
Introduction to Cryptology

7.1 - Hash functions:
Definitions

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020



Introduction

2/11

Informally speaking, hash functions take long bit strings and
output shorter bit strings, called digests.

They are used almost everywhere in Cryptography.

Treating hash functions as truly random functions makes
proving the security of some schemes achievable.

To evaluate a hash function, a random oracle must be
queried;

a debate/controversy over the soundness of the
Random Oracle Model (ROM).



Introduction

2/11

Informally speaking, hash functions take long bit strings and
output shorter bit strings, called digests.

They are used almost everywhere in Cryptography.

Treating hash functions as truly random functions makes
proving the security of some schemes achievable.

To evaluate a hash function, a random oracle must be
queried;

a debate/controversy over the soundness of the
Random Oracle Model (ROM).



Keyed Hash Functions

3/11

Definition
A keyed hash function with output length `(n) is a pair

(KeyGen,H)

of two PPT algorithms, defined as follows:

s← KeyGen(n) : it takes a security parameter n and
outputs a key s.

Hs(x)← H(s, x) : on input a key s and a bit string
x ∈ {0, 1}∗, it outputs a bit string Hs(x) ∈ {0, 1}`(n).

If, for any value of n, H is defined only for inputs x ∈ {0, 1}`′(n),
then the hash function is said to be fixed-length.

We consider only compression hash functions, i.e. `′(n) > `(n).



Keyed Hash Functions

3/11

Definition
A keyed hash function with output length `(n) is a pair

(KeyGen,H)

of two PPT algorithms, defined as follows:

s← KeyGen(n) : it takes a security parameter n and
outputs a key s.

Hs(x)← H(s, x) : on input a key s and a bit string
x ∈ {0, 1}∗, it outputs a bit string Hs(x) ∈ {0, 1}`(n).

If, for any value of n, H is defined only for inputs x ∈ {0, 1}`′(n),
then the hash function is said to be fixed-length.

We consider only compression hash functions, i.e. `′(n) > `(n).



Keyed Hash Functions

4/11

For any value of n, (KeyGen,H) determines a keyed function

H : KeySetn × InSetn → OutSetn

where

KeySetn contains all outputs of KeyGen on input n;

InSetn is {0, 1}∗ or {0, 1}`′(n);

OutSetn = {0, 1}`(n);

H(s, x) = Hs(x).



Security Guarantees - Collision Resistance

5/11

Let (KeyGen,H) be a keyed hash function.

Given a key s ∈ KeySetn, it should be infeasible for any PPT
adversary to find a collision, i.e. x 6= x′ s.t. Hs(x) = Hs(x′).

Since the domain is larger than the range, collisions always
exist, but it is required that they are hard to find.

The key is not a secret.



Security Guarantees - Collision Resistance

6/11

Let (KeyGen,H) be a keyed hash function.

Collision-Finding Experiment Hashcoll
A,H(n)

Challenger Ch Adversary A

s← KeyGen(n)

Receives s

Outputs x, x′

A wins the game, i.e. Hashcoll
A,H(n) = 1, if x, x′ ∈ InSetn, x 6= x′

and Hs(x) = Hs(x′).

Definition
A keyed hash function (KeyGen,H) is collision resistant if, for
every PPT adversary A, Pr(Hashcoll

A,H(n) = 1) ≤ negl(n).



Security Guarantees - Collision Resistance

6/11

Let (KeyGen,H) be a keyed hash function.

Collision-Finding Experiment Hashcoll
A,H(n)

Challenger Ch Adversary A

s← KeyGen(n)

Receives s

Outputs x, x′

A wins the game, i.e. Hashcoll
A,H(n) = 1, if x, x′ ∈ InSetn, x 6= x′

and Hs(x) = Hs(x′).

Definition
A keyed hash function (KeyGen,H) is collision resistant if, for
every PPT adversary A, Pr(Hashcoll

A,H(n) = 1) ≤ negl(n).



Security Guarantees - Collision Resistance

6/11

Let (KeyGen,H) be a keyed hash function.

Collision-Finding Experiment Hashcoll
A,H(n)

Challenger Ch Adversary A

s← KeyGen(n)

Receives s

Outputs x, x′

A wins the game, i.e. Hashcoll
A,H(n) = 1, if x, x′ ∈ InSetn, x 6= x′

and Hs(x) = Hs(x′).

Definition
A keyed hash function (KeyGen,H) is collision resistant if, for
every PPT adversary A, Pr(Hashcoll

A,H(n) = 1) ≤ negl(n).



