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Abstract

A moving boundary problem, the so-called Stefan Problem, for the
melting of ice is set up, then solved numerically using MATLAB®. Thereby
curves for the position of the boundary between ice and water are pro-
duced. From these curves the melting time for a given layer thickness
of ice/snow can be found. Furthermore, such curves are also presented
when salt is added to the ice. It is seen that the melting time decreases
substantially when salt is added.



Preface

The present paper is the result of a project in connection with the 22nd ECMI
modelling week in Eindhoven, The Netherlands, 17-24 August 2008. The task
as presented by the instructor Trond Kvamsdal from NTNU in Norway was to

(1) model the melting of snow/ice in general and
(i) model the effect of adding salt to the ice/snow.

Regarding step (i) the simplest such model is a so-called one-phase Stefan
problem — a moving boundary problem which is explained in Chapter 2; step
(ii) is twofold: salt can either speed up the melting process — this is where
the concept of freezing point depression enters — or it can be used to harden
the ice surface. However, we have looked at the first aspect only, since the
second aspect requires more thermodynamical knowledge than any of us (i.e.
the group members) had beforehand — and would be able to achieve in the four
days we had for effective work. The concept of freezing point depression that
was mentioned above is explained in Chapter 3.

After the one-phase Stefan problem and the concept of the freezing point de-
pression have been established, numerical simulations are carried out in Chap-
ter 4, both for melting in general and in particular for melting with salt present.

it
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Introduction

1 Introduction

About 70% of the earth’s surface are covered with water. This water is found
in three states, or phases: liquid, which is what we see in lakes, rivers and
oceans; solid, which is ice/snow; gas, which is water vapour.

If we have liquid water at a temperature of 0°C, it gradually becomes solid,
i.e. it freezes to ice; on the contrary, if we have ice, it gradually becomes liquid
at the afore-mentiones temperature, i.e. it melts to liquid. We say that the
melting temperature for ice, respectively the freezing temperature for water, is
0°C.

In this paper we examine the melting of ice through a mathematical model
called the Stefan problem, which is a so-called boundary moving problem. This
problem is established in Chapter 2 and solved numerically in Chapter 4.
In Chapter 3 the effect on the freezing/melting process of adding salt to water
is explained.

2 The Mathematical Model of Phase Change Processes

Before we derive a mathematical model for the metling process, we have to
discuss the underlying important physical properties and assumptions. Those
will be examined in §2.1. Afterwards we review in §2.2 the heat equation as
crucial basis for our mathematical model. In §2.3 we derive the two- and one-
phase Stefan problem, which is the mathematical foundation of this paper.
More discussions and derivations on this matter can be found in [1, 6].

2.1 Physical properties and assumptions

In order to set up a mathematical model we need to have a clear picture of
the underlying assumptions. Since this study concerns phase change processes,
our model will involve physical properties for each phase. We restrict ourselves
to melting processes and hence consider a material in a liquid and a solid
phase separated by an interface. For simplification we assume the density p to
be constant, which is a necessary but slightly unreasonable assumption. For
more realistic cases with pr, # ps (with the subscripts denoting liguid and
solid, respectively) we refer to [1, Section 2.3]. Our phase change material also
has a constant melting temperature Ty and latent heat L. The important
case of a melting temperature that varies will also be explained later when
we discuss the effect of the melting point depression. Each phase has thermal
conductivities kp, ks and specific heats ¢y, cs, which are phase-wise constant
but with ky, # ks and ¢, # cg. Futhermore we assume that heat is transferred
isotropically (i.e. equal in all directions) by conduction only and omit a possible
heat transfer by convection or radiation. Also we consider neither supercooling
effects, gravitational, elastic nor electromagnetic effects, but we will discuss the
chemical effect when foreign particles (as salt) are added to the liquid phase.
For the surface separating each phase we assume it to be sharp, planar, without
surface tension and of zero thickness.
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2.2 The heat equation

