Quadrature

M.Sc. in Mathematical Modelling & Scientific Computing, Practical Numerical Analysis

Michaelmas Term 2020, Lecture 2

Quadrature

Suppose we want to compute

$$I(f) = \int_{a}^{b} \mu(x) f(x) \mathrm{d}x$$

where $\mu(x)$ is a non-negative weight function (we will consider $\mu(x) \equiv 1$ for now). Unfortunately most integrals do not have closed form solutions. For example, what is

$$I(f) = \int_{-1}^{1} \exp(-x^2) dx$$
?

The idea of quadrature is to approximate I(f) so

$$I(f) \approx I_n(f) = \sum_{k=0}^n w_k f(x_k)$$
.

Here

- *n* is the degree of the quadrature
- \blacktriangleright x_k are the quadrature nodes
- *w_k* are the quadrature weights

Relation to Interpolation

One of the reasons we gave for interpolation of f(x) by p(x) was

"I might want to know $\int_a^b f(x) dx$ — a good approximation should be $\int_a^b p(x) dx$."

We looked at different sorts of interpolants in 1D:

- Lagrange interpolant on uniform meshes;
- Lagrange interpolant on Chebyshev meshes.

What sort of quadrature rules do these lead to?

Integral of Linear Lagrange Interpolant

The linear Lagrange interpolant of f(x) on [a, b] can be written as

$$p_1(x) = \frac{x-a}{b-a}f(b) + \frac{b-x}{b-a}f(a).$$

Then we can write

$$I(f) = \int_{a}^{b} f(x) dx \approx \int_{a}^{b} p_{1}(x) dx$$
$$= \frac{b-a}{2} (f(a) + f(b)) .$$

This is the trapezium rule!

Integral of Quadratic Lagrange Interpolant

The quadratic Lagrange interpolant of f(x) at the points a, (a + b)/2, and b can be written as

$$p_{2}(x) = \frac{x-a}{b-a} \frac{2x-(a+b)}{b-a} f(b) - \frac{2(x-a)}{b-a} \frac{2(x-b)}{b-a} f\left(\frac{a+b}{2}\right) + \frac{x-b}{b-a} \frac{2x-(a+b)}{b-a} f(a).$$

Then we can write

$$I(f) = \int_{a}^{b} f(x) dx \approx \int_{a}^{b} p_{2}(x) dx$$
$$= \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right) .$$

This is Simpson's rule!

Newton-Cotes

The Newton-Cotes quadrature rules are the extensions of the trapezium rule and Simpson's rule to interpolants of higher degrees.

Let $p_n(x)$ be the Lagrange interpolant of degree n of f(x) at the uniformly spaced nodes $x_k = a + k(b-a)/n$, $0 \le k \le n$. Then the Newton-Cotes rule is

$$I(f) \approx I(p_n) = \sum_{k=0}^n f(x_k) \int_a^b L_{n,k}(x) dx .$$

The integral on the right-hand-side can be computed exactly since the integrand is just a polynomial of degree n.

Error in Newton-Cotes Quadrature

We wrote down a formula for the error in the Lagrange interpolant as:

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{k=0}^n (x - x_k) .$$
 (1)

Integrating this gives an error bound for Newton-Cotes quadrature of the form

$$\left|\int_a^b f(x) \mathrm{d}x - \int_a^b p_n(x) \mathrm{d}x\right| \leq \frac{\max_{\xi \in [a,b]} |f^{(n+1)}(\xi)|}{(n+1)!} \left|\int_a^b \prod_{k=0}^n (x-x_k) \mathrm{d}x\right|$$

We already saw that uniformly spaced points are bad for polynomial interpolation and it follows that Newton-Cotes quadrature does not work well for large degrees. Since Newton-Cotes is not an effective quadrature rule for high degrees we need an alternative. Possibilities are:

- Smaller degrees on sub-intervals composite rules;
- Integrate better interpolants (using different nodes) Gauss quadrature/ Clenshaw-Curtis.

In either case adaptivity can help improve efficiency.

