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Quadrature
Suppose we want to compute

I (f ) =

∫ b

a

µ(x)f (x)dx

where µ(x) is a non-negative weight function (we will consider
µ(x) ≡ 1 for now). Unfortunately most integrals do not have
closed form solutions. For example, what is

I (f ) =

∫ 1

−1
exp(−x2)dx ?

The idea of quadrature is to approximate I (f ) so

I (f ) ≈ In(f ) =
n
∑

k=0

wk f (xk) .

Here

◮ n is the degree of the quadrature
◮ xk are the quadrature nodes
◮ wk are the quadrature weights



Relation to Interpolation

One of the reasons we gave for interpolation of f (x) by p(x) was

“I might want to know
∫ b

a
f (x)dx — a good approximation should

be
∫ b

a
p(x)dx .”

We looked at different sorts of interpolants in 1D:

◮ Lagrange interpolant on uniform meshes;

◮ Lagrange interpolant on Chebyshev meshes.

What sort of quadrature rules do these lead to?



Integral of Linear Lagrange Interpolant

The linear Lagrange interpolant of f (x) on [a, b] can be written as

p1(x) =
x − a

b − a
f (b) +

b − x

b − a
f (a) .

Then we can write

I (f ) =

∫ b

a

f (x)dx ≈

∫ b

a

p1(x)dx

=
b − a

2
(f (a) + f (b)) .

This is the trapezium rule!



Integral of Quadratic Lagrange Interpolant

The quadratic Lagrange interpolant of f (x) at the points a,
(a+ b)/2, and b can be written as

p2(x) =
x − a

b − a

2x − (a+ b)

b − a
f (b)−

2(x − a)

b − a

2(x − b)

b − a
f

(

a+ b

2

)

+
x − b

b − a

2x − (a+ b)

b − a
f (a) .

Then we can write

I (f ) =

∫ b

a

f (x)dx ≈

∫ b

a

p2(x)dx

=
b − a

6

(

f (a) + 4f

(

a+ b

2

)

+ f (b)

)

.

This is Simpson’s rule!



Newton-Cotes

The Newton-Cotes quadrature rules are the extensions of the
trapezium rule and Simpson’s rule to interpolants of higher
degrees.

Let pn(x) be the Lagrange interpolant of degree n of f (x) at the
uniformly spaced nodes xk = a+ k(b − a)/n, 0 ≤ k ≤ n. Then the
Newton-Cotes rule is

I (f ) ≈ I (pn) =
n
∑

k=0

f (xk)

∫ b

a

Ln,k(x)dx .

The integral on the right-hand-side can be computed exactly since
the integrand is just a polynomial of degree n.



Error in Newton-Cotes Quadrature

We wrote down a formula for the error in the Lagrange interpolant
as:

f (x)− pn(x) =
f (n+1)(ξ)

(n + 1)!

n
∏

k=0

(x − xk) . (1)

Integrating this gives an error bound for Newton-Cotes quadrature
of the form
∣

∣

∣

∣

∣

∫ b

a

f (x)dx −

∫ b

a

pn(x)dx

∣

∣

∣

∣

∣

≤
maxξ∈[a,b] |f

(n+1)(ξ)|

(n + 1)!

∣

∣

∣

∣

∣

∫ b

a

n
∏

k=0

(x − xk)dx

∣

∣

∣

∣

∣

.

We already saw that uniformly spaced points are bad for
polynomial interpolation and it follows that Newton-Cotes
quadrature does not work well for large degrees.



Possible Remedies

Since Newton-Cotes is not an effective quadrature rule for high
degrees we need an alternative. Possibilities are:

◮ Smaller degrees on sub-intervals — composite rules;

◮ Integrate better interpolants (using different nodes) — Gauss
quadrature/ Clenshaw-Curtis.

In either case adaptivity can help improve efficiency.



Composite Trapezium Rule

Here the idea is to split the range of integration into subintervals
and to apply the trapezium rule on each subinterval. Hence (with
xk = a+ kh, h = (b − a)/m)

∫ b

a

f (x)dx =
m
∑

k=1

∫ xk

xk−1

f (x)dx

≈
h

2

m
∑

k=1

(f (xk+1) + f (xk))

=
h

2

(

f (a) + 2

m−1
∑

k=1

f (xk) + f (b)

)

=: Im(f ) .

This is the composite trapezium rule (and can also be thought of
as the integral of the linear spline approximation of f (x)).



Error in Composite Trapezium Rule

We can simply integrate the error given by Equation (1) on each
subinterval and sum to get the error in the composite trapezium
rule as

|I (f )− Im(f )| ≤
h2(b − a)

12
max
ξ∈[a,b]

|f ′′(ξ)| .

If f is a periodic analytic function we see geometric convergence.