A basic quantity involved in heat conduction is the temperature which repre-
sents the molecular movement. It is measured in degrees Kelvin or Celsius.
A material under constant pressure can absorb heat whose quantity is called
enthalpy or thermal energy. The thermal energy per unit mass is denoted by
e and per unit volume by E, measured in kJ/kg and kJ/m?3, respectively. We
consider a pure material under constant pressure without volume changes, then
the absorbed heat is related to the change in the temperature by

de = ¢dT, (2.1)

where c is the specific heat capacity. The heat flux g is the amount of heat
crossing a unit area per time and given by Fourier’s Law,

g =—kVT, (2.2)

where k is the thermal conductivity. Since we assume isotropic conduction, k >
0 is a scalar, otherwise &k can be a tensor. The heat flux points in direction of
the heat flow and is measured in kJ/(m-K). The First Law of Thermodynamics
in differential form gives us the the Energy Convervation Law,

g—t—(pe)nLV-q:fv (2.3)

where the function f represents either a heat sink or a heat source. Insert-
ing (2.1) and (2.2) in (2.3) leads to the Heat Conduction Equation

pc%—f — V. (kVT)+ f. (2.4)
This is a partial differential equation (PDE) which is satisfied by a temperature
distribution T'(,t). In order to have a well-posed problem in a domain {2 for
t > 0 we have to combine the PDE (2.4), which holds in the interior of Q, with

(i) an initial condition T'(z,0) = Tin; (), V& € O, and (2.5)
(ii) boundary conditions for T'(x,t), V& € 092, ¢t > 0. (2.6)

Some common boundary conditions for (2.6) will be considered later. In §2.1 we
imposed a constant thermal condutivity k and therefore introduce the thermal
diffusivity,

k

a=—, (2.7

pc
which is measured in m?/s. Hence, Eq. (2.4) can be written as the Heat Equa-
tion,

oT

_ = 2
5 aVT + f, (2.8)

which is a linear parabolic PDE. We may restrict ourselves to the one-dimensional
case, i.e. = [0, 00), without any heat sink or source, i.e. f = 0. Then Eq. (2.8)

transforms to
T = aTye, (2.9)
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ground Ta

FiG. 2.1: Liquid and solid phases with interface h(t) and imposed
boundary temperatures.

where T} and T, denote the second temporal derivative and the second spatial
derivative, respectively. Common boundary conditions (2.6) for the case =
[0, 00) are for instance an imposed temperature,

T(0,t) = To(t) and ling0 T(z,t) = Too(t), (2.10)
Ly
or an imposed flux
— kT3(0,t) = qo(t) and — & lim Tp(z,t) = geo(t). (2.11)
T30

Other possibilities are a convective or radiative flux (see {1, Chapter 1.2.D}).

2.3 The classical Stefan problem

For our melting process we divide the domain §2 into a liquid and a solid phase
separated by an interface A(t), see Fig. 2.1, which illustrates the model we use
in the following. As simplification we consider the phase change process in a
one-dimensional region Q = (0,1) of a cross-sectional area A, i.e. a slab of ice
with length {. On the upper boundary we impose a temperature T > T
and on the lower boundary a temperature Tg (the subscripts A and G denote
air and ground, respectively). The liquid phase in the subregion 0 < z < h(t)
is separated by the sharp interface A(t) from the solid phase in the subregion
h(t) < z < l. Both phases have their own temperature distributions 77 (x,t)
and Tg(z,t). Hence we have a heat equation (2.9) for both phases:

Tt = apTze for 0 < z < A(t) (liquid phase),
T = ogTy, for h(t) <z < (solid phase),

where we used as simplification the same symbolic T(z, ) for both phases and
a1, = ki/peL, as = kg/pes. To derive a condition for the interface we consider
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the total enthalpy, referred to the melt temperature Ty,

R(%) 1
E(t)=A { /0 {per (T(z,t) — T) + pL} dz + /h N (T(=z,t) — Tum) dx} ;

(2.12)

with L as the latent heat of the material. Applying Leipniz’s integral rule
to (2.12) leads to

1dE , h(t)
7 = per, (T(h(E), 1)~ Taa) - K () + / per Ty (@, 1) dz
o}
l (2.13)

+ pLH(t) — pes (T(h(£), ) = Twr) - B'(t) + /h T

Since we impose T'(h(t),t) = Tu, Eq. (2.13) becomes

l

1dg  [*®
= / peLTy(z, t) udz + pLA (t) + / pesTi(z,t) dz (2.14)
0 h(%)

Adt
and by substituting the heat equation (2.9) for each phase we get

1dE
A dt
The terms —k;,T;,(0,t) and ksT,(l,t) can be considered as the heat fluxes ¢(0,t)
and —q(l, t) through the boundary of Q. Furthermore, we can use the global

heat balance, which states that the heat change is the difference between in-
coming and outgoing heat, to retrieve

2 = Afa(0,0) ~ a(1,0)-

Altogether, (2.14) simplifies to the one-dimensional Stefan Condition,

= kT (h(t),t) — kLT (0,1) + pLh () + ks T (1,t) — ksTo(h(t), t).

pLK (t) = ks Ty (h(t),t) — k. Tp(h(t), 1), (2.15)

which expresses that the velocity A'(t) of the interface h(t) is proportional to
the jump of the heat flux across the interface. This enables us to describe
a mathematical model for a phase change process with the assumptions of
section §2.1.