Composite Trapezium Rule

Here the idea is to split the range of integration into subintervals and to apply the trapezium rule on each subinterval. Hence (with $x_k = a + kh, h = (b - a)/m$)

$$\int_{a}^{b} f(x) dx = \sum_{k=1}^{m} \int_{x_{k-1}}^{x_{k}} f(x) dx$$

$$\approx \frac{h}{2} \sum_{k=1}^{m} (f(x_{k+1}) + f(x_{k}))$$

$$= \frac{h}{2} \left(f(a) + 2 \sum_{k=1}^{m-1} f(x_{k}) + f(b) \right) =: I_{m}(f) .$$

This is the composite trapezium rule (and can also be thought of as the integral of the linear spline approximation of f(x)).

Error in Composite Trapezium Rule

We can simply integrate the error given by Equation (1) on each subinterval and sum to get the error in the composite trapezium rule as

$$|I(f) - I_m(f)| \leq \frac{h^2(b-a)}{12} \max_{\xi \in [a,b]} |f''(\xi)|.$$

If f is a periodic analytic function we see geometric convergence.

Note that the points x_k do not have to be equally spaced. In this case the error bound becomes

$$|I(f) - I_m(f)| \leq \sum_{k=1}^m \frac{(x_k - x_{k-1})^3}{12} \max_{\xi \in [x_{k-1}, x_k]} |f''(\xi)|,$$

and this can be used as the basis for an adaptive quadrature rule.

Composite Simpson's Rule

There is an analagous composite Simpson's rule

$$I_n(f) = \frac{h}{3} \left(f(a) + 2 \sum_{k=1}^{n/2-1} f(x_{2k}) + 4 \sum_{k=1}^{n/2} f(x_{2k-1}) + f(b) \right)$$

where n must be even. The approximation error is

$$|I(f) - I_n(f)| \leq \frac{h^4(b-a)}{180} \max_{\xi \in [a,b]} |f^{(4)}(\xi)|.$$

Clenshaw-Curtis Quadrature

We already saw that using Chebyshev points was great for interpolation on [-1,1] and we could scale to other intervals. The idea of Clenshaw-Curtis rules is to integrate polynomial interpolants over [-1,1] based on Chebyshev points (and we can perform a change of variable first if we wish to integrate over other intervals).

Such quadrature rules inherit the accuracy of the interpolant so $|I(f) - I_n(f)| \sim \mathcal{O}(\rho^{-n})$ as $n \to \infty$.

Unfortunately the nice representation of the Chebyshev interpolant we had via the second barycentric interpolation formula is not helpful here. It helps to re-write the interpolant as

$$p_n(x) = \sum_{k=0}^n \alpha_k T_k(x) ,$$

where $T_k(x)$ is the degree k first kind Chebyshev polynomial.

Clenshaw-Curtis Quadrature: Coefficient Space

The Chebyshev polynomials are defined as

$$T_k(x) = \cos(k\cos^{-1}(x))$$

for $x \in [-1, 1]$. Thus we have

$$\int_{-1}^{1} T_k(x) dx = \int_{-1}^{1} \cos(k \cos^{-1}(x)) dx$$
$$= \int_{0}^{\pi} \cos(k\theta) \sin(\theta) d\theta$$
$$= \begin{cases} 0 & \text{for } k \text{ odd} \\ \frac{2}{1-k^2} & \text{for } k \text{ even} \end{cases}.$$

Thus we may write the quadrature rule as

$$I(f) \approx I(p_n) = \sum_{\substack{k=0\\k \text{ even}}}^n \frac{2\alpha_k}{1-k^2},$$

where the α_k can be found using a Vandermonde matrix approach.

Clenshaw-Curtis Quadrature: Value Space

An alternative approach is to find the weights, w_k , such that $I(p_n) = \sum_{k=0}^{n} w_k f(x_k)$.

We can do this by ensuring that the quadrature rule integrates each T_k exactly, i.e. we require

$$\sum_{k=0}^{n} w_k T_j(x_k) = \int_{-1}^{1} T_j(x) dx ,$$

for $0 \le j \le n$. Thus we again solve a Vandermonde type system, $V^T \mathbf{w} = \mathbf{b}$ where $b_j = \int_{-1}^1 T_j(x) dx$.

(In practice this system can be solved in $O(n \log n)$ operations via an FFT/DCT.)

Gauss Quadrature

So far we have fixed the nodes of a quadrature rule and then chosen the weights to intergrate the corresponding polynomial interpolant exactly.

