations

Q Q
Q Q ( j1 + j2, j1 + j2)

{QI
1…1 ·1… ·1, QI ·1… ·11…1} = (QI

1…1 ·1… ·1)(QI
1…1 ·1… ·1)† + (QI

1…1 ·1… ·1)†(QI
1…1 ·1… ·1)

I Q Q

Pμ ( 1
2 , 1

2 ) Jμν (1,0) ⊕ (0,1) TA (0,0)

j1 + j2 ≤ 1
Q Q

Q Q ( 1
2 ,0) (0, 1

2 )



The structure of the SUSY algebra

• We write the odd generators as , . Their anticommutator must give 
P and must be written in terms of invariant tensors of Lorentz and internal 
symmetries


 


• Taking  on both sides, we learn that  is a hermitian matrix. We also 
know that if we set ,  the LHS is a positive-def matrix in its ,  
indices. Using a unitary redefinition of the  ,  we can set


QI
α QI ·α

{QI
α, QJ ·β} = 2 hIJ (σμ)α ·β Pμ

† hIJ

α = 1 ·β = ·1 I J
QI

α QI ·α

hIJ = δIJ



The structure of the SUSY algebra

• We learn that the indices  ,   are indices of a hermitian rep, because  
is an invariant tensor. We can use ,  to turn upper barred indices into lower 
unbarred indices


    ,            


• The supercharges are in a unitary representation of the internal symmetry algebra


   ,          ,         


where the hermitian matrices  satisfy the same comm rels as the generators 


   ,              

I J hIJ = δIJ

δIJ δIJ

QI ·α := hIJ QJ ·α {QI
α, QJ ·β} = 2 δIJ (σμ)α ·β Pμ

[TA, QI
α] = − (tA)I

J QJ
α [(tA)I

J]* = (tA)J
I [TA, QI ·α] = + (tA)J

J QI ·α

tA TA

[TA, TB] = i fAB
C TC [tA, tB] = i fAB

C tC



The structure of the SUSY algebra

• What about the P, Q commutator? A priori it may yield  and . 
There is no generator in the  rep, so we can only have  or 

. The super Jacobi identity rules out the first possibility, so


  ,           

(1, 1
2 ) (0, 1

2 )
(1, 1

2 ) [P, Q] ∼ Q
[P, Q] = 0

[Pμ, QI
α] = 0 [Pμ, QI ·α] = 0



The structure of the SUSY algebra
• The only piece missing is the Q Q anticommutator. It can yield  or , so 

it can only contain  or the internal symm generators 


• Super Jacobi and  exclude , so we can only write


    ,             


• Since the anticommutator is symmetric, we must have 





• Taking  we get


      ,     

(0,0) (1,0)
Jμν TA

[P, Q] = 0 Jμν

{QI
α, QJ

β} = ZIJ ϵαβ ZIJ = (ZIJ)A TA

(ZIJ)A = − (ZJI)A

†
{QI ·α, QJ ·β} = ϵ ·α ·β (ZIJ)A TA (ZIJ)A := [(ZIJ)A]* TA



The structure of the SUSY algebra
• We already know that all ’s commute with P and J, so this is also true for the linear 

combinations 

• Super Jacobi shows that the ’s also commute with the supercharges




• We haven’t used the fact that  must be an invariant tensor of the the internal symm 

algebra  generated by the ’s


•  has one adjoint index and two indices in the rep with generators , so

      


where 

• The above is the same as


 

TA
ZIJ = (ZIJ)A TA

ZIJ

[Z, Q] = 0 = [Z, Q]
(ZIJ)A

& TA

(ZIJ)A (tA)I
J

0 = δB(ZIJ)A = (tB)K
J (ZKJ)A + (tB)K

I (ZIK)A + (tadj
B )A

C (ZIJ)C

(tadj
B )A

C = fBC
A

[TA, ZIJ] = − (tA)I
K ZKJ − (tA)J

K ZIK



The structure of the SUSY algebra
        (*)


• The above commutator shows that the linear combinations  
generate an invariant subalgebra of the internal symm algebra  generated 
by the ’s


• Coleman-Mandula tells us that  consists of simple, non-Abelian, compact 
factors plus  factors. The non-Abelian part cannot accommodate (*) so 
we learn that 


    lie inside the Abelian part of the internal symm alg

• Conclusion: the ’s have zero commutators with everything! They are 

called central charges.

[TA, ZIJ] = − (tA)I
K ZKJ − (tA)J

K ZIK

ZIJ = (ZIJ)A TA
&

TA

&
'(1)

ZIJ = (ZIJ)A TA

ZIJ



Recap
• The supercharges transform in the ,  reps of the Lorentz group and are 

translationally invariant

• They can be charged under the internal symmetry algebra . If they are 

charged, they transform in a unitary rep

  ,         hermitian  ,         


• The  anticommutator is universal




• The  anticommutator can yield a linear comb. of generators of   ….

     ,          ,            


• …  provided that

    ,        

( 1
2 ,0) (0, 1

2 )

& = span(TA)

[TA, QI
α] = − (tA)I

J QJ
α tA I, J = 1,…, !

QQ
{QI

α, QI ·β} = 2 δI
J (σμ)α ·β Pμ

QQ &
{QI

α, QJ
β} = ZIJ ϵαβ ZIJ = (ZIJ)A TA (ZIJ)A = − (ZJI)A

[ZIJ, everything] = 0 (tA)I
K ZKJ + (tA)J

K ZIK = 0



Minimal supersymmetry

• When there is only one supercharge we omit the index . Since  is 
antisymmetric, it vanishes: there cannot be any central charges. We get 
the minimal SUSY algebra, referred to as 4d 


 


 


 

I ZIJ

! = 1
{Qα, Q ·β} = 2 (σμ)α ·β Pμ

{Qα, Qβ} = 0
{Q ·α, Q ·β} = 0



Some remarks

• We have gone through a sketch of the Haag-Lopuszanski-Sohnius 
theorem


• Our exposition follows Wess-Bagger and Weinberg vol III (with some 
changes in notation)


• If we only have massless particles, the allowed bosonic Lie algebra of 
symmetries is conformal algebra + internal symm algebra. It is extended 
to a superconformal algebra


• Non-conformal SUSY is also referred to as Poincaré SUSY to distinguish it 
from superconformal symmetry



R-symmetry

• The term R-symmetry refers to any symmetry transformation that acts 
non-trivially on the supercharges


• In math language: automorphism of the SUSY algebra

• “Inner automorphism”: the action of  on 


         for those  for which 

• “Outer automorphism”: a redefinition of the supercharges




that preserves all (anti)commutators

TA QI
α

[TA, QI
α] = − (tA)I

J QJ
α TA (tA)I

J ≠ 0

Q′ 

I
α = *I

J QJ
α



R-symmetry

• Example: the 4d  SUSY algebra is invariant under the U(1) transf

   ,        ,      


• CAVEAT: the R-symmetry of the SUSY algebra is not necessarily a 
symmetry of the theory!

1. It can be broken explicitly by interactions in the classical Lagrangian

2. Even if unbroken classically, it can be broken at one-loop by a 

quantum anomaly

3. Even if preserved at the quantum level, it can be spontaneously 

broken in the vacuum

! = 1
Q′ α = ei s Qα Q′ ·α = e−i s Q ·α s ∈ ℝ



Supersymmetry and supergravity
Lecture 5



SUSY and 1-particle states
• 1-particle states are unitary irreps of the Poincaré algebra

• Recall that (see eg Weinberg Vol I)


‣ 1-particle states are labelled by their 4-momentum, plus “internal” discrete labels. They have 
definite mass


  ,             ,         


‣ Using a Lorentz transformation we can map  to a standard representative

 :        ;            :         


      where  is some reference energy scale

‣ The subgroup of the Lorentz group that preserves the reference  is called the little group


massive case:    ;           massless case:  

‣ In the massive case the label  is the integer or half-integer spin (eigenvalue of )

‣ In the massless case it is the integer or half-integer helicity (eigenvalue of spin along the 

direction of 3-momentum)

Pμ |p, σ⟩ = pμ |p, σ⟩ m2 = − pμ pμ m ≥ 0
pμ

m > 0 pμ = (m,0,0,0) m = 0 pμ = (E,0,0,E)
E > 0

pμ

SO(3) ISO(2)
σ Jz



SUSY and 1-particle states

• The SUSY algebra organizes 1-particle states into supermultiplets

• Since , all states in a supermultiplet have the same mass

• Recall: each supermultiplet contains an equal number of bosonic and 

fermionic dof’s

• We study massive and massless cases for minimal and extended SUSY in 

turn 

[P, Q] = 0



Minimal SUSY; massive particles
• We use   and 


  ,       ,       


• NB:  is an invariant tensor of the little group . We can trade lower 
(upper) dotted indices for upper (lower) undotted indices. The  indices 
are now fundamental indices of the  of spatial rotations


• This is the algebra of a set of independent fermionic oscillators

  ,         


      ,         ,        

pμ = (m,0,0,0) σ0 = − $2
{Qα, Q ·β} = 2 m δα ·β {Qα, Qβ} = 0 {Q ·α, Q ·β} = 0

δα ·β SO(3)
α

SU(2)

aα = 1
2m

Qα a†α = (aα)† = 1
2m

(Qα)†

{aα, a†β} = δα
β {aα, aβ} = 0 {a†α, a†β} = 0



Minimal SUSY; massive particles
Reps are constructed using a “Clifford vacuum” defined by two properties:

1. It is annihilated by all annihilation operators


 

2. It transforms in an representation of the little group SO(3) of definite spin 


      ,       


As usual,  is integer or half-integer and 

We can also denote the Clifford vacuum as a tensor with  symmetrized  indices .

How do we know that a Clifford vacuum exists? Take any state  in the supermultiplet. If , 
define , otherwise set . In this way we are sure that . Repeat the logic 
with .

