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1D Boundary Value Problem

Suppose we want to solve numerically the 2nd order linear
boundary value problem

a(x)u′′ + b(x)u′ + c(x)u = f (x)

for x ∈ (a, b) with Dirichlet boundary conditions

u(a) = ua and u(b) = ub.

This can be done using a finite difference scheme.



Finite Differences

One way to derive a finite difference scheme is to use Taylor series
expansions. The idea is that if u(x) ∈ C 4(R) then, using Taylor
series expansions, we may write

u(x + h) = u(x) + hu′(x) +
h2

2
u′′(x) +

h3

6
u′′′(x) +

h4

24
u′′′′(ξ+)

u(x − h) = u(x)− hu′(x) +
h2

2
u′′(x)− h3

6
u′′′(x) +

h4

24
u′′′′(ξ−)

for some ξ+ ∈ (x , x + h) and ξ− ∈ (x − h, x).

Thus we can combine these to see

u(x + h)− 2u(x) + u(x − h)

h2
= u′′(x) +

h2

12
u′′′′(ξ) (1)

for some ξ ∈ (x − h, x + h).



Finite Differences

Similarly, we may write

u(x + h) = u(x) + hu′(x) +
h2

2
u′′(x) +

h3

6
u′′′(η+)

u(x − h) = u(x)− hu′(x) +
h2

2
u′′(x)− h3

6
u′′′(η−)

for some η+ ∈ (x , x + h) and η− ∈ (x − h, x), and we can combine
these to give

u(x + h)− u(x − h)

2h
= u′(x) +

h2

6
u′′′(η) (2)

for some η ∈ (x − h, x + h).



Finite Differences

Note that from

u(x + h) = u(x) + hu′(x) +
h2

2
u′′(x) +

h3

6
u′′′(η+)

we could have written

u(x + h)− u(x)

h
= u′(x) +

h

2
u′′(x) +

h2

6
u′′′(η+) . (3)

Similarly from

u(x − h) = u(x)− hu′(x) +
h2

2
u′′(x)− h3

6
u′′′(η−)

we could have written

u(x)− u(x − h)

h
= u′(x)− h

2
u′′(x)

h2

6
u′′′(η−) . (4)



Finite Differences
We can use expressions (1) and (2) as the basis for a finite
difference scheme.

Let xi = a + ih for i = 0, 1, . . . ,N where h = (b − a)/N. Then,
setting x = xi in (1) and (2) (and noting xi+1 = xi + h and
xi−1 = xi − h) and rearranging gives

u′′(xi ) =
u(xi+1)− 2u(xi ) + u(xi−1)

h2
+O(h2)

u′(xi ) =
u(xi+1)− u(xi−1)

2h
+O(h2).

Note that if we use (3) or (4) we have

u′(xi ) =
u(xi+1)− u(xi )

h
+O(h)

u′(xi ) =
u(xi )− u(xi−1)

h
+O(h)

so the remainder terms are larger.



Finite Differences

We let Ui be the numerical approximation to the exact solution at
xi , i.e. Ui ≈ u(xi ). Then a finite difference scheme for

a(x)u′′ + b(x)u′ + c(x)u = f (x)

is

a(xi )
Ui+1 − 2Ui + Ui−1

h2
+ b(xi )

Ui+1 − Ui−1
2h

+ c(xi )Ui = f (xi )

for i = 1, . . . ,N − 1. The boundary conditions are imposed as

U0 = ua and UN = ub.

The error for this scheme is O(h2).



Finite Differences — Implementation

Consider the example

u′′ + u = 0

with u(−1) = u(1) = 1 (and exact solution u(x) = cos(x)/ cos(1)).

We can re-arrange the finite difference scheme to get

1

h2
Ui−1 +

(
− 2

h2
+ 1

)
Ui +

1

h2
Ui+1 = 0

for i = 1, . . . ,N − 1 with U0 = UN = 1.



Finite Differences — Implementation

We can eliminate U0 and UN to get a tridiagonal system of the
form

(A + I )U = b

where U = (U1,U2, . . .UN−1)T , I is the (N − 1)× (N − 1) identity
matrix, b = (−1/h2, 0, . . . , 0,−1/h2) and

A =
1

h2


−2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2

 .