We consider a slab 0 < 2 < [ of a material which is initially solid at an
initial temperature Tiny < Ty. Since we impose a higher temperature T > T
at z = 0 melting occurs. At z = [ we assume a temperature Tg. For each ¢ > 0
the liquid occupies [0, k(t)) and the solid (h(t), ], respectively. The interface
location is denoted by A(t). This leads to the two-phase Stefan problem |
where we have to find a temperature distribution T'(z,t) in [0,1] X (0,00) and
a interface location h(t) for ¢ > 0 that satisfy

(i) Heat equations:

T = apTyy for 0 <z < h(t), t >0,

2.16
T: = agTy, for h(t) <z <1, t>0. ( )
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(ii) Interface conditions:

T(h(t),t) = Ty for ¢t > 0,

pLR (t) = ksTy(h(t),t) — kyTu(h(t),t) for t > 0. (2.17)
(iil) Initial conditions:
h(0) = 0 (material initially solid), (2.18)
T(2,0) =Tt <Tm for 0 <z < L.
(iv) Boundary conditions:
T(0,t) = Ty > Ta for ¢t > 0, (2.19)

T(,t) =Ta < T for t > 0.

Note that the second equation in (2.18) can be substituted by —ksT,(I,t) = 0
for t > 0 to include a insulated boundary at z = [.

This one-dimensional classical Stefan problem is a famous example of a mov-
ing boundary problem. Such problems arise also in the mathematical modelling
of solidification processes, combustion, flows through porous media and molec-
ular diffusions to name at least a few. Generalisations to multidimensional
cases can be found in [6]. If we negligect the assumption p;, = ps and consider
the case pp > pg for water and ice, the former occupies less volume than the
latter. Therefore a void between the boundary z = 0 and a second interface
s(t) is formed through the melting process. More details on this matter can be
found in |1, Section 2.3.D]. A common simplification to the two-phase Stefan
problem is to assume that the slab is initially solid at the melt temperature
Tinit = T, which implies that only one phase is considered as active. Since
the boundary at = is not important anymore, we can consider the slab as
semi-infinite and hence the domain § is [0,00). This leads to the one-phase
Stefan problem which is solved by a temperature distribution 7'(z,t) and an
interface location h(t) that fulfil the following:

Ty = 01Ty for 0 <z < h(t), t >0,
T(h(t),t) =Ty for t > 0,
pLK (t) = —k Ty (h(t),t) for t > 0, (2.20)
h(0) = 0,
T(0,t) = Ta(t) > T for t > 0.
This is the type of problem we will use from now on throughout this paper, but

we will include a changing melt temperature T3y by the effect of the melting
point depression, which will be explained in the following.

3 Why Salt Melts Ice

Combining ice and salt produces a remarkable reaction that is important both
for hardening of snow surfaces and for melting of ice on roads by adding salt.
To understand this phenomenon we first need to take a closer look at a plain




Why Salt Melts Ice

F1G. 3.1: Left: Melting of ice on roads. Right: Hardening of snow
surfaces. Source: 22nd ECMI Modelling Week, presentation
by Trond Kvamsdal.

(2) (®)

F1G. 3.2: Left: Ice-water mixture. Right: Ice-water mixture with salt.
Source: http://www.waynesthisandthat.com/saltice.html.

ice-water mixture.

In Fic. 3.2(a) the densely packed blue spheres on the left represent water
molecules solidified into ice; the looser spheres on the right are water molecules.
Ice consists of water molecules locked in a crystalline structure. Liquid water
consists of free water molecules randomly moving around in all directions.

