
Further Partial Differential Equations

Problem Sheet 3

1. Similarity solutions in the two-phase Stefan problem

Consider the two-phase Stefan problem (2.15) in the limit t→ 0. Show that the leading-order
behaviour is given by

u(x, t) ∼

{
f(η) 0 < η < β,

g(η) β < η <∞,
s(t) ∼ β

√
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t
,

where
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and β satisfies the transcendental equation
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2. A solid–liquid interface with a density change
Consider the one-dimensional Stefan problem for melting of a solid considered in lectures.
The full system behaviour may be described by equations expressing conservation of mass,
momentum and total energy, which are given respectively by

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (1)

∂

∂t
(ρv) +

∂

∂x

(
ρv2 + p

)
= 0, (2)

∂

∂t

(
ρh+

1

2
ρv2
)

+
∂

∂x

(
pv − k∂T

∂x
+ ρ

(
h+

1

2
v2
)
v

)
= 0, (3)

where ρ is the density, v the velocity, p the pressure, T the temperature and

h =

{
c(T − Tm) + L T > Tm
c(T − Tm) T < Tm.

is the enthalpy of the system, which is the total energy per unit mass, including heat. Here,
c is the specific heat and L the latent heat.

Suppose that liquid occupies a region 0 ≤ x ≤ s(t) and solid occupies a region x > s(t).

(a) Show that when the density of the fluid and the solid are the same and a constant
then v = 0 and the temperature in the liquid and the solid is described by the one-
dimensional heat equation

∂

∂t
(ρcT )− ∂

∂x

(
k
∂T

∂x

)
= 0. (4)

(b) Now suppose that the densities in the solid and the liquid phases are different. Integrate
(1) over a domain x1 < x < x2 that contains the interface (so x1 < s(t) and x2 > s(t)).
Divide the integral into x1 ≤ x ≤ s(t) and s(t) ≤ x ≤ x2 and take the limit as
x1 → s(t)− and x2 → s(t)+ to show that the following jump condition is satisfied by
the density:

[ρ]
+
−

ds

dt
= [ρv]

+
− . (5)

(c) By performing an identical process for (2) and (3) obtain the jump conditions

[ρv]
+
−

ds

dt
=
[
ρv2 + p

]+
− , (6)[

ρh+
1

2
ρv2
]+
−

ds

dt
=

[
pv − k∂T

∂x
+ ρ

(
h+

1

2
v2
)
v

]+
−
. (7)

(d) Explain how these reduce to the Stefan condition presented in lectures when the solid
and liquid densities are equal.
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3. Linear stability of a two-dimensional Stefan problem
Consider the linear stability of the free boundary problem depicted in Figure 2.2 in the limit
St → 0. Assume that the free boundary is moving at constant speed V under a constant
temperature gradient −λ1,2 in each phase before being perturbed, so the solutions take the
form

u1(x, y, t) = −λ1(x− V t) + ũ1(x, y, t), u2(x, y, t) = −λ2(x− V t) + ũ2(x, y, t)

and the position of the free boundary is given by

x = V t+ ξ(y, t).

By linearising the problem with respect to ũ1, ũ2 and ξ, show that perturbations with
wavenumber k > 0 and growth rate σ are possible provided

σ

V k
= −λ1 +Kλ2

λ1 −Kλ2
.

4. One-dimensional welding

(a) Derive the dimensionless one-dimensional welding problem (2.31).

(b) Show that the normalised heating coefficient is given by

q =
a2J2

σk(Tm − T0)
=

σV 2

k(Tm − T0)
,

where V is the applied voltage. Assuming that we require q = O(1) to melt the plate,
roughly how high must the voltage be to achieve melting?
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