Finite Differences — Implementation

fin diff solve.m



Finite Differences

An alternative derivation is via differentiating interpolants.

For example, the interpolant of u(x) through xi−1 and xi is

p(x) = u(xi−1)
xi − x

xi − xi−1
+ u(xi )

x − xi−1
xi − xi−1

with derivative

p′(xi ) =
u(xi )− u(xi−1)

xi − xi−1

which gives a backward difference as in (4).

Similarly, differentiating the interpolant of u(x) through xi and
xi+1 and evaluating at xi gives a forward difference as in (3).



Finite Differences
To get higher order approximations we use higher order
interpolants.

For example, the interpolant of u(x) through xi−1, xi and xi+1 on
a uniform grid is

p(x) = u(xi ) +
u(xi+1)− u(xi−1)

2h
(x − xi )

+
u(xi+1)− 2u(xi ) + u(xi−1)

2h2
(x − xi )

2

with derivatives

p′(xi ) =
u(xi+1)− u(xi−1)

2h
,

and

p′′(xi ) =
u(xi+1)− 2u(xi ) + u(xi−1)

h2
,

as we derived using (1) and (2).



Finite Differences

In the same way as for interpolation and quadrature, extending this
to higher order interpolants on a uniform mesh can be disastrous.

In general using 4, 6, 8 degree polynomials is practical for finite
differences on uniform meshes.

Question is how to easily work out the finite difference stencils
using higher degree polynomials on non-uniform grids.



Differentiation Matrices
Recall the Lagrange form of the interpolant

pn(x) =
n∑

k=0

Ln,k(x)u(xk)

with derivatives

p′n(xi ) =
n∑

k=0

L′n,k(xi )u(xk) .

We seek the matrix D with entries di ,k = L′n,k(xi ) so that we may
write

p′n(xi ) = [di ,0, di ,1, . . . di ,n]


u(x0)
u(x1)

...
u(xn)


Then D is the differentiation matrix for the points {xi}.



Differentiation Matrices

Recall the second barycentric interpolation formula from lecture 1:

pn(x) =

∑n
l=0

ωl
x−xl u(xl)∑n

l=0
ωl

x−xl
,

where the ωl are given by

ωl =
1∏

j 6=l(xl − xj)
.

This allows us to write

Ln,k(x) =

∑n
l=0

ωl
x−xl Ln,k(xl)∑n
l=0

ωl
x−xl

=

ωk
x−xk 1∑n
l=0

ωl
x−xl



Differentiation Matrices
From this we get

Ln,k(x)
n∑

l=0

ωl

x − xl
=

ωk

x − xk
.

Let

si (x) =
n∑

l=0

ωl(x − xi )

x − xl
=
∑
l 6=i

ωl(x − xi )

x − xl
+ ωi .

Then

Ln,k(x)si (x) = Ln,k(x)
n∑

l=0

ωl(x − xi )

x − xl
=

ωk(x − xi )

x − xk
,

Finally

L′n,k(x)si (x) + Ln,k(x)s ′i (x) = ωk

(
x − xi
x − xk

)′
= ωk

xi − xk
(x − xk)2

.



Differentiation Matrices

For x = xi where i 6= k

L′n,k(xi )si (xi ) + Ln,k(xi )s
′
i (xi ) = ωk

xi − xk
(xi − xk)2

=
ωk

xi − xk
.

Since si (xi ) = ωi and Ln,k(xi ) = 0 we have

L′n,k(xi )ωi =
ωk

xi − xk

and so

di ,k = L′n,k(xi ) =
ωk/ωi

xi − xk

for i 6= k .



Differentiation Matrices

For i = k we use the fact that we know pn interpolates constants
exactly and that the derivative of a constant is zero so

n∑
k=0

di ,k = 0

which means that

di ,i = −
n∑

k=0
k 6=i

di ,k .

This means that if we know the barycentric weights we can
compute the differentiation stencil. Note these formulae work for
any set of points.



Differentiation Matrix: Example
Let x0 = −2h, x1 = −h, x2 = 0, x3 = h and x4 = 2h.

Then with

ωk =
∏
j 6=k

(xk − xj)
−1

we have

ω0 = [(−2h − (−h))(−2h)(−2h − h)(−2h − 2h)]−1 =
1

24h4
= ω4

ω1 = [(−h)− (−2h))(−h)(−h − h)(−h − 2h)]−1 = − 1

6h4
= ω3

ω2 =
1

4h4
.

