
Initial Value Problems: ODEs

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2020, Lecture 4

The Problem

We wish to find u(t) such that

du

dt
= f(t,u) ,

for t > 0 with u(0) = u0.

We shall write everything in terms of the scalar problem: find u(t)
such that

du

dt
= f (t, u) ,

for t > 0 with u(0) = u0, but all methods are easily generalised.

Simplest Methods — Euler Methods

Perhaps the simplest numerical methods are the explicit and
implicit Euler methods (also known as forward and backward
Euler):

Un+1 − Un

∆t
= f (tn,Un), (explicit/forward Euler)

Un+1 − Un

∆t
= f (tn+1,Un+1), (implicit/backward Euler)

for n = 0, 1, . . . and with U0 = u0.

Simplest Methods — Euler Methods

Explicit Euler is particularly simple. Given U0 = u0 and the
function f we compute

Un+1 = Un + ∆tf (tn,Un)

for n = 0, 1,

Implicit Euler is more complex in the sense that if we are given
U0 = u0 and the function f we compute Un+1 as the solution to
the nonlinear equation

Un+1 = Un + ∆tf (tn+1,Un+1)

for n = 0, 1, The solution to this nonlinear equation can be
computed by (say) Newton’s method. At timestep n + 1 a good
starting guess for Newton’s method is Un.

Generalisation — θ-Methods

Both the explicit and implicit Euler methods are specific cases of
the θ-method which is given by

Un+1 − Un

∆t
= θf (tn+1,Un+1) + (1− θ)f (tn,Un)

for n = 0, 1, . . . and with U0 = u0. Special cases are

I θ = 0 — explicit Euler

I θ = 1 — implicit Euler

I θ = 1/2 — Crank Nicolson method

For all non-zero values of θ, the method is implicit and a nonlinear
equation must be solved at each time-step.

Truncation Error

All the methods can be derived by truncating Taylor series and the
truncation error measures the error commited by doing this. The
truncation error is defined as

Tn =
un+1 − un

∆t
− θf (tn+1, un+1)− (1− θ)f (tn, un) ,

where un = u(tn) is the exact solution at the point tn.

It can be shown (using Taylor series expansions) that for constant θ

Tn =

{
O(∆t) for θ 6= 1/2
O(∆t2) for θ = 1/2

so that the truncation error of the Crank Nicolson scheme
converges twice as fast as that of all other θ-methods.

Pointwise Errors

It can be shown that if the right-hand-side function f (t, u) satisfies
a Lipschitz condition, with Lipschitz constant L, then

|en| ≤
(

1 + (1− θ)L∆t

1− θL∆t

)n

|e0|+
T

L

[(
1 + (1− θ)L∆t

1− θL∆t

)n

− 1

]
,

for n = 0, 1, . . . and where T is a bound on the truncation error.

This, along with the fact that

1 + (1− θ)L∆t

1− θL∆t
= 1 +

L∆t

1− θL∆t

≤ exp

(
L∆t

1− θL∆t

)
,

can be used to determine how many steps of an algorithm are
required to achieve a desired accuracy.

Modifications of θ-Methods

As we have already stated, unless θ = 0, the θ-method requires us
to solve a nonlinear equation at each timestep. However, there
exist modified methods to avoid this.

Recall the Crank Nicolson scheme

Un+1 − Un

∆t
=

1

2
(f (tn+1,Un+1) + f (tn,Un)) .

We can approximate Un+1 using the explicit Euler scheme. This
leads to the improved Euler method

Un+1 − Un

∆t
=

1

2
(f (tn+1,Un + ∆tf (tn,Un)) + f (tn,Un)) .

This has a truncation error Tn = O(∆t2).

Runge-Kutta Schemes

The improved Euler method is a specific example of an explicit
Runge-Kutta scheme. Such schemes take the general form

Un+1 − Un

∆t
=

s∑
i=1

biki

where

k1 = f (tn,Un)

and

ki = f (tn + ci∆t,Un + ∆t
i−1∑
j=1

ai ,jkj) ,

for i = 2, . . . , s.

Runge-Kutta Schemes — Butcher Tableaux

The coefficients of explicit Runge-Kutta schemes are chosen to
make the methods as high order as possible and are often stored as
Butcher tableaux in the form

0
c2 a2,1

c3 a3,1 a3,2
...

...
...

. . .

cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs−1 bs

Example: Improved Euler
The improved Euler scheme

Un+1 − Un

∆t
=

1

2
(f (tn+1,Un + ∆tf (tn,Un)) + f (tn,Un)) ,

can be written in the form

Un+1 − Un

∆t
=

1

2
(k1 + k2) ,

where

k1 = f (tn,Un)

and

k2 = f (tn + ∆t,Un + ∆tk1) .

Thus the Butcher tableau takes the form

0
1 1

1
2

1
2

Example: Modified Euler

Another commonly used 2-stage scheme is the modified Euler
scheme, given by

Un+1 − Un

∆t
= f

(
tn +

1

2
∆t,Un +

1

2
∆tf (tn,Un)

)
.

The Butcher tableau for the modified Euler scheme takes the form

0
1
2

1
2

0 1

Example: RK4

Finally, a very common 4-stage method is the so-called RK4
scheme, defined by the Butcher tableau

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

Adaptivity — Motivation

If an IVP has a solution with different timescales (i.e. a region of
rapid change and a region of much less rapid change) then using a
uniform timestep can be either inaccurate or inefficient.