Assuming there are no outside sources of heat or cold, the ice and water
will be in equilibrium (0°C). However, this does not mean that everything
is static. Every once in a while a free-swimming water molecule will collide
with an ice molecule and thus gives the ice molecule sufficient energy to break
away from the ice block. This free water molecule has a certain amount of
energy stored in the form of kinetic energy. After the collision, the original
free-swimming molecule will move slower and therefore has less energy. The
difference between the amount of energy it had before and after the collision
is same as the amount of energy it took to break the frozen ice molecule free.
The temperature of water is a measure of how fast the average water molecule
is moving. The hotter the water, the faster the molecules are moving. When
the water molecule collided with the ice and hence slowed down, it can now
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be thought of as being cooler. If this happens to enough water molecules the
water as a whole will get cooler.

On the other side, free-swimming water molecules can collide with the ice
in a way that causes them to stick to it, or freeze. In doing so, they release
energy to the water/ice mixture from their loss of kinetic energy and the energy
released as they create a molecular bond with the ice. This energy goes into
the remaining water, making the molecules travel faster and hence heating the
water up.

In a stable mixture of water and ice the rate of ice molecules being broken
free (and taking energy from the mixture) and water molecules freezing to ice
(and giving up energy to the mixture) is the same, so that over time both the
amount of water and ice and the temperature (a measure of the kinetic energy
in the system) is constant.

Now let us assume that we want to melt ice on a driveway. One can sprinkle
a little salt on it and the ice starts to melt. What happens? In Fia. 3.2(b)
we have the same water-ice mixture as we had in the first picture, except this
time salt (black spheres) has dissolved into the water and displaced some of the
water molecules. Because the salt molecules have replaced some of the water
molecules, there are less water molecules left to collide with the ice. The result
is, that there are more ice molecules melting than there are water molecules
freezing. Because the salt is not used up in this process the melting continues.
This is why only a little salt is needed to melt a lot of ice.

One curiosity about this process is that the melting ice is actually colder
than it was before the salt was added. We take advantage of this phenomenon
to harden snow surfaces or to make ice cream at home.

3.1 Calculation of the melting point depression

The melting point of a solid is the temperature range at which it changes
state from solid to liquid. For most substances (e.g. water) melting and freez-
ing points are essentially equal. The melting point is relatively insensitive to
pressure because the solid-liquid transition represents only a small change in
volume. The melting point of a pure substance is always higher than the melt-
ing point of an impure substance. The more impurity is present, the lower the
melting point.

Melting point depression describes this phenomenon that the melting point
of a liquid (the solvent) is depressed when another compound (the solute) is
added, meaning that a solution has a lower melting point than a pure solvent.
The melting point depression AT} (= Typure solvent) — T¥(solution)) for the solvent
is proportional to the molality mp of the solute:

ATy = K; - mp.

The value K is called the cryoscopic constant, depending only on the solution
and not on the solute. For water Ky = 1.86 (K-kg)/mol, which means that the
melting point is decreased by 1.86°C if one adds one mole of a solute to one
kilogram of water. It can be calculated as
T2
K;= R—M
f A Hf )

where
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o R is the gas constant (8.314472J/(mol-K)),
o Ty is the melting point of the pure solvent in K and
o AH; is the heat of fusion of the solution in J/kg.

mgp is the molality of the solution, calculated by taking dissociation into account
since the melting point depression is a colligative property, dependent on the
number of particles in solution. This is most easily done by using the van’t
Hoff factor, i, as

mp = 1 * Mgolute-

The factor 4 accounts for the number of individual particles (typically ions)
formed by a compound in solution. Examples of values of 7 are:

e { =1 for sugar in water;

o i = 2 for sodium chloride (cooking salt) in water, due to; dissociation of
NaCl into Na® and C1~;

e ¢ = 3 for calcium chloride in water, due to dissociation of CaCl, into
Ca?t and 2C17;

¢ { = 2 for hydrogen chloride in water, due to complete dissociation of HCI
into HY and Cl1™.

Finally, msolute = 7, Where m is the solute in gram per 1.0kg solvent and M
the molar mass of the solvent.

3.1.1 Example

We want to solubilize 58.44 g of cooking salt (NaCl) in 0.5kg of water. m

calculates to: 58 44
ad
= = 116.88 g /kg.
™= 05ke g/ke

This means we have 116.88 g of salt per 1kg of water. The molar mass of salt
is 58.44 g/mol, so we get

116.88g/kg
= == = 2 mol/kg.
Msolute = £8711 g/mol mol/kg

myp is then 2- mgolute = 4 mol/kg (since 7 = 2 for NaCl), so in summary we get:

AT = K¢-mp = 1.86 (kg-K) /mol - 4 mol/kg = 7.44 K.

