Problem sheet 2

(Questions with a * are optional and not required for homework completion.)

1. [25] Let \mathcal{H} be a bifurcate Killing horizon associated to Killing vector k_a and let the surface gravity κ be defined by $k^a \nabla_a k_b = \kappa k_b$. Show that $\nabla_a k^b k_b = -2\kappa k_a$. Use the fact that on \mathcal{H} , k_a is hypersurface-orthogonal, i.e., $k_{[a} \nabla_b k_{c]} = 0$, and Killing to show that

$$\kappa^2 = -\frac{1}{2}(\nabla_a k_b)(\nabla^a k^b)$$

Show that if the Killing horizon is bifurcate, then κ is constant. [Hint: κ is constant up the generators, so work on the bifurcation surface where $k_a = 0$. First prove that for any Killing vector $\nabla_a \nabla_b k_c = -R_{bcad} k^d$.]

2. [25] Compute the surface gravity for the static spherically symmetric metric

$$ds^{2} = f(r)dt^{2} - \frac{dr^{2}}{f(r)} - r^{2}d\Omega^{2},$$

in terms of f at the horizon $r = r_0$, where $f(r_0) = 0$. Hence find the surface gravity of the Reissner-Nordstrom metric

$$f(r) = \frac{\Delta}{r^2}, \qquad \Delta = (r - r_+)(r - r_-) = r^2 - 2mr + Q^2,$$

at the horizon $r = r_{+} > r_{-}$. What is special about Q = m?

[Note that the original coordinates are singular at the horizon; define a smooth coordinate v in place of t by dv = dt + dr/f.]

3. [25] Show that if a Killing vector k^a is thought of as a 1-form, $k_a dx^a$, then the 2-form *dk satisfies the identity

$$d^*dk = R_{ab}k^{a*}dx^b.$$

Assuming Einstein's equations, deduce that

$$\nabla^b J_b = 0$$
, $J_a = T_{ab} k^b - \frac{1}{2} T k_a$, $T = T_a^a$.

Evaluate the integral of *dk on a sphere of constant r in Reissner-Nordstrom. Interpret the answer.

- 4. [25] Extend the calculation in the lecture of the (Casimir) vacuum energy from the one dimensional spatial slices S^1 to flat spatial $\Sigma = \mathbb{R}^2 \times S^1$. Use modes $\exp\left(i(\frac{2\pi nx}{L} + k_y y + k_z z)\right)$. Discuss the appropriate infrared regulation and use ζ -function regularization in the ultraviolet (you may find helpful that $\zeta(-3) = 1/120$).
- 5. [10] * Prove lemma 6.1 in the lecture notes on the Bogoliubov coefficients:

Lemma B.1 The (P_n^{\pm}, N_n^{\pm}) are both orthonormal bases for the pseudo-Hermitian form $\langle \phi, \phi \rangle := i\Omega(\bar{\phi}, \phi)$ and so we obtain (pseudo-unitarity) relations

$$\alpha^{\dagger}\alpha - \beta^T \bar{\beta} = 1, , \qquad \alpha^{\dagger}\beta - \beta^T \bar{\alpha} = 0 \, .$$