If the timestep is too large it may capture the slowly varying part
of the solution but not that which is rapidly varying.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

u
(t

)

Solution to ODE for 0<t<2

exact

explicit Euler

implicit Euler

2 2.5 3 3.5 4 4.5 5

t

-0.5

0

0.5

1

u
(t

)

Solution to ODE for 2<t<5

exact

explicit Euler

implicit Euler

Adaptivity — Motivation

If the timestep is small it may be very inefficient for the slowly
changing part of the solution.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

u
(t

)

Solution to ODE for 0<t<5, small timestep

exact

explicit Euler

implicit Euler

Remedy: use a large timestep when the solution does not change
rapidly and a small timestep when it does.

Runge Kutta Methods and Adaptivity (1)

One step methods can easily be modified to have adaptivity of the
timestep length ∆t as the function u varies. As an example,
consider the fourth order Runge-Kutta method (RK4).

The background theory is that

Trunction error Tn ∼ K1(∆t)4u(v)

Local error |en| ∼ K2∆t|Tn|
so |en| ∼ K3(∆t)5u(v).

Runge Kutta Methods and Adaptivity (1)
Suppose we are at tn and want to use a step ∆tn

1. apply RK4 over step ∆tn to get value Ua where

Ua = un+1 +
(∆tn)5u(v)

5!
+O(∆t6

n)

2. apply RK4 twice over step ∆tn/2 to get value Ub

Ub = un+1 +
2(∆tn

2)5u(v)

5!
+O(∆t6

n)

Then

Ua − Ub ∼ 15

16

u(v)

5!
(∆tn)5 ∼ K4en.

Runge Kutta Methods and Adaptivity (1)

Hence for fixed ∆tn:

I if |Ua −Ub| is large then so too is the error |Ua − un+1| so the
step length should be decreased

I if |Ua − Ub| is small, so is the error so we could take a larger
step.

Of course we have to do more work each step since we effectively
apply RK4 three times per timestep. The hope is that being able
to use larger timesteps compensates for this.

Runge Kutta Methods and Adaptivity (1)
Since we have

Ua − Ub ∼ 15

16

u(v)

5!
(∆tn)5 ∼ K4en,

we may write

|Ua − Ub| = c(∆tn)5.

Hence, if we require

|Ua − Ub| ≤ TOL

then we should choose the new timestep, ∆t, to satisfy

c(∆t)5 =
|Ua − Ub|

(∆tn)5
(∆t)5 ≤ TOL

or equivalently

∆t ≤
(

TOL

|Ua − Ub|

)1/5

∆tn.

Runge Kutta Methods and Adaptivity (1)
Algorithm: User provides start time, end time, tolerance.

1. Set TOL=tolerance
2. Set t0 =start time
3. while tn ≤ end time

3.1 apply RK4 to determine Ua and Ub with current ∆tn
3.2 if |Ua − Ub| >TOL, step fails, set

∆tn =

(
TOL

|Ua − Ub|

)1/5

∆tn

and go back to 3.1. (This reduces the step and repeats.)
else |Ua − Ub| ≤TOL, set

∆tn+1 =

(
TOL

|Ua − Ub|

)1/5

∆tn (1)

Un+1 = Ub

tn+1 = tn + ∆tn

n = n + 1

(this increases the step length for next step).

end while

Runge Kutta Methods and Adaptivity (1)

As we have been dealing with local error the lengthening of step
can be misleading, the global error has order (∆t)4 so in (1) above
can use

∆tn+1 =

(
TOL

|Ua − Ub|

)1/4

∆tn.

This is more robust in practice.

Runge Kutta Methods and Adaptivity (2)
An alternative to the method described above is to use two Runge
Kutta methods, one of order p and one of order p̃ ≥ p + 1.

Let Un+1 be the numerical approximation to u(tn+1) using the pth
order method and let Ũn+1 be the numerical approximation to
u(tn+1) using the p̃th order method.

Then (making error free assumption, i.e. all earlier iterates are
exact)

Un+1 = u(tn+1) + c∆tp+1 +O(∆tp+2) , (2)

Ũn+1 = u(tn+1) +O(∆tp+2) , (3)

as ∆t → 0. Here c depends on the derivative of u. Subtracting
gives

Un+1 − Ũn+1 ≈ c∆tp+1 ,

and substituting this in (2) gives

Un+1 − u(tn+1) ≈ Un+1 − Ũn+1 .

Runge Kutta Methods and Adaptivity (2)

We can use this final equation

Un+1 − u(tn+1) ≈ Un+1 − Ũn+1 ,

to determine when to refine the mesh in an adaptive algorithm.

Now the idea is to choose the ERK schemes so that the pth order
method has nodes and a matrix which are a subset of those in the
p̃th order method so that the values can be re-used. This approach
is called an embedded RK pair.

Runge Kutta Methods and Adaptivity (2)

Example 1: Choose the pair consisting of the Butcher tableaux

0
2
3

2
3
1
4

3
4

and

0
2
3

2
3

2
3 0 2

3
1
4

3
8

3
8

Runge Kutta Methods and Adaptivity (2)

Example 2: Choose the pair consisting of the Butcher tableaux

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

25/216 0 1408/2565 2197/4104 −1/5

and

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40
16/135 0 6656/12825 28561/56430 −9/50 2/55

Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-0.5

0

0.5

u
(t

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

0.1

0.2

0.3

0.4

 t