The condition  is manifestly rotationally invariant. This is why we can label the Clifford 
vacuum with .

aα |Ω; s, s3⟩ = 0

Jz |Ω; s, s3⟩ = s3 |Ω; s, s3⟩ J2 |Ω; s, s3⟩ = s(s + 1) |Ω; s, s3⟩
s s3 = − s, − s + 1,…, s − 1,s

2s α |Ω⟩α1…α2s

|ψ⟩ a1 |ψ⟩ = 0
|ψ′ ⟩ = |ψ⟩ |ψ′ ⟩ = a1 |ψ⟩ a1 |ψ′ ⟩

a2
aα |ψ′ ′ ⟩ = 0

s, s3



Minimal SUSY; massive particles
We act on the Clifford vacuum with the creation operators. The simplest case is 

. The states we have are

                                                                           scalar of SO(3)

                                                                     spinor of SO(3)     

                       scalar of SO(3)    

Interpretation: these are the 1-particle states of two real massive scalar fields and 
one massive Majorana fermion field. It is customary to pair the two real scalar fields 
into a single complex field. This is usually called a massive chiral multiplet   

NB: in a QFT where parity P is a symmetry, the two scalar fields have opposite 
intrinsic parities (one is a scalar, the other a pseudoscalar). For details, see 
Weinberg vol III

s = 0
|Ω⟩

a†α |Ω⟩
a†α a†β |Ω⟩ ∝ ϵαβ (ϵγδ a†γ a†δ |Ω⟩)



Minimal SUSY; massive particles
The next case is . When we act with creation op’s on the Clifford vacuum, we have to combine 
their spins. From the familiar rules for combining angular momenta





Notation:  is the irrep of  with spin , , Casimir 

The states we have are

                                                                                          


                          and                                           


                                                                          


Interpretation: these are the 1-particle state of one real massive vector field, one real massive scalar 
field, and two massive Majorana fields. This is a massive vector multiplet

NB: in a QFT where parity P is a symmetry, the two fermions have opposite intrinsic parities.

s = 1
2

( 1
2 ) ⊗ ( 1

2 ) = (0) ⊕ (1)
(s) SU(2) s 2s ∈ ℤ≥0 s(s + 1)

|Ω⟩α ( 1
2 )

ϵγδ a†γ |Ω⟩δ a†(α |Ω⟩β) (0) ⊕ (1)
ϵγδ a†γ a†δ |Ω⟩α ( 1

2 )



The general story is similar.

Acting once on the Clifford vacuum: 


Acting twice on the Clifford vacuum: because the creation operators anticommute, 
. Acting with  does not change the SO(3) spin. 


In summary: massive multiplets of minimal SUSY       


NB: the Clifford vacuum is a boson for integer , a fermion for half-integer 

We have included the no of states. There is always a balance between bosons and fermions

( 1
2 ) ⊗ (s) = (s− 1

2 ) ⊕ (s+ 1
2 )

a†αa†β ∼ ϵαβ(ϵγδ a†γa†δ) ϵγδ a†γa†δ

s s

Minimal SUSY; massive particles

1 A nice table

s = 0

no a
†’s (0) 1

s > 0

no a
†’s (s) 2s+ 1

one a
† (12) 2 one a

† (s� 1
2)� (s+ 1

2) 4s+ 2

two a
†’s (0) 1 two a

†’s (s) 2s+ 1

2 Exercise

Check some identities about the chiral blocks without using the explicit representation, but only the

Cli↵ord algebra, the def of C, and the fact that the temporal gamma is antihermitian, and the others

are hermitian.

Do the same in all other signatures and play with reality conditions.

3 The reality condition for sigma blocks

The index structure gives

[(�µ)↵�̇ ]
⇤ = ⇠ ✏↵̇�̇ ✏�� (�

µ)�̇� (3.1)

The explicit rep gives ⇠ = +1.

4 My Majorana

With my conventions:

 †
�
0 =

⇣
 
†

�̃
†
⌘ 0 �i I2

�i I2 0

!
=
⇣
�i �̃

†
�i 

†
⌘
=
⇣
�i [�̃�̇ ]⇤ �i [ � ]⇤

⌘
(4.1)

or

� i †
�
0 =

⇣
�[�̃�̇ ]⇤ �[ � ]⇤

⌘
(4.2)

while

 T
C =

⇣
 
T

�̃
T
⌘  

✏
↵� 0

0 ✏↵̇�̇

!
=
⇣
 ↵ ✏

↵�
�̃
↵̇
✏↵̇�̇

⌘
(4.3)

On the other hand

�̃
↵̇
✏↵̇�̇ = ✏

↵̇�̇
 �̇ ✏↵̇�̇ = � �̇ , �[�̃�̇ ]⇤ = � 

� = �✏
��
 � = + ↵ ✏

↵� (4.4)

5 Maybe:

Put all invariant tensors in a single exercise.

1



Minimal SUSY; massless particles
• We use   and , 


  ,       ,       


• The supercharge with  and its conjugate give one set of fermionic oscillators

  ,         ,         ,


• The supercharge with  and its conjugate anticommute


                        for any state 


• The inner product in the 1-particle Hilbert space is positive definite, so 

pμ = (E,0,0,E) σ0 = − $2 σ3 = + σz

{Qα, Q ·β} = 4 E (1 0
0 0)

α ·β
{Qα, Qβ} = 0 {Q ·α, Q ·β} = 0

α = 1
a = 1

2 E
Q1 a† = 1

2 E
(Q1)† {a, a†} = 1

α = 2

Q2 (Q2)† + (Q2)† Q2 = 0 ⇒
∥Q2 |ψ⟩∥2 = 0
∥Q†

2 |ψ⟩∥2 = 0
|ψ⟩

Q2 = 0 = Q†
2



Minimal SUSY; massless particles
• The relevant quantum number in the massless case is helicity. With our choice  of 

reference 4-momentum, helicity is the eigenvalue  of 


• From the  commutators we find

 ,       


• We learn that the annihilation operator  lowers the helicity by 1/2, and  raises it by 1/2


• The Clifford vacuum is annihilated by  by definition, so it has the lowest helicity in the supermultiplet

  ,       


• Acting once with  we get a state of helicity 


 


• Lesson: the general massless SUSY multiplet has two states of helicities , .  can be any 
integer or half-integer

pμ = (E,0,0,E)
λ Jz

JQ
[Jz, Q1] = − 1

2 Q1 [Jz, Q†
1 ] = 1

2 Q†
1

a a†

a
a |Ω; λ⟩ = 0 Jz |Ω; λ⟩ = λ |Ω; λ⟩

a† λ+ 1
2

Jz a† |Ω; λ⟩ = (λ+ 1
2 ) a† |Ω; λ⟩

λ λ + 1/2 λ



Minimal SUSY; massless particles
CPT must be a good symmetry in any relativistic QFT. To preserve CPT we need to consider 
a pair of massless SUSY multiplets:


           together with          


Relevant examples:

•  :   the 1-particle states correspond to two real massless scalars and one massless 

Majorana fermion (equiv. one massless Weyl fermion). This is a massless chiral multiplet 

•  :   the 1-particle states correspond to one real vector boson and one massless 
Majorana fermion (equiv. one massless Weyl fermion). This is a massless vector multiplet 

NB: There is a SUSY version of the Higgs mechanism, in which a massless vector multiplet 
“eats” a massless chiral multiplet to give a massive vector multiplet 

no a† λ
one a† λ + 1

2

no a† −λ − 1
2

one a† −λ

λ = 0

λ = 1/2



Supersymmetry and supergravity
Lecture 6



Extended SUSY; massless particles
Let us now turn to extended SUSY; we study the massless case first: 


        


  ,        

The first anticommutator gives


      no sum on 

so it is still true that  is represented by zero. From the relation


 

we conclude that the central charges  must also be represented by zero.

pμ = (E,0,0,E)

{QI
α, QJ ·β} = 4 E δI

J (1 0
0 0)

α ·β
I, J = 1,…, !

{QI
α, QJ

β} = ϵαβ ZIJ {QI ·α, QJ ·β} = ϵ ·α ·β ZIJ

(QI
2)(QI

2)† + (QI
2)†(QI

2) = 0 I
QI

2
ZIJ = − {QI

1, QJ
2} = − QI

1 QJ
2 − QJ

2 QI
1

ZIJ



Extended SUSY; massless particles
We have a collection of fermionic creation/annihilation operators


     ,            ,       ,    


All the ’s and ’s have definite helicity

   ,       


The Clifford vacuum is annihilated by all ’s and thus has minimal helicity

   ,       


We act on the Clifford vacuum with the ’s in all possible ways.

aI = 1
2 E

QI
1 {aI, a†

J } = δI
J {aI, aJ} = 0 {a†

I , a†
J } = 0

a a†

[Jz, aI] = − 1
2 aI [Jz, a†

I ] = + 1
2 a†

I

a
aI |Ω; λ⟩ = 0 Jz |Ω; λ⟩ = λ |Ω; λ⟩

a†



Extended SUSY; massless particles
The ’s anticommute, so we get states that are totally antisymmetric in their  indices. 
The latter are indices of an  R-symmetry. 


a† I
U(!)1 A table

state helicity su(N ) rep deg

|⌦;�i � • 1

a
†
I1
|⌦;�i �+ 1

2 N

a
†
[I1
a
†
I2]

|⌦;�i �+ 1
�N
2

�

...

a
†
[I1

. . . a
†
Ip]

|⌦;�i �+ 1
2p

pz }| {
. . .

�N
p

�

...

a
†
[I1

. . . a
†
IN ] |⌦;�i �+ 1

2N

Nz }| {
. . . 1

2 Exercise on helicity

If we choose the reference momentum p
µ = (E, 0, 0, E), helicity is the same as the eigenvalue of Jz.

Check that Q1, Q
†
1 change helicity by 1/2.

