
Example of a LATEX document

Kathryn Gillow

19th October 2020

Contents

1 Introduction 1

1.1 Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Finite Difference Methods for the Heat Equation . . . . . . . . 2

2 Random Maths 3

3 Tables 4

4 Figures 5

5 Theorems 5

6 Code 7

7 Referencing 7

References 7

1 Introduction

Mathematical models based on partial differential equations are being used to an in-

creasing extent to model the world about us. They can be exploited to describe many

different phenomena in areas ranging from fluid mechanics to finance, from tumour

growth to traffic flow, and from economics to our own special interest, electrochem-

istry. Of course a variety of analytical techniques exist for solving partial differential

equations exactly, such as Laplace or Fourier transform methods, similarity solution
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methods, series solutions via separation of variables and Green’s function techniques.

However, except in the most simple cases, these analytical techniques are either in-

applicable or impractical; indeed for two-dimensional problems in electrochemistry

the only problem to which there is a known closed form solution is the simple case

of an E reaction mechanism at a microdisc electrode. Of course the more interest-

ing situations are modelled more realistically by complicated equations so we need to

resort to numerical methods to solve such problems. Two obvious candidates for suit-

able methods are the finite difference method (FDM) and the finite element method

(FEM).

1.1 Finite Difference Methods

Finite difference methods date back to the 1920’s and are based on two ideas. First,

one approximates the computational domain by a finite set of points (known as mesh

points, grid points or nodes), then one approximates the differential equation using

difference equations. Clearly this leads to a linear or nonlinear system of algebraic

equations to find the approximate solution at the mesh points. The hope is that

as the computational mesh is refined, the approximate solution will converge to the

exact solution; indeed, provided the solution is sufficiently smooth, error estimates

can be derived to show that this is the case and they indicate the expected rate

of convergence. Although the basic ideas of finite difference methods are relatively

straightforward, there are drawbacks. The first is that the method does not easily

handle domains with curved or irregular boundaries, another is that there are various

ways to handle boundary conditions and it is not obvious, in advance, which is the

best. This means that it is difficult to write a generally applicable computer code

based on the finite difference method.

1.1.1 Finite Difference Methods for the Heat Equation

Now we consider various methods for solving the heat equation in one space di-

mension. We will consider the explicit Euler scheme and the implicit Euler scheme.

We will then take the average of these two methods to produce the Crank-Nicolson

scheme. In fact we will see that all of these schemes are special cases of the so-called

“theta-method”.
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2 Random Maths

() : [] . !

$ & % # { }
The equation α1 = β2 tells us

The equation α1 = β12 tells us

The equation α1 = β12 tells us

α1 = β2

α1 = β2

α1 = β2 (1)

Equation (1) explains the relationship between α and β.

Equation (1) explains the relationship between α and β.

β = 1 (2)

α1 = β2 (3)

α2 = β3 (4)

β = 1 (5)

α1 = β2

α2 = β3 (6)

β = 1

α1 = β2

α2 = β3
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I =

∫ ∞
1

x−1dx

S =
s∑

n=0

n

f =
3

2x

ux =
∂u

∂x

sin, cos, log, exp, max, min

A =

(
1 2 3
4 5 6

)
(7)

|x| =

{
−x x < 0
x x ≥ 0

3 Tables

mesh triangles nodes current
1 32 25 1.270
2 94 59 1.131
3 201 116 1.066
4 372 208 1.034
5 527 288 1.019

Table 1: Triangulations produced by FEM.

In Table 1 we see some numbers.

mesh triangles nodes current

1 32 25 1.270
2 94 59 1.131
3 201 116 1.066
4 372 208 1.034
5 527 288 1.019

Table 2: Triangulations produced by FEM.
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Figure 1: A sphere.

4 Figures

In Figure 1 we see a sphere.
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Figure 2: Variation of D.

In Figure 2 we see how the diffusion coefficients vary and in Figure 3 we see the

meshes.

5 Theorems

Theorem: Picard. Suppose that f(t, u) is a continuous function of t and u in a

region Ω = [0, T )× [u0−α, u0 +α] of the (t, u) plane and that there exists L > 0 such

that

|f(t, u)− f(t, v)| ≤ L|u− v| ∀t, u, v ∈ Ω.

L is called a Lipschitz constant and this a Lipschitz condition. Suppose also that

MT ≤ α,
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(a) final mesh for K = 1, 2665
nodes, 5178 triangles
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(b) final mesh for K = 10, 2417
nodes, 4682 triangles
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(c) final mesh for K = 100, 3452
nodes, 6673 triangles
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(d) final mesh for K = 1000,
7794 nodes, 15132 triangles

Figure 3: The final meshes for calculating the current to an inlaid microdisc electrode
during an EC′ mechanism.
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where M = maxΩ |f |. Then there exists a unique continuously differentiable function

u(t) defined on [0, T ) satisfying

du

dt
= f(t, u), 0 < t < T

u(0) = u0.

Proof. prove the theorem here

Proof. prove the theorem a different way here

6 Code

% f i l e mynewt .m
% t h i s f u n c t i o n f i n d s a roo t o f s i n ( x)−cos ( x)+exp(−x )
% us ing Newton ’ s method
function x=mynewt( xguess )

f=@( x ) sin ( x)−cos ( x)+exp(−x ) ;
fpr ime=@( x ) cos ( x)+sin ( x)−exp(−x ) ;

x=xguess ;
t o l=1e −10;

while abs ( f ( x ) ) > t o l
x=x−f ( x )/ fpr ime ( x )

end
end

7 Referencing

For an introduction to finite difference methods, see [1], or, more specifically, [1,

Chapter 2].
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