Hence, with di ,k = (ωk/ωi )/(xi − xk), we get

d2,0 =
1

12h
= −d2,4, d2,1 = − 2

3h
= −d2,3 ,

and d2,2 = −(d2,0 + d2,1 + d2,3 + d2,4) = 0.



Differentiation Matrix: Example

Thus

p′4(0) =
1

h

[
1

12
,−2

3
, 0,

2

3
,− 1

12

]
p4(x)

Let u(x) = sin(x) then

p4(x) =


sin(−2h)
sin(−h)
sin(0)
sin(h)

sin(2h)


and with h = 0.1 we get 1

h

[
1
12 ,−

2
3 , 0,

2
3 ,−

1
12

]
p4(x) = 0.99999667.



Differentiation Matrices on Uniform Grids
On uniform grids, the stencils have generally already been worked
out. See, for example
https://en.wikipedia.org/wiki/Finite difference coefficient

https://en.wikipedia.org/wiki/Finite_difference_coefficient


Higher Derivatives

To get second derivatives we could

I Compute

L′′n,k(xj) = d
[2]
k,j =

{
2d

[1]
k,j (d

[1]
j ,j − 1/(xj − xk)), j 6= k

−
∑

l 6=j d
[2]
j ,l j = k

I Use u′′ ≈ D(Dpn)

In general the two approaches are not equivalent.



Spectral Collocation

I Here the idea is to use the above methods to contrstruct
global differentiation matrices for high degree global
interpolants.

I On equispaced points this will be bad, but for Chebyshev or
Legendre grids it will work well!

I Global interpolants lead to geometric convergence but dense
matrices.

I Here D2 = D [2].



Boundary Value Problems

Suppose we want to solve an ODE of the form

u′′ + u = 0

then we can write

D2u + u = (D2 + I )u = 0

where D is the differentiation matrix. This leads to (using a
Chebyshev grid with five points)

18.000 −28.485 18.000 −11.515 5.0000
9.2426 −13.000 6.0000 −2.0000 0.7574
−1.0000 4.0000 −5.0000 4.0000 −1.0000

0.7574 −2.0000 6.0000 −13.000 9.2426
5.0000 −11.515 18.000 −28.485 18.000




u0
u1
u2
u3
u4

 =


0
0
0
0
0





Boundary Value Problems

Of course since we are looking at a second order ODE, we need
two boundary conditions. If we use u(−1) = u(1) = 1 then we can
rewrite the first and last rows as

1 0 0 0 0
9.2426 −13.000 6.0000 −2.0000 0.7574
−1.0000 4.0000 −5.0000 4.0000 −1.0000

0.7574 −2.0000 6.0000 −13.000 9.2426
0 0 0 0 1




u0
u1
u2
u3
u4

 =


1
0
0
0
1



The exact solution to this BVP is

u(x) =
cos(x)

cos(1)
.



Boundary Value Problems
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Boundary Value Problems

spec colloc solve.m



Boundary Value Problems

Alternatively we could use u(−1) = 1 and u′(1) = 0. We then use
the final row of D to replace the last row of D2 + I so we have

1 0 0 0 0
9.2426 −13.000 6.0000 −2.0000 0.7574
−1.0000 4.0000 −5.0000 4.0000 −1.0000

0.7574 −2.0000 6.0000 −13.000 9.2426
0.5000 −1.1716 2.0000 −6.8284 5.5000




u0
u1
u2
u3
u4

 =


1
0
0
0
0



The exact solution to this BVP is

u(x) =
cos(x − 1)

cos(2)
.



Boundary Value Problems
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More Boundary Value Problems

Now consider the problem

u′′ + sin(x)u = 0

u(−1) = 1

u′(1) = 0 .

We can write this as

(D2 + diag(sin(x)))u = 0

with the boundary conditions enforced as before.



What Else?

This methodology:

I can easily be adapted to other intervals than [−1, 1];

I extends easily to higher order differential equations;

I extends easily to systems of equations;

I can be extended with Newton’s method to solve nonlinear
problems;

I is the basis for some of the ODE methods within the Chebfun
system — see http://www.chebfun.org/.

http://www.chebfun.org/