We know that

Jz = J
12 = J12 , [Jµ⌫ , Q↵] = �i (�µ⌫)↵

�
Q� , [Jµ⌫ , Q↵̇] = +i (�µ⌫)

�̇
↵̇Q�̇ (2.1)

We need

�
12 = �

i

2
�z = �

12 (2.2)

We conclude that

[Jz, Q↵] = �
1

2
(�z)↵

�
Q� , [Jµ⌫ , Q↵̇] = +

1

2
(�z)

�̇
↵̇Q�̇ (2.3)

which is the same as

[Jz, Q1] = �
1

2
Q1 ,

[Jz, Q2] = +
1

2
Q2 ,

[Jz, Q
†
1] = +

1

2
Q

†
1 ,

[Jz, Q
†
2] = �

1

2
Q

†
2 . (2.4)

These relations imply

Jz |�i = � |�i , Jz Q1 |�i =
⇣
��

1
2

⌘
Q1 |�i (2.5)

1

• For generic values of  and  we have 
include by hand the CPT conjugate 
multiplet


• The degeneracies ensure the balance 
between bosonic and fermionic states 

! λ



Extended SUSY; massless particles
The interactions of massless particles of helicity  are very constrained:

• a massless boson of helicity  must be a gauge boson in a gauge theory, which couples to 

an internal symmetry current 

• a massless fermion of helicity  must be the so-called gravitino, the field that couples to 

the supersymmetry current (supergravity)

• a massless boson of helicity  must be the (unique) graviton, which couples to the (unique) 

stress tensor of the QFT

It is not known how to write interactions for massless particles of higher helicity in 4d Minkowski.

These physical arguments give us a bound on helicity, hence a bound in the number of SUSYs:

‣ If we want a QFT without dynamical gravity


         hence        

‣ If we allow dynamical gravity (supergravity)


         hence        

|λ | ≥ 1
±1

±3/2

±2

|λ | ≤ 1 ! ≤ 4

|λ | ≤ 2 ! ≤ 8



Extended SUSY; massless particles
 vector multiplet


            and the CPT conj.      


real vector     +   complex scalar    +  Weyl fermions        

NB:  fund index of .

They all transform in the adjoint rep of the gauge group.


! = 2

|Ω⟩ −1 1
a† |Ω⟩ − 1

2 2
a† a† |Ω⟩ 0 1

|Ω⟩ 0 1
a† |Ω⟩ 1

2 2
a† a† |Ω⟩ 1 1

Aμ Φ λI
α

I ≡ )*(2)R



Extended SUSY; massless particles
 hypermultiplet


      +    its CPT conjugate   


  4 real scalars   +  two Weyl fermions 


In SUSY gauge theories, hypermultiplets are the matter fields. Their 4 scalars 
and two fermions transform generically as  where  is any 
representation of the gauge group and  is the conjugate rep

! = 2

|Ω⟩ − 1
2 1

a† |Ω⟩ 0 2
a† a† |Ω⟩ + 1

2 1

R ⊕ R R
R



Extended SUSY; massless particles
 vector multiplet


       (CPT self conj.)  = real vector   + 6 real scalars + 4 Weyl 

fermions      

The R-symm algebra is .  The fermions are in the fundamental of . 
The 6 real scalars are in the vec rep of . (This is a real rep, that’s why this multiplet 
can be self CPT conj.)

All fields transform in the adjoint rep of the gauge group.

! = 4

|Ω⟩ −1 1
a† |Ω⟩ − 1

2 4
a† a† |Ω⟩ 0 6

a† a† a† |Ω⟩ 1
2 4

a† a† a† a† |Ω⟩ 1 1

Aμ

)*(4)R ≅ )-(6)R )*(4)R
)-(6)R



Extended SUSY; massless particles

What about  ? 


It turns out that a  vector multiplet (plus its CPT conj) is the same 
as a  vector multiplet. Any Lagrangian theory with  SUSY is 
also automatically .

This does NOT hold for theories without a Lagrangian descriptions. 
Interesting superconformal 4d  theories (that are not ) have 
been constructed recently, but are strongly-coupled

! = 3
! = 3

! = 4 ! = 3
! = 4

! = 3 ! = 4



Extended SUSY; massless particles
NB: extended SUSY does not allow for chiral reps of the gauge group

• For  we only have vector multiplets, and all fields are in the 

adjoint representation, which is a real representation

• For  we can have vector multiplets in the adjoint or 

hypermultiplet in the any rep , but these are real representations

The positive-chirality and negative-chirality fermions in the standard 
model transform in different representations of the gauge group.

For applications to pheno, 4d  is the most promising

! = 4

! = 2
R ⊕ R

! = 1



Extended SUSY; massive particles

In the massive case  and the little group is 

        


  ,        


Since the operators  commute with everything, all states in a 
supermultiplet have the same eigenvalue of  (which we denote by the 
same symbol).

For definiteness we analyze . Similar story for 

pμ = (m,0,0,0) SO(3)
{QI

α, QJ ·β} = 2 m δI
J δα ·β I, J = 1,…, !

{QI
α, QJ

β} = ϵαβ ZIJ {QI ·α, QJ ·β} = ϵ ·α ·β ZIJ

ZIJ

ZIJ

! = 2 ! > 2



Extended SUSY; massive particles
By a unitary redef of the Qs we can cast  in the standard form


        with     real and positive


The SUSY algebra becomes

  ,           ,       


Useful redefinition:


   ,   


The algebra becomes

   ,                

ZIJ

ZIJ = ( 0 Z
−Z 0) = ϵIJ Z Z

{QI
α, QJ ·β} = 2 m δI

J δα ·β {QI
α, QJ

β} = ϵαβ ϵIJ Z {QI ·α, QJ ·β} = ϵ ·α ·β ϵIJ Z

aα = 1
2 (Q1

α + ϵαβ δβ ·β Q2 ·β) bα = 1
2 (Q1

α − ϵαβ δβ ·β Q2 ·β)

{aα, a†β} = (2 m + Z) δα
β {bα, b†β} = (2 m − Z) δα

β

{aα, aβ} = {aα, bα} = {bα, bβ} = 0



Extended SUSY; massive particles
   ,                



We can prove the “BPS bound”




Proof: The  anticommutator implies in particular


 

Let us take the VEV of the above on any state  in the supermultiplet


 

We conclude that the c-number  is non-negative.

BPS stands for Bogomol’ny-Prasad-Sommerfield. These authors derived a similar bound 
between mass and charge of monopoles in non-Abelian gauge theories.

{aα, a†β} = (2 m + Z) δα
β {bα, b†β} = (2 m − Z) δα

β

{aα, aβ} = {aα, bα} = {bα, bβ} = 0

Z ≤ 2 m
bb†

2m − Z = b1 (b1)† + (b1)† b1
|ψ⟩

(2m − Z) ∥|ψ⟩∥2 = ∥b1 |ψ⟩∥2 + ∥(b1)† |ψ⟩∥2

2m − Z



Extended SUSY; massive particles
We have two qualitatively different cases whether the BPS bound is saturated, or not

• Generic  :     “long multiplets”

After a suitable rescaling, both the ’s and the ’s are standard fermionic oscillators. The Clifford 
vacuum is annihilated by all ’s and ’s. We act on it with  ’s and ’s in all possible ways. 

For example: if the Clifford vacuum is a scalar

                                                                                                     1

                                         ,                                           4

                               ,    ,                       6

                                       ,                           4

                                                                                   1

Total of 8 + 8 states

Z < 2 m
aα bα

aα bα a†α b†α

|Ω⟩
a† |Ω⟩ b† |Ω⟩

a† a† |Ω⟩ b† b† |Ω⟩ a† b† |Ω⟩
a† a† b† |Ω⟩ a† b† b† |Ω⟩

a† a† b† b† |Ω⟩



Extended SUSY; massive particles
We have two qualitatively different cases whether the BPS bound is saturated, or not

• Special  :     “short multiplets”

In this case the ’s and ’s are represented by 0. We only have one set of fermionic oscillators. In 
other words, all states in the multiplet are annihilated by half of the supercharges: “1/2-BPS 
condition”

For example: if the Clifford vacuum is a scalar

                                                                                                 1

                                                                                           2


                                                                                1

Total of 2 + 2 states (cfr with 8 + 8 in the long multiplet) 

Quantum corrections cannot change the size of a multiplet. The relation  must remain exact 
at the full quantum level. This includes non-perturbative corrections!

Z = 2 m
bα b†α

|Ω⟩ (0)
a†α |Ω⟩ ( 1

2 )
ϵγδ a†γ a†δ |Ω⟩ (0)

Z = 2 m
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SUSY action on fields

• We have studied the action of the SUSY algebra on 1-particle states

• We know that particles are quanta of fields. To write SUSY Lagrangians, 

we need to study the action of the SUSY algebra on fields

• Useful language: SUSY variations of fields in the Lagrangian



A bosonic example
Purely bosonic analogy: a set of complex scalar fields  that transform in the 
fundamental rep of an  internal symmetry

Abstract  algebra:                               


 variation of fields:                        


 :  real param’s of infinitesimal transf.;       :  generators of  in the fund rep

The commutator of two variations encodes the abstract algebra:





 


               

Xi

SU(n)
SU(n) [Ta, Tb] = i fab

c Tc a = 1,…, n2 − 1
SU(n) δλXi = i λa (ta)i

j Xj i = 1,…, n
λa (ta)i

j SU(n)

δλ1
δλ2

Xi = δλ1[i λa
2 (ta)i

j Xj] = i λa
2 (ta)i

j δλ1
Xj = i λa

2 (ta)i
j i λb

1 (tb)j
k Xk

δλ1
δλ2

Xi − δλ2
δλ1

Xi = − λa
2 λb

1 [ta, tb]i
j Xj = + i λa

1 λb
2 fab

c (tc)i
j Xj

δλ1
δλ2

Xi − δλ2
δλ1

Xi = δλ3
Xi λc

3 = fab
c λa

1 λb
2



Anticommuting parameters
• Since the supercharges are anticommuting, it is convenient to take the SUSY 

parameters to be anticommuting c-numbers (aka Grassmann c-numbers)


• For 4d  the supercharges are ,  so the SUSY parameters are 
, . All their components anticommute with all other components


  ,            ,      


• If  stands for any field, we use the notation

  ,           ,        


Here  and  denote the fields into which  is transformed by SUSY. 
They have opposite statistics to . The SUSY params anticommute with the 
operations , 

" = 1 Qα Q ·α = (Qα)†

ξα ξ ·α = (ξα)*
ξα ξβ = − ξβ ξα ξα ξ ·β = − ξ ·β ξα ξ ·α ξ ·β = − ξ ·β ξ ·α

X
δξ,ξ X = δξX + δξ X δξX = ξα (Qα ⋅ X) δξ X = ξ ·α (Q ·α ⋅ X)
(Qα ⋅ X) (Q ·α ⋅ X) X

X
(Qα⋅) (Q ·α⋅)



Anticommuting fermionic fields

• The fermionic fields in the classical Lagrangian are also anticommuting c-
numbers


• In the quantum theory they are promoted to operators that satisfy non-
trivial anticommmutation relations


• The components of a (classical or quantum) fermionic field , 
 anticommute with the SUSY parameters


  ,            ,      etc.