4 Solution of The Stefan Problem

After we have derived the moving boundary problem (2.20) we now set out to
solve the problem. In the present chapter we first show that a given analytical
expression solves the problem, then we set up a numerical model which is solved
with the use of MATLAB®,
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To set set the record straight, let us first state the problem (2.20) once
more. We have the heat equation,

T =odye, 0<z<h(t), t>0, (4.1)
subject to boundary conditions
T(0,t) = Ta, T(h(t),t)=Tm, Vt>0. (4.2)

Furthermore, we have the Stefan condition, which governs the position of the
moving boundary:

3 (t) = =BT (h(t),1), (4.3)

where 6 = ky,/(pL).

Now we have stated the problem the next step is show that a given analytical
expression solves the problem. This is done in the next section, §4.1. In §4.2 a
numerical model is set up and solved/analyzed in §4.3.

4.1 Analytical solution of the Stefan problem

If the initial boundary position is

h(0) = hg (4.4)
and the initial temperature distribution is
erf(__gi_)
T(2,0) = { Tn — AT —Z/0L 0 <o <o, (4.5)
T, z > ho,

where erf(z) = ——\/2—7?- Jy exp(—s?)ds, A is the solution of the equation

CLATL
Lym

and to = h3/(4\%a), then the solution of the Stefan problem is:

R(t) = 22y/a(t + to) (4.7)

Mexp(A})erf(\) = (4.6)

z
erf <_—"‘-_‘—‘>
T(z,t) = Ty — AT, —2 e{f‘;gf W) o<ac< h(t), (4.8)
D, x> h(t)

In the following the solution (4.7)—(4.8) to the problem (4.1)-(4.3) is veri-
fied.

We can see by substituting ¢ = 0 that the given functions (4.8) and (4.7)
satisfy the initial conditions (4.5) and (4.4). Also, since erf(0) = 0, (4.8)
satisfles the boundary conditions (4.2). We have yet to show that (4.7) and
(4.8) satisfy the differential equations (4.1) and (4.3).

Differentiating (4.8) wrt. time yields:

orT ATy, 2 0 [weees 5
el ==L 2 2 —sAd
ot (%) erf(A) /7 8¢ /0 exp(—s7) ds
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With a change of variable w = I :52 — tg we have:
/2\/;(\&——!4—0— p(‘ 2)d3——--—-1—/t T (w+t0)‘3/2exp <~_ z? )
2 Joo Vi dow + tg)
and since for any C:
a t
5 /C Flw)dw = £(¢), (4.9)

we have:

= ! t 4 10) =3/ =
8t( )= rf(,\) 2\/‘\/“( o)™ exp (_4a(t+t0)>'

Differentiating (4.8) wrt. z yields:

oT N ATL26/2\/:(?:5-

%(Z" )=- erf()\) /7 Oz xp(—s*) ds.

With a change of variable u = s - 24/a(t 4+ to) we have

z - 5
2¢/a(t+to) 2 U 1

exp(—s*)ds = exp| — d

./0 p(=5") /o p( 4a(t+to)> 0 /alt +lo)

Using (4.9) we have:

or ATy, 1 z?
= —_— . 4.10
% 0=~ v e (=) (410)
Differentiating with respect to z we have:
o*T ATy 1 1 g _3/2 x?
Oz? ( zt) = erf(\) 27 a \/_( +to) ™ exp T4a(t+t0) )

Now we see that

8T
@)=~ ),

which upon multiplication by o leads to the heat equation (4.1).

Then we check that the boundary moving differential equation (4.3) applies.
First let us calculate the derivative of the temperature wrt. z on the boundary.
Substitution of z = h(t) = 2Ay/a(t + to) in (4.10) yields:

or _ Al 1 1 o 4N (aft +to))
oz (h(8),1) = erf(A) V7 \/alt + to) P ( da(t + to) ) ’
Since A'(t) = (Aa)/+/a(t + to), we have
T AT, 1 W)
%(h(t)vt) - erf()\) \/— /\ Xp(—>\2)
By the definition (4.6) of A we have:
aT AT, 1K@ _ L,
E(h(t)at) ?{A\/Tﬁ o cLah (t)
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Substituting the definition of «, 8 we get:

O iy = Py _10h
B h(0.0 = —EK () = 520

which upon multiplication by —f gives us the boundary movement equa-
tion (4.3). Q.E.D.
An important special case of the initial distribution is A(0) = 0 and

TA, z=0
T(,0) = {TM z>0

for which the results above also hold, see [1]. This corresponds the case with
only ice in the beginning.