An alternative is to choose both the weights and nodes in the formula

$$I_n(f) = \sum_{k=0}^N w_k f(x_k) .$$

Here there are 2n + 2 unknowns (n + 1 nodes and n + 1 weights)and so these can be chosen to integrate all polynomials of degree 2n + 1 exactly. This is the idea behind Gauss quadrature.

Gauss Quadrature: Derivation

Orthogonal polynomials on an interval [a, b] with respect to a weight function $\mu(x)$ are defined to be the polynomials $P_0(x), P_1(x), \ldots$ such that $P_k(x)$ is a polynomial of degree k and the orthogonality property

$$\int_a^b \mu(x) P_j(x) P_k(x) \mathrm{d}x = 0 ,$$

holds, whenever $j \neq k$.

Now define \mathbb{P}_k to be the set of polynomials of degree k. Then, for $f_{2n+1} \in \mathbb{P}_{2n+1}$ we may write

$$f_{2n+1}(x) = q_n(x)P_{n+1}(x) + r_n(x)$$

for some $q_n, r_n \in \mathbb{P}_n$.

Gauss Quadrature: Derivation

Then we have

$$I(f_{2n+1}) = \int_{a}^{b} \mu(x) f_{2n+1}(x) dx$$

= $\int_{a}^{b} \mu(x) q_{n}(x) P_{n+1}(x) dx + \int_{a}^{b} \mu(x) r_{n}(x) dx$
= $\sum_{k=0}^{n} \alpha_{k} \int_{a}^{b} \mu(x) P_{k}(x) P_{n+1}(x) dx + \int_{a}^{b} \mu(x) r_{n}(x) dx$
= $0 + \int_{a}^{b} \mu(x) r_{n}(x) dx$.

Gauss Quadrature: Derivation

Now let the x_k be the n + 1 roots of $P_{n+1}(x)$, then the quadrature rule gives

$$I_n(f_{2n+1}) = \sum_{k=0}^n w_k f_{2n+1}(x_k)$$

= $\sum_{k=0}^n w_k q_n(x_k) P_{n+1}(x_k) + \sum_{k=0}^n w_k r_n(x_k)$
= $\sum_{k=0}^n w_k r_n(x_k)$.

Thus, if we choose the weights w_k such that polynomial interpolants through the x_k are integrated exactly, we have

$$I(f_{2n+1}) = I_n(f_{2n+1}).$$

Gauss Quadrature: Examples

Different ranges of integration and different weight functions lead to different sets of orthogonal polynomials which define Gauss quadrature rules. Common examples are:

Name	Interval	Weight
Gauss-Legendre	[-1, 1]	1
Gauss-Chebyshev	[-1,1]	$1/\sqrt{(1-x^2)}$
Gauss-Jacobi	[-1,1]	$(1+x)^lpha(1-x)^eta$
Gauss-Laguerre	$[0,\infty)$	$\exp(-x)$
Gauss-Hermite	$(-\infty,\infty)$	$\exp(-x^2)$

Gauss Quadrature: Computing the Nodes and Weights

Orthogonal polynomials satisfy a recurrence relation

$$\gamma_k P_{k-1}(x) + \beta_k P_k(x) + \gamma_{k+1} P_{k+1}(x) = x P_k(x).$$

We can write this in matrix form as

$$\begin{pmatrix} \beta_0 & \gamma_1 & & \\ \gamma_1 & \beta_1 & \gamma_2 & & \\ & \gamma_2 & \beta_2 & \gamma_3 & \\ & & \ddots & \ddots & \ddots & \\ & & & \gamma_n & \beta_n \end{pmatrix} \begin{pmatrix} P_0(x) \\ P_1(x) \\ P_2(x) \\ \vdots \\ P_n(x) \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ \gamma_{n+1}P_{n+1}(x) \end{pmatrix} = x \begin{pmatrix} P_0(x) \\ P_1(x) \\ P_2(x) \\ \vdots \\ P_n(x) \end{pmatrix}$$

or equivalently $T\mathbf{P}(x) + \gamma_{n+1}P_{n+1}(x)\mathbf{e}_{n+1} = x\mathbf{P}(x)$.