ψα
ψ ·α = (ψα)*

ξα ψβ = − ψβ ξα ξα ψ ·β = − ψ ·β ξα



SUSY action on fields
• The anticommutator of two supercharges is encoded in the commutator of 

two SUSY variations. For example, if  is any field













X
δξ1

δξ2
X = ξα

1 Qα ⋅ [ξ2 ·β (Q
·β ⋅ X)] = − ξα

1 ξ2 ·β Qα ⋅ (Q
·β ⋅ X)

δξ2
δξ1

X = ξ2 ·β Q
·β ⋅ [ξα

1 (Qα ⋅ X)] = − ξ2 ·β ξα
1 Q

·β ⋅ (Qα ⋅ X) = + ξα
1 ξ2 ·β Q

·β ⋅ (Qα ⋅ X)

δξ1
δξ2

X − δξ2
δξ1

X = − ξα
1 ξ2 ·β [Qα ⋅ (Q

·β ⋅ X) + Q
·β ⋅ (Qα ⋅ X)]

= − ξα
1 ξ2 ·β {Qα, Q

·β} ⋅ X

= + ξα
1 ξ2

·β {Qα, Q ·β} ⋅ X



SUSY action on fields



• The SUSY variations of fields must furnish a rep of the abstract SUSY anticommutator 
.  Similar story with the other anticommutators. 


• We introduce the compact notation     

    ,    


• We must have 

      ,     


• These conditions are usually referred to as “closure of the SUSY algebra”

• The param of a translation has mass dim = . We learn that the SUSY params must 

have mass dim = 

δξ1
δξ2

X − δξ2
δξ1

X = ξα
1 ξ2

·β {Qα, Q ·β} ⋅ X

{Qα, Q ·β} = 2 (σμ)α ·β Pμ

δ1 ≡ δξ1,ξ1
δ2 ≡ δξ2,ξ2

δ1 δ2X − δ2 δ1X = 2 (ξ1 σμ ξ2 − ξ2 σμ ξ1) Pμ ⋅ X Pμ ⋅ X = − i ∂μX

−1
−1/2



Intermezzo: more spinor technology
• Recall that spinor indices ,  are raised/lowered with , , ,   


   ,       ,      ,           

and idem for dotted indices  (Wess-Bagger conventions)


• In every expression where we find a pair of contracted indices as  we can always flip 
them to the configuration  ; the price to pay is a minus sign


• If the objects ,  are anticommuting we can write

  ,          


• Index-free notation for bilinears: when we omit undotted indices, they are understood to 
be in the  configuration;  for dotted indices, the implicit position is instead . Eg:


  ,         

α ·α ϵαβ ϵαβ ϵ ·α ·β ϵ ·α ·β

ψα = ϵαβ ψβ ψα = ϵαβ ψβ ϵ12 = − 1 ϵ12 = + 1

α
α

α
α

ψα λα

ψα λα = − ψα λα = + λα ψα ψ ·α λ ·α = − ψ ·α λ ·α = + λ ·α ψ ·α

α
α ·α

·α

ψ λ = ψα λα ψ λ = ψ ·α λ ·α



Intermezzo: more spinor technology
• Vector bilinears:


  ,            


• Tensor bilinears:

  ,         


• There are various “flip identities” for bilinears. For example, we know that 
  and this implies


                    


                              


• NB: all spinors are assumed to be anticommuting

ψα (σμ)α ·β χ
·β = ψ σμ χ χ ·α (σμ) ·αβ ψβ = χ σμ ψ

ψα (σμν)α
β χβ = ψ σμν χ ψ ·α (σμν) ·α ·β χ

·β = ψ σμν χ

(σμ) ·αβ = (σμ)β ·α

χ σμ ψ = χ ·α (σμ) ·αβ ψβ = − ψβ (σμ) ·αβ χ ·α

= − ψβ (σμ)β ·α χ ·α = − ψβ (σμ)β ·α χ ·α = − ψ σμ χ



Intermezzo: more spinor technology

• To check the reality properties of bilinears we need the fact that complex 
conjugation reverses the order of a product (convention inspired by  on 
operators)


 


• For example:


                 


                                

†

(ψα χβ)* = (χβ)* (ψα)* = χ ·β ψ ·α

(χ σμ ψ)* = [χ ·α (σμ) ·αβ ψβ]* = ψ ·β [(σμ) ·αβ]* χα

= ψ ·β (σμ)
·βα χα = ψ σμ χ



Intermezzo: more spinor technology

• Expressions with 3 fermions can be manipulated using “Fierz identities”


• A simple example: the quantity  is antisymmetric in  and 
hence must be proportional to . We can fix the prop. constant by taking 
a trace:


 


• Contract both sides with  and rearrange:

 

ψα λβ − ψβ λα αβ
ϵαβ

ψα λβ − ψβ λα = (ψ λ) ϵαβ

χβ

(ψ λ) χα + (χ ψ) λα + (λ χ) ψα = 0



Free massless chiral multiplet
• The 1-particle states are two states of helicity 0 and a pair of states of helicities . 

These states corresponds to a massless complex scalar  and a massless Weyl fermion 
. 


• We start considering a free theory. The Lagrangian contains only the canonical kinetic 
terms. The canonical mass dimensions of ,  are 1 and 3/2, respectively.


                    


• NB: the fermion kinetic term is real up to a total spacetime derivative.  is the complex 
conjugate of .


• Claim: the SUSY variations are ( )


          

±1/2
X

ψα

X ψα

S = ∫ d4x ℒ ℒ = − ∂μX ∂μX + i ∂μψ ·α (σμ) ·αβ ψβ

X
X

δ ≡ δξ,ξ

δX = 2 ξα ψα δψα = i 2 (σμ)α ·β ξ
·β ∂μX



Free massless chiral multiplet
           


                   

This proposal for the SUSY variations passes two basic sanity checks:

• They are manifestly Lorentz covariant

• The mass dimensions of both sides are equal (recall )

How do we know this is correct?

1. The Lagrangian must be invariant under a SUSY variation, up to a total derivative 

(so that the action is invariant)

2. The SUSY algebra must close on both  and 

The first requirement turns out to be satisfied

ℒ = − ∂μX ∂μX + i ∂μψ ·α (σμ) ·αβ ψβ

δX = 2 ξα ψα δψα = i 2 (σμ)α ·β ξ
·β ∂μX

[ξ] = − 1/2

X ψα



SUSY commutators

                   


The commutators of SUSY variations on the scalar :








 

It works!

δX = 2 ξα ψα δψα = i 2 (σμ)α ·β ξ
·β ∂μX

X
δ1δ2X = δ1( 2 ξ2 ψ) = 2 ξα

2 (δ1ψ)α

= 2 ξα
2 i 2 (σμ ξ1)α ∂μX = 2 i (ξ2 σμ ξ1) ∂μX

δ1δ2X − δ2δ1X = − 2 i (ξ1 σμ ξ2 − ξ2 σμ ξ2) ∂μX



SUSY commutators
                   


The commutators of SUSY variations on the fermion:




To proceed, we use the Fierz identity

  with  ,   ,   


which reads




We get (using   )





δX = 2 ξα ψα δψα = i 2 (σμ)α ·β ξ
·β ∂μX

δ1δ2ψα = δ1(i 2 (σμ ξ2)α ∂μX) = i 2 (σμ ξ2)α ∂μδ1X = 2 i (σμ ξ2)α (ξ1 ∂μψ)

(χ1 χ2) χ3α + (χ1 χ3) χ2α + (χ2 χ3) χ1α = 0 χ1 = ξ1 χ2 = ∂μψ χ3 = σμ ξ2

(ξ1 ∂μψ) (σμ ξ2)α + (ξ1 σμ ξ2) ∂μψα + (∂μψ σμ ξ2) ξ1α = 0
∂μψ σμ ξ2 = − ξ2 σμ ∂μψ

δ1δ2ψα − δ2δ1ψα = − 2 i (ξ1 σμ ξ2 − ξ2 σμ ξ1) ∂μψα

− 2 i (ξ1 σμ ∂μψ) ξ2α + 2 i (ξ2 σμ ∂μψ) ξ1α



SUSY commutators







• The SUSY algebra does not close, because of the terms on the second 
line…


• … but they vanish if we impose the fermion EOM

  


• We say that the SUSY algebra closes “on-shell”

δ1δ2ψα − δ2δ1ψα = − 2 i (ξ1 σμ ξ2 − ξ2 σμ ξ1) ∂μψα

− 2 i (ξ1 σμ ∂μψ) ξ2α + 2 i (ξ2 σμ ∂μψ) ξ1α

σμ ∂μψ = 0



On-shell SUSY actions and variations
• In the on-shell formalism for SUSY, the action and the SUSY variations of all fields have to be 

tuned together, to ensure that the SUSY algebra closes up the EOMs that follow from the action

• When we change the action, we must change the SUSY variations!

