
Supersymmetry and Supergravity — Problem Sheet 4
MMathPhys, University of Oxford, HT2021, Dr Federico Bonetti

These problems are due by Saturday before the class on week 8 by 11 am. Links to submit:

TA A. Boido: https://cloud.maths.ox.ac.uk/index.php/s/WP8kazik5pNZjmi

TA J. McGovern: https://cloud.maths.ox.ac.uk/index.php/s/oBKgZcaE9F4bw3z

1 R-symmetry in superspace

To describe U(1)R symmetry in superspace we introduce the following transformation on the fermionic

superspace coordinates (θ, θ),

(θα, θ
α̇
) 7→ (θ′α, θ

′α̇
) = (eit θα, e−it θ

α̇
) . (1)

The quantity t ∈ R is the parameter of the U(1)R transformation. Let S(x, θ, θ) be a superfield. We say

that S has definite R-character R[S] ∈ R if U(1)R acts on S according to the following transformation

law,

S ′(x, θ′, θ′) = eitR[S] S(x, θ, θ) , (2)

where θ′, θ
′

on the LHS are defined by (1).

1.a Let S(x, θ, θ) be a generic complex superfield with definite R-character R[S]. Consider the

expansion of S(x, θ, θ) in component fields,

S(x, θ, θ) = C(x) + i θα χα(x)− i θα̇ χα̇(x)

+ 1
2 i (θ θ)M(x)− 1

2 i (θ θ)M(x)− (θ σµ θ) vµ(x)

+ i (θ θ) θα̇
[
λ
α̇
(x) + 1

2 i (σµ)α̇β ∂µχβ(x)
]
− i (θ θ) θα

[
λα(x) + 1

2 i (σµ)αβ̇ ∂µχ
β̇(x)

]
+ 1

2 (θ θ) (θ θ)
[
D(x) + 1

2 ∂
µ ∂µC(x)

]
. (3)

Use (1) and (2) to verify that all component fields have a definite U(1)R charges. Compute these

charges in terms of R[S]. Argue that, if S(x, θ, θ) is a real superfield with a definite R-character

R[S], then we must have R[S] = 0.

1.b Let S, T be superfields with definite R-characters R[S], R[T ]. Verify the following claims:

– The superfield ST has definite R-character R[S] +R[T ].

– The superfield DαS has definite R-character R[S]− 1.

– The complex conjugate superfield S(x, θ, θ) := [S(x, θ, θ)]∗ has definite R-character −R[S].

Notice that the second and third imply that the superfield Dα̇S has definite R-character R[S]+1.

1.c Find the transformation laws of the measures d2θ, d2θ, d2θ d2θ under the transformation (1).

Hint: keep in mind that we are dealing with Grassmann odd coordinates.
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1.d An F-type term in a superspace action is of the form S1 =
∫
d4x d2θW +h.c. where W is a chiral

superfield. A D-type term in a superspace action is of the form S2 =
∫
d4x d2θ d2θK where K is

a real superfield. Use the results of the previous point to argue that S1 is invariant under U(1)R

iff W has definite R-character R[W ] = 2, and that S2 is invariant under U(1)R iff K has definite

R-character R[K] = 0.

1.e Let Wα be the chiral superfield that encodes the field strength of a vector superfield V (Abelian

or non-Abelian). Suppose V has a definite R-character (which must be zero, as you argued

above). Use the expression of Wα in terms of V to argue that Wα has definite R-character

R[Wα] = 1. Consider the SYM term in superspace with arbitrary gauge coupling function f .

Schematically, S3 =
∫
d4x d2θ fWαWα where f is a chiral superfield. Argue that S3 is invariant

under U(1)R iff f has definite R-character R[f ] = 0.

2 Supersymmetric vacua in some Wess-Zumino models

Let us consider some models with chiral superfields, and no vector superfields. In each case we

assume a canonical Kähler potential. For each of the following models, describe the (classical) space

of supersymmetric vacua.

• Model #1: two chiral multiplets X, Y with superpotential

W = λX2 Y + µX2 , λ, µ ∈ C , λ, µ 6= 0 . (4)

• Model #2: three chiral multiplets X, Y , Z with superpotential

W = αY + β Y X2 + γ X Z, α, β, γ ∈ C , α, β, γ 6= 0 . (5)

• Model #3: one chiral multiplet X with superpotential

W = αX +
β

X
, α, β ∈ C , α, β 6= 0 . (6)

3 Non-Abelian gauge transformation of vector superfields

The transformation law of a non-Abelian vector superfield is

e2V ′
= e−iΛ

†
e2V eiΛ . (7)

This is a matrix equation in a representation R of the gauge group. More precisely, we have V = V a tRa ,

Λ = Λa tRa , Λ† = Λ
a
tRa where tRa are Hermitian generators, a = 1, . . . ,dimG is an adjoint index, V a

are real superfields, Λa are chiral superfields.

Our goal is to specialize the above transformation to infinitesimal Λ, but working exactly in V .
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3.a The BCH formula can be expressed in the form

log(eA eB) = A+

[ ∫ 1

0
dt ψ(eadA et adB )

]
B , ψ(x) :=

log x

1− x−1
. (8)

By definition adAX = [A,X] for any A, X in Lie(G). Use this formula to verify that

log(eA eB) = A+ adA/2 (1 + coth adA/2)B + (terms of higher order in B) . (9)

Use the identity log(eB eA) = − log(e−A e−B) to prove

log(eB eA) = A− adA/2 (1− coth adA/2)B + (terms of higher order in B) . (10)

Use (9) and (10) to verify that

e−iΛ
†
e2V eiΛ = exp

[
2V + i adV (Λ + Λ†) + i adV coth adV (Λ− Λ†) + . . .

]
. (11)

We conclude that 2 δV = i adV (Λ + Λ†) + i adV coth adV (Λ− Λ†).

3.b Let us consider the expansion the RHS of 2 δV in powers of V . Make use of [tRa , t
R
b ] = i fab

c tRc
and of the Taylor expansion of f(x) = x cothx around x = 0 to verify that

2 δV a = i (Λa − Λ
a
)− fbca V b (Λc + Λ

c
)− i

3 fbc
afde

c V b V d (Λe − Λ
e
) +O(V 3) . (12)
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