4.2 Numerical solution of the Stefan problem

We solve the Stefan problem numerically using the following algorithm; the
algorithm takes the melting point depression into account. For each time step:

(i) update the temperature distribution using Eq. (4.1),
(i1) update the boundary state using Eq. (4.3) and
(iit) update the melting point.

For steps (i) and (ii) the finite difference method (FDM) is used. For step
(i) an implicit scheme is used:

T(z,t+ At) — T(z,t) _

At
(L@ = A2t + A = W(at 4 A +T@ + Ayt + A
(Az)?
In step (ii) an explicit method is used,
ht+A0 —ht) __ T(h(0),1) = T(h(t) = Azyt) (4.12)

At Az

while step (iii) is calculated by the explicit formula for freezing point depression
when necessary. Now we study these steps more carefully.

4.2.1 Temperature update step

Let our space discretization be (0, Az, 2Az, ..., NAz) and at time ¢ let zo =
ndz be the greatest discretization point below A(t), that is

0= max nAz.
nAz<h(t),neN




4.2. Numerical solution of the Stefan problem

12

Denote vector T'(t) = [Ty(t) -+ Ty11(t)]” as the temperature vector in dis-
cretization points: T'(t) = [T(0,t) .-+ T(NAz, t)]T. Now by (4.11) we have
- s .
Ty(t) + aT1(t+At)~2T€X$§t)+T3(t+At)

T(t+ At) = |T,(8) + o TembCHAD2T (LA Ty (o0
Tr

L yAYi i

By separating terms with T°(t) from terms with T(t + At) and taking the
coefficients in the front of the latter we get

[ Ti(t+ A T
W 0 0 0 T (t + At)
Ta(t + At)
Ty () -2 1 0 Tl Ay
Ts(t) 1 -2 1 a(t+ A1)
- 5 2 :
T(t+A1) = |1 0 +At/R — T 1(t+ At)
Tp 0 0 Tn(t+ At)
: Trns2(t + At)
| Tu 0 :
=A _TN+1(t + At)_
As we denote the coefficient matrix as A, we have:
(Iny1 — AT+ At) = [Ta T(t) Ts(t) Tn]”
from which we have the update step algorithm:
T(t+ At) = (Ings — A7 [Ta Ta(t) Ts() Tv]” .

4,2,2 Boundary moving step

Let our space discretization be (0, Az,2Az, ..., NAz) and at time ¢ let zg =
nAz be the greatest discretization point below h(t) as in the previous section.
We approximate the derivative T, (h(t),t) as the finite difference between zg —
Az and zg:

T(2o,t) — T{zo — Az, t) Tnya(t) — Ta(t)
Az N Az
Thus, by (4.12), our update step algorithm is
Tra(t) — Tn(®)
—t DT AR
Az t

The motivation for using the two last discretization points as finite difference
interval points instead of a boundary point and the last discretization point is
discussed in §4.3.1.

T (h(t),t) =~

h(t+ At) = h(t) — B
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4.2.3 Melting point update step

The amount of dissolved substance affects the melting point of the solution
as presented in Chapter 3. Combining the equations ATt = Tipure solvent) ™
Ti(solution), ATy = Kr- mp, Ky = RTf,I/AHf and mp = 1+ Msolute, We have:

Tsolution = j}(pure solvent) — Ki-i Msolutes

where Ky = 1.86 (kg-K)/mol, ¢ is the number of individual ions in a salt com-
pound and mgoyte is the molality of solute in the solution, that is the fraction
of the amount of substance of solute by the mass of solution. In this simula-
tion we assume that there is a constant amount of substance of solute per unit
area (na) and that the solute is always uniformly distributed in the current
liquid phase. Furthermore we make the approximation that the density of the
solution, p = 1000 kg/m3, is constant with respect to time and space regardless
the amount of substance of solute in water. Since Violution(t) = Asolution (L),
we have at time ¢

TNgolute _ nAAsolution _ A
Mgolution (t) P‘/;olution (t) Ph(t)

Thus we have an explicit formula for the melting point as a function of the
boundary position A(t):

Megolute (t) =

Kp-ionyp
Tsolution (t) = Z}(pure solvent) — ph—(t),

which is recalculated for each time step.