• For example, we can include a mass term for a chiral multiplet…





… but we must modify the SUSY variation of the fermion

                 


• This way of constructing SUSY actions and variations is referred to as “Noether method”. One 
has to find all the correct terms in the action and variation by trial and error.


• Luckily, for 4d  supersymmetry an off-shell formalism exists, in which the SUSY 
variations are universal, independent of the action 

ℒ = − ∂μX ∂μX + i ∂μψ ·α (σμ) ·αβ ψβ − m X X − 1
2 m ψα ψα − 1

2 m ψ ·α ψ ·α

δX = 2 ξα ψα δψα = i 2 (σμ)α ·β ξ
·β ∂μX − 2 m X ξα

" = 1



Supersymmetry and supergravity
Lecture 8



Off-shell SUSY for a chiral multiplet
• A complex scalar and a Weyl fermion have the same number of on-shell 

dof’s, but a different number of off-shell dof’s

• To restore the balance we use an auxiliary field: a complex scalar 


• The field  carries no on-shell dof’s because it is fixed in terms of the 
other fields by its EOM


F
F

off-shell real dof's on-shell real dof's
X 2 2
ψα 4 2
F 2 0



Off-shell SUSY for a chiral multiplet
The SUSY variations are


   ,   


   , 


 

Remarks:

• The auxiliary field  has mass dimension 2; it is the field with the highest 

dimension in the multiplet

• The SUSY variation of  is a total spacetime derivative

δX = 2 ξ ψ
δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα

δF = i 2 ξ σμ ∂μψ

F

F



Off-shell closure of the algebra

   ,       ,    

SUSY commutator on the dynamical scalar:





The additional term with  drops away when we consider the commutators:


δX = 2 ξ ψ δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα δF = i 2 ξ σμ ∂μψ

δ1δ2X = 2 ξα
2 (δ1ψ)α = 2 i (ξ2 σμ ξ1) ∂μX + 2 F ξ2 ξ1

F
δ1δ2X − δ2δ1X = − 2 i (ξ1 σμ ξ2 − ξ2 σμ ξ1) ∂μX



Off-shell closure of the algebra
   ,       ,   


SUSY commutator on the auxiliary scalar:




Because of the two partial derivatives, we project onto the part symmetric in . We 
can use the Clifford algebra relation


 





The term with  drops away taking the commutator:


δX = 2 ξ ψ δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα δF = i 2 ξ σμ ∂μψ

δ1δ2F = i 2 (ξ2 σμ)α ∂μ(δ1ψ)α = − 2 (ξ2 σμ σν ξ1) ∂μ∂νX + 2 i (ξ2 σμ ξ1) ∂μF
μν

σμ σν + σν σμ = − 2 ημν

δ1δ2F = i 2 (ξ2 σμ)α ∂μ(δ1ψ)α = 2 (ξ2 ξ1) ∂μ∂μX + 2 i (ξ2 σμ ξ1) ∂μF
X

δ1δ2F − δ2δ1F = − 2 i (ξ1 σμ ξ2 − ξ2 σμ ξ1) ∂μF



Off-shell closure of the algebra
   ,       ,   


SUSY commutator on the fermion:






To proceed, we use the Fierz identity


  with  ,   ,   

which reads





The terms from  cancel against the “bad” terms and we find


δX = 2 ξ ψ δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα δF = i 2 ξ σμ ∂μψ

δ1δ2ψα = i 2 (σμ ξ2)α ∂μ(δ1X) + 2 ξ2α δ1F
= 2 i (ξ1 ∂μψ) (σμ ξ2)α + 2 i (ξ1 σμ ∂μψ) ξ2α

(χ1 χ2) χ3α + (χ1 χ3) χ2α + (χ2 χ3) χ1α = 0 χ1 = ξ1 χ2 = ∂μψ χ3 = σμ ξ2

(ξ1 ∂μψ) (σμ ξ2)α + (ξ1 σμ ξ2) ∂μψα + (∂μψ σμ ξ2) ξ1α = 0
δF

δ1δ2ψα − δ2δ1ψα = − 2 i (ξ1 σμ ξ2 − ξ2 σμ ξ1) ∂μψα



SUSY kinetic terms
The kinetic terms for the dynamical fields and quadratic for the auxiliary field 
are collected in 


  

This Lagrangian varies into a total spacetime derivative under a SUSY 
variation. Let us perform this check. NB:

• We always assume that fields fall off at infinity sufficiently rapidly that we 

can discard any spacetime total derivative in the Lagrangian

• Even though we want to check rigid SUSY (the parameters ,   are 

constant spinors), it is useful to compute the variation under general 
spacetime-dependent ,    (this will help us find the supercurrent later)

ℒkin = − ∂μX ∂μX + i ∂μψ σμ ψ + F F

ξ ξ

ξ ξ



Intermezzo: complex conj. of the SUSY variations

The SUSY variations are

   ,         ,       


Let us compute their complex conjugates. We need:




and also






The complex conjugate variations are


  ,         ,    

δX = 2 ξ ψ δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα δF = i 2 ξ σμ ∂μψ

(ξ ψ)* = (ξα ψα)* = (ψα)* (ξα)* = ψ ·α ξ ·α = ψ ξ = ξ ψ

[(σμ)α ·β ξ
·β]* = (ξ

·β)* [(σμ)α ·β]* = ξβ (σμ)β ·α = (ξ σμ) ·α

[ξ σμ ∂μψ]* = [ξ ·α (σμ) ·αβ ∂μψβ]* = ∂μψ ·β [(σμ) ·αβ]* ξα = ∂μψ ·β (σμ)
·βα ξα = ∂μψ σμ ξ

δX = 2 ξ ψ δψα = − i 2 (ξ σμ) ·α ∂μX + 2 F ξ ·α δF = − i 2 ∂μψ σμ ξ



Check of SUSY for kinetic terms

   ,     ,       


  ,       ,     


We start with the kinetic term for :







δX = 2 ξ ψ δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα δF = i 2 ξ σμ ∂μψ

δX = 2 ξ ψ δψα = − i 2 (ξ σμ) ·α ∂μX + 2 F ξ ·α δF = − i 2 ∂μψ σμ ξ

X
δ(−∂μX ∂μX) = − ∂μ δX ∂μX − ∂μX ∂μδX = δX ∂μ∂μX + δX ∂μ∂μX + ∂μ(…)
= 2 (ξ ψ) ∂μ∂μX + 2 (ξ ψ) ∂μ∂μX + ∂μ(…)



Check of SUSY for kinetic terms

   ,     ,       


  ,       ,     


Next the quadratic term for the auxiliary field:





δX = 2 ξ ψ δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα δF = i 2 ξ σμ ∂μψ

δX = 2 ξ ψ δψα = − i 2 (ξ σμ) ·α ∂μX + 2 F ξ ·α δF = − i 2 ∂μψ σμ ξ

δ(F F) = F δF + F δF = i 2 F (ξ σμ ∂μψ) − i 2 F (∂μψ σμ ξ)



Check of SUSY for kinetic terms
   ,     ,       


  ,       ,     

The fermion kinetic term:




We look at the two terms in turn:








In the first term we project onto the part symmetric in  so we can use 





The term  is treated in a similar way

δX = 2 ξ ψ δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα δF = i 2 ξ σμ ∂μψ

δX = 2 ξ ψ δψα = − i 2 (ξ σμ) ·α ∂μX + 2 F ξ ·α δF = − i 2 ∂μψ σμ ξ

δ(i ∂μψ σμ ψ) = i ∂μδψ σμ ψ + i ∂μψ σμ δψ = − i δψ σμ ∂μψ + i ∂μψ σμ δψ + ∂μ(…)

−i δψ σμ ∂μψ = − 2 (ξ σν σμ ∂μψ) ∂νX − i 2 F (ξ σμ ∂μψ)
= 2 (ξ σν σμ ψ) ∂μ∂νX + 2 (∂μξ σν σμ ψ) ∂νX − i 2 F (ξ σμ ∂μψ) + ∂μ(…)

μν σμ σν + σν σμ = − 2 ημν

−i δψ σμ ∂μψ = − 2 (ξ ψ) ∂μ∂μX + 2 (∂μξ σν σμ ψ) ∂νX − i 2 F (ξ σμ ∂μψ) + ∂μ(…)
i ∂μψ σμ δψ



Check of SUSY for kinetic terms
In conclusion:













All terms without derivatives of the SUSY params drop away: we have checked rigid 
SUSY!