Note that the points xk do not have to be equally spaced. In this
case the error bound becomes

|I (f )− Im(f )| ≤

m
∑

k=1

(xk − xk−1)
3

12
max

ξ∈[xk−1,xk ]
|f ′′(ξ)| ,

and this can be used as the basis for an adaptive quadrature rule.



Composite Simpson’s Rule

There is an analagous composite Simpson’s rule

In(f ) =
h

3



f (a) + 2

n/2−1
∑

k=1

f (x2k) + 4

n/2
∑

k=1

f (x2k−1) + f (b)





where n must be even. The approximation error is

|I (f )− In(f )| ≤
h4(b − a)

180
max
ξ∈[a,b]

|f (4)(ξ)| .



Clenshaw-Curtis Quadrature

We already saw that using Chebyshev points was great for
interpolation on [−1, 1] and we could scale to other intervals. The
idea of Clenshaw-Curtis rules is to integrate polynomial
interpolants over [−1, 1] based on Chebyshev points (and we can
perform a change of variable first if we wish to integrate over other
intervals).

Such quadrature rules inherit the accuracy of the interpolant so
|I (f )− In(f )| ∼ O(ρ−n) as n → ∞.

Unfortunately the nice representation of the Chebyshev interpolant
we had via the second barycentric interpolation formula is not
helpful here. It helps to re-write the interpolant as

pn(x) =
n
∑

k=0

αkTk(x) ,

where Tk(x) is the degree k first kind Chebyshev polynomial.



Clenshaw-Curtis Quadrature: Coefficient Space
The Chebyshev polynomials are defined as

Tk(x) = cos(k cos−1(x))

for x ∈ [−1, 1]. Thus we have

∫ 1

−1
Tk(x)dx =

∫ 1

−1
cos(k cos−1(x))dx

=

∫ π

0
cos(kθ) sin(θ)dθ

=

{

0 for k odd
2

1−k2 for k even .

Thus we may write the quadrature rule as

I (f ) ≈ I (pn) =
n
∑

k=0
k even

2αk

1− k2
,

where the αk can be found using a Vandermonde matrix approach.



Clenshaw-Curtis Quadrature: Value Space

An alternative approach is to find the weights, wk , such that
I (pn) =

∑n
k=0 wk f (xk).

We can do this by ensuring that the quadrature rule integrates
each Tk exactly, i.e. we require

n
∑

k=0

wkTj(xk) =

∫ 1

−1
Tj(x)dx ,

for 0 ≤ j ≤ n. Thus we again solve a Vandermonde type system,
V T

w = b where bj =
∫ 1
−1 Tj(x)dx .

(In practice this system can be solved in O(n log n) operations via
an FFT/DCT.)



Gauss Quadrature

So far we have fixed the nodes of a quadrature rule and then
chosen the weights to intergrate the corresponding polynomial
interpolant exactly.

An alternative is to choose both the weights and nodes in the
formula

In(f ) =
∑N

k=0 wk f (xk) .

Here there are 2n + 2 unknowns (n + 1 nodes and n + 1 weights)
and so these can be chosen to integrate all polynomials of degree
2n + 1 exactly. This is the idea behind Gauss quadrature.



Gauss Quadrature: Derivation

Orthogonal polynomials on an interval [a, b] with respect to a
weight function µ(x) are defined to be the polynomials
P0(x),P1(x), . . . such that Pk(x) is a polynomial of degree k and
the orthogonality property

∫ b

a

µ(x)Pj(x)Pk(x)dx = 0 ,

holds, whenever j 6= k .

Now define Pk to be the set of polynomials of degree k . Then, for
f2n+1 ∈ P2n+1 we may write

f2n+1(x) = qn(x)Pn+1(x) + rn(x)

for some qn, rn ∈ Pn.



Gauss Quadrature: Derivation

Then we have

I (f2n+1) =

∫ b

a

µ(x)f2n+1(x)dx

=

∫ b

a

µ(x)qn(x)Pn+1(x)dx +

∫ b

a

µ(x)rn(x)dx

=
n
∑

k=0

αk

∫ b

a

µ(x)Pk(x)Pn+1(x)dx +

∫ b

a

µ(x)rn(x)dx

= 0 +

∫ b

a

µ(x)rn(x)dx .



Gauss Quadrature: Derivation

Now let the xk be the n + 1 roots of Pn+1(x), then the quadrature
rule gives

In(f2n+1) =
n
∑

k=0

wk f2n+1(xk)

=
n
∑

k=0

wkqn(xk)Pn+1(xk) +
n
∑

k=0

wk rn(xk)

=
n
∑

k=0

wk rn(xk) .

Thus, if we choose the weights wk such that polynomial
interpolants through the xk are integrated exactly, we have

I (f2n+1) = In(f2n+1) .