Thus the roots of $P_{n+1}(x)$ are the solution of a tridiagonal eigenvalue problem. Once we have computed the nodes x_k we can compute the weights as

$$w_k = 2v_{1,k}^2$$

where $v_{1,k}$ is the first entry of the eigenvector corresponding to eigenvalue (node) x_k .

Aside: Richardson Extrapolation

Suppose we wish to approximate a quantity A by A_h where the error formula for A_h is known to be a polynomial in h:

$$A - A_h = a_1 h + a_2 h^2 + a_3 h^3 + \dots$$

or equivalently

$$A = A_h + a_1 h + a_2 h^2 + a_3 h^3 + \dots$$

We could also compute the approximation with a different value H and write

$$A = A_H + a_1 H + a_2 H^2 + a_3 H^3 + \dots$$

We can then eliminate the first order error term by combining these results to get

$$A = \frac{HA_h - hA_H}{H - h} - a_2 hH - a_3 hH(h + H) + \dots$$

Hence $(HA_h - hA_H)/(H - h)$ is a higher order approximation to A.

Romberg integration combines Richardson extrapolation with the composite trapezium rule. The idea is as follows:

Let T_h be the composite trapezium rule approximation to I(f) then we have

$$I(f) = T_h + a_2 h^2 + a_4 h^4 + \dots$$

$$I(f) = T_{h/2} + a_2 \frac{h^2}{4} + a_4 \frac{h^4}{16} + \dots$$

Eliminating the $\mathcal{O}(h^2)$ terms gives

$$I(f) = \frac{1}{3}(4T_{h/2}-T_h)-a_4\frac{h^4}{4}+\ldots$$

Now recurse!

Let

$$T_h^{(2)} = \frac{1}{3}(4T_{h/2} - T_h)$$

so that

$$I(f) = T_h^{(2)} + a_4^{(2)}h^4 + \dots$$

Similarly

$$I(f) = T_{h/2}^{(2)} + a_4^{(2)} \frac{h^4}{16} + \dots$$

and thus we have

$$I(f) = \frac{1}{15}(16T_{h/2}^{(2)} - T_h^{(2)}) + a_6^{(3)}h^6 + \dots$$

Note that if we compute T_h and $T_{h/2}$ independently we will be recomputing lots of function values so we can be more clever.

Let $R_{k,1}$ be the composite trapezium rule approximation with 2^{k-1} subintervals. Let $h_1 = b - a$ and $h_k = h_1/2^{k-1}$. Then

$$R_{1,1} = \frac{h_1}{2}(f(a) + f(b))$$

$$R_{2,1} = \frac{h_2}{2}(f(a) + 2f(a + h_2) + f(b))$$

$$= \frac{1}{2}(R_{1,1} + h_1f(a + h_2))$$

$$\vdots$$

$$R_{k,1} = \frac{1}{2}\left(R_{k-1,1} + h_{k-1}\sum_{i=1}^{2^{k-2}} f(a + (2i - 1)h_k)\right)$$

Applying Richardson extrapolation then gives

$$R_{k,2} = \frac{4R_{k,1}-R_{k-1,1}}{3}.$$

This will have an error of size $\mathcal{O}(h^4)$. (In fact this yields the composite Simpson rule.)

We can then continue with extrapolation to get a general formula

$$R_{k,n} = \frac{4^{n-1}R_{k,n-1} - R_{k-1,n-1}}{4^{n-1} - 1}$$

which has an error of size $\mathcal{O}(h^{2n})$.

Romberg Integration Example

Results for Romberg integration are often displayed in a so-called Romberg table of the form shown below for the integration

$$I = \int_0^\pi \sin(x) \mathrm{d}x \; .$$

$R_{k,1}$	$R_{k,2}$	$R_{k,3}$	$R_{k,4}$
0.000000000000000			
1.570796326794897	2.094395102393195		
1.896118897937040	2.004559754984421	1.998570731823836	
1.974231601945551	2.000269169948388	1.999983130945986	2.000005549979671
1.993570343772340	2.000016591047936	1.999999752454573	2.00000016288042
1.998393360970145	2.000001033369413	1.999999996190845	2.00000000059674
1.999598388640037	2.00000064530001	1.999999999940707	2.00000000000229
1.999899600184202	2.000000004032257	1.9999999999999974	2.000000000000000