If we allow the SUSY params to be spacetime-dependent,


 

δℒkin = 2 (ξ ψ) ∂μ∂μX + 2 (ξ ψ) ∂μ∂μX

+ i 2 F (ξ σμ ∂μψ) − i 2 F (∂μψ σμ ξ)
− 2 (ξ ψ) ∂μ∂μX + 2 (∂μξ σν σμ ψ) ∂νX − i 2 F (ξ σμ ∂μψ)
− 2 (ψ ξ) ∂μ∂μX + 2 (ψ σμ σν ∂μξ) ∂νX + i 2 F (∂μψ σμ ξ) + ∂μ(…)

δSkin = ∫ d4x [ 2 (∂μξ σν σμ ψ) ∂νX + 2 (∂μξ σν σμ ψ) ∂νX]



SUSY current
We re-write the variation of the action as


  


   ,         

Suppose we go on-shell. The action must be stationary under arbitrary 
variations of all fields, .  We conclude that the quantities ,  are 
conserved on-shell


   ,        

This is Noether’s theorem for SUSY. The SUSY current (aka supercurrent) is a 
vector-spinor

δSkin = ∫ d4x [∂μξα Jμ
α + ∂μξ ·α Jμ ·α]

Jμ
α = 2 (σν σμ ψ)α ∂νX Jμ ·α = 2 (σν σμ ψ) ·α ∂νX

δSkin = 0 Jμ
α Jμ ·α

∂μJμ
α = 0 ∂μJμ ·α = 0



Supercharges from the SUSY current
• A conserved current yields conserved charges by integrating over a spatial 

slice


    ,       


• The operators ,  satisfy , 


• They are indeed the generators of SUSY variations, in the sense that

      for any field    (on-shell) 


• In a given theory, the LHS can be computed using the expression of the 
supercurrent and the equal-time canonical (anti)commutators of the 
fundamental dynamical fields in the Lagrangian

Qα ∝ ∫t=0
d3x Jμ=0

α Q ·α ∝ ∫t=0
d3x Jμ=0

·α

Qα Qα
d
dt Qα = 0 d

dt Q ·α = 0

[ξα Qα + ξ ·α Q ·α, Φ] = δξ,ξΦ Φ



Supersymmetry and supergravity
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Wess-Zumino model with a single chiral

   ,       ,    


This is the simplest interacting model. The total Lagrangian is the sum of

 


 


 


The parameters  and  are arbitrary complex constants. , ,  
are separately invariant under SUSY variations up to tot. der. We will see the 
derivation of this fact for ,  later

δX = 2 ξ ψ δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα δF = i 2 ξ σμ ∂μψ

ℒkin = − ∂μX ∂μX + i ∂μψ σμ ψ + F F

ℒm = m X F− 1
2 m ψ ψ + m X F− 1

2 m ψ ψ

ℒg = g X2 F − g X (ψ ψ) + g X2 F − g X (ψ ψ)
m g ℒkin ℒm ℒg

ℒm ℒg



Wess-Zumino model with a single chiral
 


 


 


The auxiliary field  enter the action:

• algebraically (no derivatives)

• quadratically

This means that we can integrate out the field  exactly using its equation of motion:


• in the classical theory: we can derive all the EOMs, and plug the EOM for  into the other 
EOMs; or equivalently compute the EOM for , solve it for , , ang plug them back in the 
action


• in the quantum theory: the path integral over ,  is Gaussian and is computed exactly

ℒkin = − ∂μX ∂μX + i ∂μψ σμ ψ + F F

ℒm = m X F− 1
2 m ψ ψ + m X F− 1

2 m ψ ψ

ℒg = g X2 F − g X (ψ ψ) + g X2 F − g X (ψ ψ)
F

F
F

F F F

F F



Eliminating the auxiliary field
 


 


 


Variation wrt  ,  gives respectively

    ,         


Plugging these back in the Lagrangian we find

 





ℒkin = − ∂μX ∂μX + i ∂μψ σμ ψ + F F

ℒm = m X F− 1
2 m ψ ψ + m X F− 1

2 m ψ ψ

ℒg = g X2 F − g X (ψ ψ) + g X2 F − g X (ψ ψ)
F F

F + m X + g X2 = 0 F + m X + g X2 = 0

ℒ = − ∂μX ∂μX + i ∂μψ σμ ψ

− |m |2 X X− 1
2 m ψ ψ− 1

2 m ψ ψ

− g X ψ ψ − g X ψ ψ − m g X X2 − m g X X2 − |g |2 |X2 |2



Action for dynamical fields
 







Remarks:

• This is a renormalizable model with mass terms, Yukawa interactions, and a cubic 

and quartic scalar couplings

• SUSY dictates that different couplings (eg Yukawa and ) are related in a 

prescribed way, because they are determined by the same parameter

• The total scalar potential of the model can be written as


   ,          ,     

ℒ = − ∂μX ∂μX + i ∂μψ σμ ψ

− |m |2 X X− 1
2 m ψ ψ− 1

2 m ψ ψ

− g X ψ ψ − g X ψ ψ − m g X X2 − m g X X2 − |g |2 |X2 |2

|X2 |2

V(X, X) = F(X) F(X) F + m X + g X2 = 0 F + m X + g X2 = 0



Scalar potential and vacua
   ,          ,     


• The scalar potential is non-negative: this is a consequence of the positivity of energy in 
SUSY theories (  is a sum of squares of Qs)


• To preserve Lorentz symmetry in the vacuum, the VEV of the scalar  must be constant. 
The scalar EOM dictates that the value of  must be a critical point of , i.e. 

 :

                


• The stationary points are ,   ,   


• The point  is a saddle point, while  ,  are absolute 
minima of . Indeed, these points are the solutions to  and 


                  

V(X, X) = F(X) F(X) F + m X + g X2 = 0 F + m X + g X2 = 0

H
X

X V
∂XV = 0 = ∂XV

(m + 2 g X) (m X + g X2) = 0 (m X + g X2) (m + 2 g X) = 0
X = − 2 g m−1 X = 0 X = − m g−1

X = − 2 g m−1 X = 0 X = − m g−1

V F(X) = 0
F = 0 ⇒ ∇V = 0 = V



SUSY is unbroken in the vacuum

We know from the SUSY algebra that the vacuum energy can be regarded 
as an order parameter for SUSY. Since our vacua satisfy , SUSY is 
unbroken. We can check it explicitly by looking at the SUSY variations:


•      and      


because the VEV of  is zero 


•      


because the VEV of  is a constant such that 

V = 0

δX = 2 ξ ψ = 0 δF = i 2 ξ σμ ∂μψ = 0
ψ

δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα = 0
X F = 0



Bosons and fermions have the same mass

Let us expand around the vacuum at . To find the propagators of the 
fields we only need the quadratic terms in the Lagrangian:


 





The physical mass of both the boson and the fermion is , as required by 
unbroken SUSY.

What about the vacuum ? Expanding around it, one finds again 
that both the boson and the fermion have a physical mass .


X = 0

ℒ = − ∂μX ∂μX + i ∂μψ σμ ψ

− |m |2 X X− 1
2 m ψ ψ− 1

2 m ψ ψ

|m |

X = − m g−1

|m |



The model has cancellations at 1-loop
Let us consider 1-loop corrections to the mass of quanta of  (expanded around the 
vacuum ). Three kinds of contributions:

X
X = 0

Each individual diagram has quadratic and log divergences


• To cancel quadratic divergences we need a relation of the form 


• To cancel log divergences we need 

Both these conditions are guaranteed by SUSY!


(quartic coupl.) ∼ |Yukawa |2

|cubic coupl. |2 ∼ |m |2 (quartic coupl.)

ℒ ⊃ − g X ψ ψ − g X ψ ψ − m g X X2 − m g X X2 − |g |2 |X2 |2



R-symmetry?
The SUSY variations of the fields in a chiral multiplet are compatible with assigning definite  
charges to , , , and the SUSY parameter 


   ,       ,    


          field/param                                                   

          charge                                       

Barred fields/params have opposite charges

If this is a symmetry, it is an R-symmetry, because the SUSY parameter has a non-zero charge 
(and therefore the Qs are charged, too)

Is there any value of  for which this  action is a symmetry? 


• For generic , : no. For instance  requires , but then  is not invariant


• For  we can take .    For  we can take 

U(1)R
X ψ F ξ

δX = 2 ξ ψ δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα δF = i 2 ξ σμ ∂μψ

X ψ F ξ
RX RX − 1 RX − 2 1

RX U(1)R

m g g X ψ ψ RX = 2/3 m g X X2

g = 0 RX = 1 m = 0 RX = 2/3
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Interacting models with chiral multiplets

We consider a collection of chiral multiplets  with label . Their SUSY 
variations are the usual expressions


   ,    ,   


The conjugate fields carry a lower label .

We want to study general interacting SUSY models. For the time being, we do 
not modify the kinetic terms, keeping them canonical:


 


This is a sum over  of kinetic terms that are SUSY invariant (we have checked it 
explicitly earlier)

(Xi, ψ i
α, Fi) i

δXi = 2 ξ ψ i δψ i
α = i 2 (σμ ξ)α ∂μXi + 2 Fi ξα δFi = i 2 ξ σμ ∂μψ i

i

ℒkin = − ∂μXi ∂μXi + i ∂μψi σμ ψ i + Fi Fi

i



The superpotential
Fact of life: Consider any holomorphic function , known as the 
superpotential. The following Lagrangian is SUSY invariant


 


where we have introduced the notation


  ,       ,        ,       


and  is the complex conjugate of  (hence antiholomorphic)

Example: the simplest Wess-Zumino model is recovered with


 

W = W(Xi)

ℒW = Fi Wi(X)− 1
2 Wij(X) ψ i ψ j + Fi Wi(X)− 1

2 Wij(X) ψi ψj

Wi = ∂W
∂Xi Wij = ∂2W

∂Xi ∂Xj Wi = ∂W
∂Xi

Wij = ∂2W
∂Xi ∂Xj

W(Xi) W(Xi)

W(X) = 1
2 m X2+ 1

3 g X2



Some SUSY checks

• One can check by a brute-force computation that

 


is SUSY invariant. We will see a more clever approach using superspace.

• We do not perform the full SUSY check, but only highlight some parts of 

the computation

ℒW = Fi Wi(X)− 1
2 Wij(X) ψ i ψ j + Fi Wi(X)− 1

2 Wij(X) ψi ψj



Some SUSY checks
• Let’s be agnostic and parametrize the wanna-be SUSY interaction Lagrangian as


 


for some unknown (not necessarily holomorphic) functions ,  ,  .  is 
symmetric. This Ansatz is general enough to cover all renormalizable interactions 
(mass dim of )


• The SUSY variation of the U term is


     


• It is linear in the fermions and has no F: it cannot be canceled by any other term. 
We must set 

ℒ = Fi fi(X, X)− 1
2 fij(X, X) ψ i ψ j + U(X, X) + h . c .

fi fij U fij

≤ 4

2 ∂U
∂Xi ξ ψ i + 2 ∂U

∂Xi
ξ ψi

U ≡ 0



Some SUSY checks
 


• Let us now collect all the 4-Fermi terms that originate from the SUSY variation. They can only come from the 
 terms 


     


• For the terms  we can use a Fierz identity  so  can be non-zero, 

provided it is totally symmetric in . We don’t have a similar mechanism for , so 


• We write  with this property as a the second derivative of a holomorphic function


    ,     

ℒ = Fi fi(X, X)− 1
2 fij(X, X) ψ i ψ j + h . c .

f ψ ψ

δℒ ⊃ − 1
2

∂fij
∂Xk 2 (ξ ψk) (ψ i ψ j) − 1

2
∂fij
∂Xk

2 (ξ ψk) (ψ i ψ j) + h . c .

