String Theory II: Assignment 2

(1) <u>Torus-Partition Function and Modular Invariance</u>: Free Boson

1. Fundamental Domain D of the torus:

Let $\tau \in \mathbb{C}$ be the modular parameter (modulus) of the torus $T_{\tau}^2 = \mathbb{C}/\mathbb{Z} \oplus \tau\mathbb{Z}$. Show that the torus T_{τ}^2 and $T_{\gamma\tau}^2$, where $\gamma \in SL_2\mathbb{Z}$, i.e.

$$\gamma \tau = \frac{a\tau + b}{c\tau + d}, \qquad a, b, c, d \in \mathbb{Z}, \qquad ad - bc = 1$$
 (1)

describe the same space, i.e. the same identifications in \mathbb{C} . Using these $SL_2\mathbb{Z}$ transformations one can restrict τ to the fundamental domain

$$D: -\frac{1}{2} \le \operatorname{Re}(\tau) \le \frac{1}{2}, \qquad |\tau| \ge 1.$$
 (2)

Sketch D and determine the images of D under

$$T: \quad \tau \to \tau + 1$$

$$S: \quad \tau \to -\frac{1}{\tau}.$$
(3)

2. For a single free boson $X^{\mu}(z, \bar{z})$ in d dimensions, the torus partition function is

$$Z(\tau) = \operatorname{Tr} q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{c}{24}}$$
(4)

where $q = e^{2\pi i\tau}$. By performing the integral over momenta k and performing the sum over oscillator modes evaluate $Z(\tau)$ and show that it is modular invariant, i.e. $Z(\tau) = Z(\gamma \tau)$, with $\gamma \in SL_2\mathbb{Z}$. You may use that $\eta(\tau + 1) = e^{i\pi/12}\eta(\tau)$ and $\eta(-1/\tau) = \sqrt{-i\tau}\eta(\tau)$. What is the relevance of this result?

(2) Torus-Partition Function: RNS String

The one-loop or torus partition function for the closed RNS string is

$$Z_{T^2} = V_{10} \int_D \frac{d^2 \tau}{2\tau_2} \int \frac{d^{10}k}{(2\pi)^{10}} \operatorname{Tr}_{\mathcal{H}_k}(-1)^{\mathcal{F}} q^{\alpha'(k^2 + M^2)/4} \bar{q}^{\alpha'(k^2 + \tilde{M}^2)/4}, \qquad (5)$$

where \mathcal{H}_k is the physical state (including GSO-projection) space with momentum k ground state, and $q = e^{2\pi i \tau}$, where τ is again the modular parameter (modulus) of the torus $T_{\tau}^2 = \mathbb{C}/\mathbb{Z} \oplus \tau\mathbb{Z}$ and D the fundamental domain. The spacetime Fermion number operator is \mathcal{F} (not to be confused with the worldsheet one F).

- 1. Evaluate the NS-sector and R-sector partition functions.
- 2. Using the results on theta-functions from the lecture, show that this partition function vanishes.

(3) Ghosts! [Bonus]

Let b and c be anticommuting fields, β and γ commuting fields, with action

$$S = \frac{1}{2\pi} \int d^2 z (b\bar{\partial}c + \beta\bar{\partial}\gamma) \,. \tag{6}$$

The OPE algebra is

$$b(z)c(0) \sim \frac{1}{z}$$
, $c(z)b(0) \sim \frac{1}{z}$, $\beta(z)\gamma(0) \sim -\frac{1}{z}$, $\gamma(z)\beta(0) \sim \frac{1}{z}$. (7)

Define

$$T_{\text{ghost}}(z) = (\partial b)c - \lambda \partial (bc) + (\partial \beta)\gamma - \frac{1}{2}(2\lambda - 1)\partial(\beta\gamma)$$

$$J_{\text{ghost}}(z) = -\frac{1}{2}(\partial \beta)c + \frac{2\lambda - 1}{2}\partial(\beta c) - 2b\gamma$$
(8)

- 1. Compute the conformal weights of b and c, β and γ .
- 2. Furthermore compute the OPE of TT and determine the central charge.
- 3. This system of ghosts can be used in the Faddeev-Popov gauge-fixing for $\lambda = 2$. Check that for this value the total central charge of T_{ghost} and T_{RNS} vanishes for d = 10.