Hash Functions in Practice

7/11

Hash functions used in practices are unkeyed:

H : {0, 1}∗ → {0, 1}`

What is the reason for using keyed functions?

Theoretically speaking, a colliding pair can be hardcoded
and output by a polynomial-time algorithm.

Keyed functions: impossible to hardcode a colliding pair
for every value of n.

Colliding pairs are unknown and computationally hard
to find for hash functions used in practice.



Hash Functions in Practice

7/11

Hash functions used in practices are unkeyed:

H : {0, 1}∗ → {0, 1}`

What is the reason for using keyed functions?

Theoretically speaking, a colliding pair can be hardcoded
and output by a polynomial-time algorithm.

Keyed functions: impossible to hardcode a colliding pair
for every value of n.

Colliding pairs are unknown and computationally hard
to find for hash functions used in practice.



Hash Functions in Practice

7/11

Hash functions used in practices are unkeyed:

H : {0, 1}∗ → {0, 1}`

What is the reason for using keyed functions?

Theoretically speaking, a colliding pair can be hardcoded
and output by a polynomial-time algorithm.

Keyed functions: impossible to hardcode a colliding pair
for every value of n.

Colliding pairs are unknown and computationally hard
to find for hash functions used in practice.



Hash Functions in Practice

7/11

Hash functions used in practices are unkeyed:

H : {0, 1}∗ → {0, 1}`

What is the reason for using keyed functions?

Theoretically speaking, a colliding pair can be hardcoded
and output by a polynomial-time algorithm.

Keyed functions: impossible to hardcode a colliding pair
for every value of n.

Colliding pairs are unknown and computationally hard
to find for hash functions used in practice.



Weaker Security Guarantees

8/11

Second-preimage (or target-collision) resistance: for any
s ∈ KeySetn and a uniform x ∈ InSetn, it is infeasible for any
PPT adversary to find x′ ∈ InSetn s.t. x 6= x′ and Hs(x) = Hs(x′).

Preimage resistance (or one-wayness): given s ∈ KeySetn and a
uniform y ∈ OutSetn, it is infeasible for any PPT adversary to
find x ∈ InSetn s.t. Hs(x) = y.

collision resist. ⇒ second-preimage resist. ⇒ preimage resist.



Weaker Security Guarantees

8/11

Second-preimage (or target-collision) resistance: for any
s ∈ KeySetn and a uniform x ∈ InSetn, it is infeasible for any
PPT adversary to find x′ ∈ InSetn s.t. x 6= x′ and Hs(x) = Hs(x′).

Preimage resistance (or one-wayness): given s ∈ KeySetn and a
uniform y ∈ OutSetn, it is infeasible for any PPT adversary to
find x ∈ InSetn s.t. Hs(x) = y.

collision resist. ⇒ second-preimage resist. ⇒ preimage resist.



Further Reading I

9/11

Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing
efficient protocols.
In Proceedings of the 1st ACM conference on Computer
and communications security, pages 62–73. ACM, 1993.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche.
Keccak sponge function family main document.
Submission to NIST (Round 2), 3:30, 2009.

Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud,
and Prashant Puniya.
Merkle-Damgård revisited: How to construct a hash
function.
In Advances in Cryptology–CRYPTO 2005, pages 430–448.
Springer, 2005.



Further Reading II

10/11

Morris J Dworkin.
SHA-3 standard: Permutation-based hash and
extendable-output function.
No. Federal Inf. Process. Stds.(NIST FIPS)-202, 2015.

Pierre Karpman, Thomas Peyrin, and Marc Stevens.
Practical free-start collision attacks on 76-step SHA-1.
In Advances in Cryptology–CRYPTO 2015, pages 623–642.
Springer, 2015.

Neal Koblitz and Alfred J Menezes.
The random oracle model: a twenty-year retrospective.
Designs, Codes and Cryptography, pages 1–24, 2015.



Further Reading III

11/11

Alfred J Menezes, Paul C Van Oorschot, and Scott A
Vanstone.
Handbook of applied cryptography.
CRC press, 1996.

Marc Stevens.
New collision attacks on SHA-1 based on optimal joint
local-collision analysis.
In Advances in Cryptology–EUROCRYPT 2013, pages
245–261. Springer, 2013.

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange
Albertini, and Yarik Markov.
The first collision for full SHA-1.
In Annual International Cryptology Conference–CRYPTO
2017, pages 570–596. Springer, CHam, 2005.