(ξ ψk) (ψ i ψ j) (ξ ψk) (ψ i ψ j) + cyclic = 0
∂fij
∂Xk

ijk (ξ ψk) (ψ i ψ j)
∂fij
∂Xk

= 0

fij

fij = ∂2W
∂Xi ∂Xj W = W(Xi)



Some SUSY checks
   ,    ,  


 


• Let us now consider terms with one derivative:

 


• They must recollect into a total derivative, which requires


       hence      ,         


• Using the fact that  we learn  , which gives us 

δXi = 2 ξ ψ i δψ i
α = i 2 (σμ ξ)α ∂μXi + 2 Fi ξα δFi = i 2 ξ σμ ∂μψ i

ℒ = Fi fi(X, X)− 1
2 fij(X, X) ψ i ψ j + h . c .

δℒ ⊃ i 2 (ξ σμ ∂μψ i) fi − i 2 fij (ψ i σμ ξ) ∂μXj + h . c .

fij ∂μXj = ∂fi
∂Xj ∂μXj + ∂fi

∂Xj
∂μXj fij = ∂fi

∂Xj

∂fi
∂Xj

= 0

fij = ∂i∂jW ∂i∂jW = ∂j fi fi = ∂iW



SUSY current

The terms  and  both contribute to the conserved SUSY current 
of the model. It can be derived with the trick of spacetime-dependent 
SUSY parameters


 


 

The SUSY currents are conserved on-shell.

ℒkin ℒW

Jμ
α = 2 (σν σμ ψ i)α ∂νXi − i 2 Wi(X) (σμ ψi)α

Jμ ·α = 2 (σν σμ ψi)
·α ∂νXi − i 2 Wi(X) (σμ ψ i) ·α



Integrating out the auxiliary fields
 


 

The EOMs of the auxiliary fields are


  ,     

Plugging these relations back in the Lagrangian we find




where the scalar potential is




It is non-negative, as expected from SUSY on general grounds.

ℒkin = − ∂μXi ∂μXi + i ∂μψi σμ ψ i + Fi Fi

ℒW = Fi Wi(X)− 1
2 Wij(X) ψ i ψ j + Fi Wi(X)− 1

2 Wij(X) ψi ψj

Fi = − Wi(X) Fi = − Wi(X)

ℒ = − ∂μXi ∂μXi + i ∂μψi σμ ψ i− 1
2 Wij(X) ψ i ψ j− 1

2 Wij(X) ψi ψj − V

V(X, X) = Fi(X) Fi(X)



Renormalizable models
Supersymmetry of  holds for any holomorphic function . If we want a 
renormalizable theory, however,  must be a polynomial of degree at most 3. We see 
this from





 

The most general renormalizable model of this class has 


 


Note:


• The constants , ,  are complex; ,  are totally symmetric


• Since the Lagrangian only depends on derivatives of  we do not need a constant term

ℒW W(Xi)
W(Xi)

ℒ = − ∂μXi ∂μXi + i ∂μψi σμ ψ i− 1
2 Wij(X) ψ i ψ j− 1

2 Wij(X) ψi ψj − V

V(X, X) = Fi(X) Fi(X)

W = Ei Xi+ 1
2 mij Xi Xj+ 1

3 gijk Xi Xj Xk

Ei mij gijk mij gijk

W



SUSY vacua
• The scalar VEVs are constants and must be stationary points of the scalar potential


vacua:         ,        


• If we want a SUSY vacuum, we need a stronger condition:

   SUSY vacua:         ,        


• This works because values of  for which  give automatically 
 and also . The condition  can also be seen from the 

SUSY variations

   ,    ,  


• SUSY vacua might not exist! It depends on the form of . If they don’t exist, we 
have spontaneous SUSY breaking

∂μXi = 0 ∂XiV = 0 = ∂XiV

∂μXi = 0 Fi = 0
Xi Fi = 0

∂XiV = 0 = ∂XiV V = 0 Fi = 0

δXi = 2 ξ ψ i δψ i
α = i 2 (σμ ξ)α ∂μXi + 2 Fi ξα δFi = i 2 ξ σμ ∂μψ i

W



Mass matrices
Let’s consider for simplicity , , so that  is a SUSY vacuum. 
The propagators for the fermions and the fluctuations of  around 0 are read off from


 


The free EOMs are

     ,        ,      


To compare bosons and fermions we hit the Dirac equations with an extra derivative, to 
obtain the Klein-Gordon equation,


    ,      


We see that the same mass matrix  governs the mass eigenvalues of both 
the bosons and the fermions.

Ei = 0 W ∼ mX2 + gX3 X = 0
Xi

ℒ = − ∂μXi ∂μXi + i ∂μψi σμ ψ i− 1
2 mij ψ i ψ j− 1

2 mij ψi ψj − mij mik Xj Xk

∂μ∂μXi = − mij mjk Xk i σμ ∂μψ i = mij ψj i σμ ∂μψi = mij ψ j

∂μ∂μψ i = − mij mjk ψk ∂μ∂μψi = − ψk mkj mji

ℳi
k = mij mjk



1-loop cancellations

There are cancellations in the 1-loop corrections to the  2-pt function, 
similar to the simplest Wess-Zumino model. 

• Quadratic divergences: they are cancelled because of the interplay 

between


    and    


• Log divergences: they are cancelled because of the interplay between 


      and     

XiXj

ℒ ⊃ − gijk gij′ k′ Xj Xj Xj′ 
Xk′ 

ℒ ⊃ − gijk Xi ψ j ψk + h . c .

ℒ ⊃ − gijk gij′ k′ Xj Xj Xj′ 
Xk′ 

ℒ ⊃ − mij gikℓ Xi Xk Xℓ + h . c .



R-symmetry?
Recall the structure of a possible  symmetry of the model:

         field/param                                                        

         charge                                 1

An equivalent statement is that we have  variations  etc.

The kinetic Lagrangian is always invariant, but


 


may or may not be invariant. We have

 


This must vanish for any , so we learn


         

U(1)R

Xi ψ i
α Fi ξ

R[Xi] R[Xi] − 1 R[Xi] − 2
U(1)R δRXi = i R[Xi] Λ Xi

ℒW = Fi Wi(X)− 1
2 Wij(X) ψ i ψ j + Fi Wi(X)− 1

2 Wij(X) ψi ψj

δR(Fi Wi) = i Λ ∑
i

(R[Xi] − 2) Fi Wi + i Λ ∑
i,j

R[Xj] Fi Wij Xj

Fi

R[Xi] Wi + ∑
j

R[Xj] Wij Xj = 2 Wi
∂

∂Xi (∑
j

R[Xj] Wj Xj) = 2 ∂
∂Xi W



R-symmetry?
           


Recall that we can always shift  by a constant. Without loss of generality we integrate the above 
relation as


 


This has a simple interpretation: the charges  must be chosen in such a way that all terms in  
have the same charge, and that charge is 2:


 

One can verify that if this is satisfied, all terms in  are invariant.  Note:

• Some models do not have any R-symmetry

• Some models have more that one choice of R-symmetry

R[Xi] Wi + ∑
j

R[Xj] Wij Xj = 2 Wi
∂

∂Xi (∑
j

R[Xj] Wj Xj) = 2 ∂
∂Xi W

W

∑
j

R[Xj] Xj ∂W
∂Xj = 2 W

R[Xi] W

R[W] = 2
ℒW



Supersymmetry and supergravity
Lecture 11



Vector supermultiplet
• Remember the structure of the massless vector mutliplet of minimal SUSY


         and the CPT conjugate      


• A massless particle of helicity  is described by a gauge field  subject to a 
gauge redundancy 


• 4 real components  1 gauge redundancy = 3 off-shell real dof’s

• The free EOM is removes one further dof:


        where      


• The fermionic states are described by a Weyl spinor . It is usually called the 
gaugino

no a† λ = 1/2
one a† λ = 1

no a† λ = − 1
one a† λ = − 1/2

±1 Aμ
Aμ → Aμ + ∂μΛ
−

∂μFμν = 0 Fμν = ∂μAν − ∂νAμ

λα



Off-shell and on-shell counting
               off-shell           on-shell


                3                      2


                 4                      2

                 1                      0


From this table we see the natural candidate for the auxiliary field  in a 
vector multiplet. It is a real scalar field. When we construct SUSY actions, 
we have to make sure that  does not describe any propagating dof’s 
on-shell

Aμ

λα

D
D

D



SUSY variations in the off-shell formalism

• The SUSY variations for an off-shell vector multiplet can be found by trial-
and-error. We know that they are linear in the SUSY params. We know the 
mass dimensions of fields and params:


  ,         ,        ,       


• NB: we anticipate  because we want the auxiliary field to enter the 
free vector multiplet Lagrangian algebraically and quadratically


• We know that  and  are real


• We also know that  , , and  are gauge-invariant, while  is not


• A more systematic way of deriving the SUSY variations if from superspace

[ξ] = − 1/2 [Aμ] = 1 [λ] = 3/2 [D] = 2
[D] = 2

Aμ D
λα Fμν D Aμ



SUSY variations in the off-shell formalism
At the end, this is the correct set of variations:


 


      


 


Zeroth order sanity checks: reality; mass dimensions; gauge-invariance. Also:  if we use the Dirac 
equation for the gaugino.