Gauss Quadrature: Examples

Different ranges of integration and different weight functions lead
to different sets of orthogonal polynomials which define Gauss
quadrature rules. Common examples are:

Name Interval Weight

Gauss-Legendre [−1, 1] 1

Gauss-Chebyshev [−1, 1] 1/
√

(1− x2)
Gauss-Jacobi [−1, 1] (1 + x)α(1− x)β

Gauss-Laguerre [0,∞) exp(−x)
Gauss-Hermite (−∞,∞) exp(−x2)



Gauss Quadrature: Computing the Nodes and Weights
Orthogonal polynomials satisfy a recurrence relation

γkPk−1(x) + βkPk(x) + γk+1Pk+1(x) = xPk(x) .

We can write this in matrix form as














β0 γ1
γ1 β1 γ2

γ2 β2 γ3
. . .

. . .
. . .

γn βn





























P0(x)
P1(x)
P2(x)

...
Pn(x)















+















0
0
0
...

γn+1Pn+1(x)















=x















P0(x)
P1(x)
P2(x)

...
Pn(x)















or equivalently TP(x) + γn+1Pn+1(x)en+1 = xP(x).

Thus the roots of Pn+1(x) are the solution of a tridiagonal
eigenvalue problem. Once we have computed the nodes xk we can
compute the weights as

wk = 2v21,k

where v1,k is the first entry of the eigenvector corresponding to
eigenvalue (node) xk .



Aside: Richardson Extrapolation
Suppose we wish to approximate a quantity A by Ah where the
error formula for Ah is known to be a polynomial in h:

A− Ah = a1h + a2h
2 + a3h

3 + . . . ,

or equivalently

A = Ah + a1h + a2h
2 + a3h

3 + . . . .

We could also compute the approximation with a different value
H and write

A = AH + a1H + a2H
2 + a3H

3 + . . . .

We can then eliminate the first order error term by combining
these results to get

A =
HAh − hAH

H − h
− a2hH − a3hH(h + H) + . . . .

Hence (HAh − hAH)/(H − h) is a higher order approximation to A.



Romberg Integration

Romberg integration combines Richardson extrapolation with the
composite trapezium rule. The idea is as follows:

Let Th be the composite trapezium rule approximation to I (f )
then we have

I (f ) = Th + a2h
2 + a4h

4 + . . .

I (f ) = Th/2 + a2
h2

4
+ a4

h4

16
+ . . .

Eliminating the O(h2) terms gives

I (f ) =
1

3
(4Th/2 − Th)− a4

h4

4
+ . . .



Romberg Integration

Now recurse!

Let

T
(2)
h =

1

3
(4Th/2 − Th)

so that

I (f ) = T
(2)
h + a

(2)
4 h4 + . . .

Similarly

I (f ) = T
(2)
h/2 + a

(2)
4

h4

16
+ . . .

and thus we have

I (f ) =
1

15
(16T

(2)
h/2 − T

(2)
h ) + a

(3)
6 h6 + . . .



Romberg Integration

Note that if we compute Th and Th/2 independently we will be
recomputing lots of function values so we can be more clever.

Let Rk,1 be the composite trapezium rule approximation with 2k−1

subintervals. Let h1 = b − a and hk = h1/2
k−1. Then

R1,1 =
h1

2
(f (a) + f (b))

R2,1 =
h2

2
(f (a) + 2f (a+ h2) + f (b))

=
1

2
(R1,1 + h1f (a+ h2))

...

Rk,1 =
1

2



Rk−1,1 + hk−1

2k−2
∑

i=1

f (a + (2i − 1)hk)



 .



Romberg Integration

Applying Richardson extrapolation then gives

Rk,2 =
4Rk,1 − Rk−1,1

3
.

This will have an error of size O(h4). (In fact this yields the
composite Simpson rule.)

We can then continue with extrapolation to get a general formula

Rk,n =
4n−1Rk,n−1 − Rk−1,n−1

4n−1 − 1

which has an error of size O(h2n).



Romberg Integration Example

Results for Romberg integration are often displayed in a so-called
Romberg table of the form shown below for the integration

I =

∫ π

0
sin(x)dx .

Rk,1 Rk,2 Rk,3 Rk,4

0.000000000000000
1.570796326794897 2.094395102393195
1.896118897937040 2.004559754984421 1.998570731823836
1.974231601945551 2.000269169948388 1.999983130945986 2.000005549979671
1.993570343772340 2.000016591047936 1.999999752454573 2.000000016288042
1.998393360970145 2.000001033369413 1.999999996190845 2.000000000059674
1.999598388640037 2.000000064530001 1.999999999940707 2.000000000000229
1.999899600184202 2.000000004032257 1.999999999999074 2.000000000000000