4.3 Simulation

A solution to the Stefan problem with 1.5 cm water layer in the beginning and
air temperature T4 = 273K is looked for. The initial temperature distribution
is supposed to obey equation (4.5). The considered space is [0, 10 cm], which is
divided to IV parts of same length. Time scale is logarithmic, so that the time
step size is small in the beginning and large in the end.

First the effect of the number of space discretization parts N is analyzed.
The time step length is set to start from 107%s and end at 1s, so that the
observed time scale will be from 0s to about 900s. The Stefan problem is solved
numerically using different space discretization numbers, N, ranging from 15 to
1500. Fic. 4.1 shows the approximate L? error between the analytical solution
and the numerical solution with different space discretization numbers,

The slope of the logarithmic error by logarithmic space discretization num-
ber is ~1.0379 ~ —1. Thus an empirical convergence rate Erroryz: ~ C/N is
derived. It is clear that also the time step size affects to the accuracy of the
numerical solution, but that effect is not discussed in this work.

Next the effect of the melting point to the melting time is analyzed. Here
a coarser time discretization is used: the time step varies from 10~ !s in the
beginning to 10?s in the end. In Fic. 4.2 curves of boundary position as
function of time have been plotted. We see that the smaller the melting point
of ice is, the quicker is the melting process.
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L2‘—error between numerical and analytical solution with different amount of space discretization points
107 ¢

-2

error

FiG. 4.1: Error of numerical solution as a function of number of space
discretization points.

Next the effect of actually adding salt to the water in the beginning of
the melting process is studied. Suppose we have sodium chloride or calcium
chloride as a salt, say 10 mol per square metre of water. It is supposed that
all added salt is soluted to the current water layer, so the molality of solute
varies over time, depending on the height of the water layer. Fic. 4.3 shows
the curves of boundary positions. ‘We can see that the melting speed is first
much higher when using salt, but by time the effect of salt gets smaller. In this
simulation a 0.5 cm starting layer of water has been used with the 10 cm space
discretized to 500 parts. The same time discretization and air temperature as
in the simulation before has been used.

4.3.1 Analysis of the choice of finite difference points

In our numerical solution we have found some severe stability issues that have
to be taken care of. One of them is the choice of discretization points used in
the calculation of the finite difference in the boundary moving step. The most
natural choice for the space discretization points would be the boundary value
and the one before the boundary, but as one can see in Fig. 4.4, this choice leads
to unstable values of the derivative of T' with respect to z. Therefore the two
last discretization points before the boundary have been used in simulations to
approximate the derivative.
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Phase boundary position as a function of time using different melting temperatures
['ANd
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Fic. 4.2: Melting curves for different melting points

5 Conclusion

The classical Stefan problem for the modelling of melting of ice has been de-
rived. Before it was solved, however, it was simplified to a one-phase problem
such that only one phase of water and ice is considered as active in the melting
process. A numerical model for this simplified problem is then set up, with the
concept of melting point depression incorporated. The problem is then solved
using MATLAB®, The main results are seen in Fic. 4.2 and Fig. 4.3.

As indicated in Fig. 4.2, if we take a layer of ice of thickness 4 cm, then it
takes about 80s to melt the ice with a melting temperature of 270K; with a
melting temperature of 272K and 273 K, respectively, it takes about 140s and
about 200s resp.

The melting curves, i.e. the position of the boundary between ice and water,
both with and without salt added are seen in Fig. 4.3. If we again take a 4cm
thick layer of ice, then we see that with no salt it takes about 225s to melt the
ice; with NaCl resp. CaCl, added it takes about 125s and about 100s, resp.
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Phase boundary position as a function of time using 10 molim? of different salts
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FiG. 4.3: Melting curves for systems with solutes of different salts

Derivatives of T with respect to x in analytical solution and its two different finite difference approximations

=20
Finite difference derivative between two last points
~mmenes Finite difference derivative between last discretization point and boundary point
-40F = === Analytical derivative

-80 Eﬁ
-100
h (m)
-120
—140(i i

100 150
t(s)

F1G. 4.4: Derivative of temperature with respect to time and its nu-
merical approximations.
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