Recall the conjugation of flip identities


    ,       

To verify that these variations are correct we have to check the off-shell closure of the SUSY algebra. First: 
let’s compute the SUSY variation of 


      


    

δAμ = i ξ σμ λ − i λ σμ ξ
δλα = (σμν ξ)α Fμν + i D ξα

δD = ξ σμ ∂μλ + ∂μλ σμ ξ
δD = 0

[χ1 σμ χ2]* = + χ2 σμ χ1 χ1 σμ χ2 = − χ2 σμ χ1

Fμν

δ(∂μAν) = ∂μδAν = i ξ σν ∂μλ − i ∂μλ σν ξ
δFμν = i ξ σν∂μλ − i ∂μλ σν ξ − (μ ↔ ν)



Closure of the SUSY algebra
  ,       ,     


We start with the auxiliary field:




The second term has the correct structure. In order to kill the first term, we need 
 and the identity


 

We have


 


The first term goes away when we sum h.c. and we subtract . The second term is zero thanks 
to the Bianchi identity for . At the end we verify the expected relation


 

δAμ = i ξ σμ λ − i λ σμ ξ δλα = (σμν ξ)α Fμν + i D ξα δD = ξ σμ ∂μλ + ∂μλ σμ ξ

δ1δ2D = ξ2 σμ ∂μδ1λ + h . c . = (ξ2 σμ σρσ ξ1) ∂μFρσ + i ∂μD (ξ2 σμ ξ1) + h . c .

σρσ = 1
4 (σρ σσ − σσ σρ)

σμ σρ σσ = ημσ σρ − ηρσ σμ − ημρ σσ − i ϵμρστ στ

(ξ2 σμ σρσ ξ1) ∂μFρσ = (ξ2 σσ ξ1) ∂μFμσ− i
2 ϵμρστ ∂μFρσ (ξ2 στ ξ1)
(1 ↔ 2)

Fμν

δ1δ2D − δ2δ1D = − 2 i (ξ1 σμ ξ2 − ξ2 σμ ξ1) ∂μD



Closure of the SUSY algebra
  ,       ,    


We now analyze the gaugino:




Some useful identities:

 ,             ,        


The second and third follow from the first recalling that . Recall the definition 
. We can simplify all terms where  and  appear together:


 ,           ,  etc 


All remaining terms have a sigma matrix contracted with  or . After some Fierz rearrangements 
based on  we verify the closure of the algebra: 


 

δAμ = i ξ σμ λ − i λ σμ ξ δλα = (σμν ξ)α Fμν + i D ξα δD = ξ σμ ∂μλ + ∂μλ σμ ξ

δ1δ2λα = (σμν ξ2)α (2 i ξ1 σν ∂μλ − 2 i ∂μλ σν ξ1) + i (ξ1 σμ ∂μλ + ∂μλ σμ ξ1) ξ2α

(σμ)α ·β (σμ) ·γδ = − 2 δα
δ δ ·γ ·β (σμ)α ·β (σμ)γ ·δ = − 2 ϵαγ ϵ ·γ ·δ (σμ) ·αβ (σμ) ·γδ = − 2 ϵ ·α ·γ ϵγδ

(σμ) ·αβ = ϵ ·α ·γ ϵβδ (σμ)δ ·γ
σμν = 1

4 (σμ σν − σν σμ) σμν σν

(ξ1 σν ∂μλ) (σμ σν ξ2)α ∝ (σμ ξ1)α (ξ2 ∂μλ) (ξ1 σν ∂μλ) (σν σμ ξ2)α ∝ (ξ1 σμ ξ2) ∂μλα

∂μλ ∂μλ̄
(χ1)β (χ2)β (χ3)α + cyclic = 0

δ1δ2λα − δ2δ1λα = − 2 i (ξ1 σμ ξ2 − ξ2 σμ ξ1) ∂μλα



Closure of the SUSY algebra
  ,       ,    


Finally we turn to the gauge field:




The term with  goes away when we subtract . To proceed we use

  


and the identity

 


We arrive at

 


The term with epsilon goes away when we add the hc and subtract . We are left with




δAμ = i ξ σμ λ − i λ σμ ξ δλα = (σμν ξ)α Fμν + i D ξα δD = ξ σμ ∂μλ + ∂μλ σμ ξ

δ1δ2Aμ = i ξ2 σμ δ1λ + h . c . = i (ξ2 σμ σρσ ξ1) Fρσ − D (ξ2 σμ ξ1) + h . c .
D (1 ↔ 2)

(ξ2 σμ σρσ ξ1) Fρσ = 1
2 (ξ2 σμ σρ σσ ξ1) Fρσ

σμ σρ σσ = ημσ σρ − ηρσ σμ − ημρ σσ − i ϵμρστ στ

i (ξ2 σμ σρσ ξ1) Fρσ = 1
2 ϵμρστ Fρσ (ξ2 στ ξ1) + i (ξ2 σν ξ1) Fνμ

(1 ↔ 2)
δ1δ2Aμ − δ2δ1Aμ = − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) Fνμ

= − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) ∂νAμ + ∂μ [2 i (ξ1 σν ξ2 − ξ2 σν ξ1) Aν]



Closure of the SUSY algebra






• We find a new feature of SUSY algebras in the presence of gauge symmetries: the off-shell 
SUSY algebra closes on gauge fields only up to a gauge transformation.


• The difference of two  gauge fields is invariant under gauge transformations. We can 
think of the SUSY variation  as an infinitesimal difference. The RHS of  
should therefore be gauge invariant, and this is exactly what we find


• In the present example we see that the parameter of the gauge transformation is

 


It is constructed with the constant SUSY params, but it also includes a field. These field-
dependent gauge parameters are a standard feature. This pattern is also find in supergravity.

δ1δ2Aμ − δ2δ1Aμ = − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) Fνμ

= − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) ∂νAμ + ∂μ [2 i (ξ1 σν ξ2 − ξ2 σν ξ1) Aν]

U(1)
δAμ δ1δ2Aμ − δ2δ1Aμ

Λ = 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) Aν



SUSY Lagrangian
A simple Lagrangian that is invariant under the SUSY variations


  ,       ,      

is given by


 


The EOM for the auxiliary field simply sets it to zero. This is a free theory of:

• a  gauge field (a “photon”)

• a massless and neutral Weyl fermion

One can verify that this theory admits a conserved SUSY current,


 

δAμ = i ξ σμ λ − i λ σμ ξ δλα = (σμν ξ)α Fμν + i D ξα δD = ξ σμ ∂μλ + ∂μλ σμ ξ

ℒ = − 1
4 Fμν Fμν − i λ σμ ∂μλ + 1

2 D2

U(1)

Jμ
α = − 1

2 2
(σν σρ σμ λ)α Fνρ



Non-Abelian models
The SUSY variations for a  vector multiplet are easily generalized to a vector multiplet in the 
adjoint representation of a simple non-Abelian gauge group  


  ,        


The adjoint indices  are raised/lowered with the Cartan metric; we choose a basis where it is 
just . The generators are  and satisfy


  

The structure constants are real and if we lower the 3rd index they are totally antisymmetric.

Our conventions for covariant derivatives and field strengths are


   ,         


where  is the gauge coupling constant

  ,       ,    

U(1)
G

(Aa
μ, λa

α, Da) a = 1,…, dim G
a, b

δab Ta

[Ta, Tb] = i fab
c Tc

Fab = ∂μAa
ν − ∂νAa

μ − g f abc Abμ Acν DμDa = ∂μDa − g f abc Abμ Dc

g
δAμ = i ξ σμ λ − i λ σμ ξ δλα = (σμν ξ)α Fμν + i D ξα δD = ξ σμ ∂μλ + ∂μλ σμ ξ



Non-Abelian models
The Abelian SUSY variations 


  ,       ,    

are generalized to


  


   


 

Remarks:

• The variation of the gauge field is a difference of connections; it transforms in the adjoint rep. 

The expression for  has this property


• The variations of ,  must be gauge-covariant: this explains the appearance of the 
covariant field strength and the covariant derivative

δAμ = i ξ σμ λ − i λ σμ ξ δλα = (σμν ξ)α Fμν + i D ξα δD = ξ σμ ∂μλ + ∂μλ σμ ξ

δAa
μ = i ξ σμ λa − i λa σμ ξ

δλa
α = (σμν ξ)α Fa

μν + i Da ξα

δDa = ξ σμ Dμλa + Dμλa σμ ξ

δAa
μ

λa
α Da



Gauge-covariant closure of the SUSY algebra

  


   


 

The closure of the SUSY algebra is not on ordinary translations, but rather on their 
gauge-covariant extensions:


 


 

 


In the Abelian case ,  are gauge invariant, that’s why we found ordinary translations

δAa
μ = i ξ σμ λa − i λa σμ ξ

δλa
α = (σμν ξ)α Fa

μν + i Da ξα

δDa = ξ σμ Dμλa + Dμλa σμ ξ

δ1δ2Aa
μ − δ2δ1Aa

μ = − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) Fa
νμ

δ1δ2λa
α − δ2δ1λa

α = − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) Dνλa
α

δ1δ2Da − δ2δ1Da = − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) DνDa

λ D



SUSY Lagrangian
  


   


 

The SUSY Lagrangian that extends the standard YM theory is


 


The auxiliary field is again zero on-shell. We now have an interacting SUSY theory. Its 
SUSY current takes the form


  


It is conserved on-shell and gauge-invariant.

δAa
μ = i ξ σμ λa − i λa σμ ξ

δλa
α = (σμν ξ)α Fa

μν + i Da ξα

δDa = ξ σμ Dμλa + Dμλa σμ ξ

ℒ = − 1
4 Fa

μν Fa
μν − i λa σμ Dμλa + 1

2 Da Da

Jμ
α = − 1

2 2
(σν σρ σμ λa)α Faνρ


