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Informally speaking, hash functions take long bit strings and
output shorter bit strings, called digests.

They are used almost everywhere in Cryptography.

Treating hash functions as truly random functions makes
proving the security of some schemes achievable.

To evaluate a hash function, a random oracle must be
queried;

a debate/controversy over the soundness of the
Random Oracle Model (ROM).
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Definition
A keyed hash function with output length `(n) is a pair

(KeyGen,H)

of two PPT algorithms, defined as follows:

s← KeyGen(n) : it takes a security parameter n and
outputs a key s.

Hs(x)← H(s, x) : on input a key s and a bit string
x ∈ {0, 1}∗, it outputs a bit string Hs(x) ∈ {0, 1}`(n).

If, for any value of n, H is defined only for inputs x ∈ {0, 1}`′(n),
then the hash function is said to be fixed-length.

We consider only compression hash functions, i.e. `′(n) > `(n).
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For any value of n, (KeyGen,H) determines a keyed function

H : KeySetn × InSetn → OutSetn

where

KeySetn contains all outputs of KeyGen on input n;

InSetn is {0, 1}∗ or {0, 1}`′(n);

OutSetn = {0, 1}`(n);

H(s, x) = Hs(x).
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Let (KeyGen,H) be a keyed hash function.

Given a key s ∈ KeySetn, it should be infeasible for any PPT
adversary to find a collision, i.e. x 6= x′ s.t. Hs(x) = Hs(x′).

Since the domain is larger than the range, collisions always
exist, but it is required that they are hard to find.

The key is not a secret.
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Let (KeyGen,H) be a keyed hash function.

Collision-Finding Experiment Hashcoll
A,H(n)

Challenger Ch Adversary A

s← KeyGen(n)

Receives s

Outputs x, x′

A wins the game, i.e. Hashcoll
A,H(n) = 1, if x, x′ ∈ InSetn, x 6= x′

and Hs(x) = Hs(x′).

Definition
A keyed hash function (KeyGen,H) is collision resistant if, for
every PPT adversary A, Pr(Hashcoll

A,H(n) = 1) ≤ negl(n).
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Hash functions used in practices are unkeyed:

H : {0, 1}∗ → {0, 1}`

What is the reason for using keyed functions?

Theoretically speaking, a colliding pair can be hardcoded
and output by a polynomial-time algorithm.

Keyed functions: impossible to hardcode a colliding pair
for every value of n.

Colliding pairs are unknown and computationally hard
to find for hash functions used in practice.
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Second-preimage (or target-collision) resistance: for any
s ∈ KeySetn and a uniform x ∈ InSetn, it is infeasible for any
PPT adversary to find x′ ∈ InSetn s.t. x 6= x′ and Hs(x) = Hs(x′).

Preimage resistance (or one-wayness): given s ∈ KeySetn and a
uniform y ∈ OutSetn, it is infeasible for any PPT adversary to
find x ∈ InSetn s.t. Hs(x) = y.

collision resist. ⇒ second-preimage resist. ⇒ preimage resist.
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