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2/15

Is it possible to derive a collision-resistant hash function
from a collision-resistant, fixed-length hash function?

Merkle-Damgård transform is a very famous approach for
domain extension.

Used for MD5 and the SHA family.

Theoretical implication: if you can compress by a single
bit, then you can compress by an arbitrary amount of bits!
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Let (KeyGen, h) be a fixed-length hash function, with `′(n) = 2n
and `(n) = n. Define an arbitrary-length hash function

(KeyGen,H)

as follows:

s← KeyGen(n) : KeyGen is the same for the two hash
functions.

Hs(x)← H(s, x) : on input a key s and a string x ∈ {0, 1}∗
of length L < 2n, it proceeds as follows:

x is padded with zeros to get a string of length B · n;
x = (x1, . . . , xB) and xB+1 := L;
z0 (also called IV) is set to 0n;
zi := hs(zi−1||xi), for i = 1, · · · ,B + 1;
Hs(x) := zB+1.
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From [Katz-Lindell].

Theorem
If (KeyGen, h) is collision-resistant, then so is (KeyGen,H).
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Proof.
Let x and x′ be two distinct strings s.t. Hs(x) = Hs(x′).

Assume |x| = L and |x′| = L′. After the padding, x = x1, · · ·
· · · , xB+1 and x′ = x′1, · · · , x′B+1, with xB+1 = L and x′B′+1 = L′.

L 6= L′: then Hs(x) = zB+1 = hs(zB||L) = hs(z′B′ ||L′) =
z′B′+1 = Hs(x′). Hence zB||L 6= z′B′ ||L′ is a collision for hs.

L = L′: in this case B = B′. Consider Ji = zi−1||xi and
J′i = z′i−1||x′i for i = 1, . . . ,B + 2, where

JB+2 = zB+1 = z′B+1 = J′B+2.

Let N be the largest integer s.t. IN 6= I′N (which exists since
x 6= x′). Since N ≤ B + 1, then hs(IN) = zN = z′N = hs(I′N).
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Hash functions offer an alternative to CBC-MAC to construct
MACs for arbitrary-length messages.

The general idea is simple and widely used.

Step 1: a collision-resistant hash function (KeyGen,H) is
used to hash a message m into a fixed-length string Hs(m).

Step 2: a fixed-length MAC is applied to Hs(m).
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Let SMAC = (KeyGenM,Mac,Verify) be a fixed-length MAC for
messages of length `(n), and (KeyGenH,H) a hash function with
output length `(n).

A MAC for arbitrary length messages

S′MAC = (KeyGen′,Mac′,Verify′)

can be defined as follows.

(k, s)← KeyGen′(1n): given a security parameter n, it runs
KeyGenM and KeyGenH on input n, obtaining two keys, k
and s. The output is (k, s).
t← Mac′((k, s),m ∈ {0, 1}∗): t := Mack(Hs(m)).
1/0← Verify′((k, s),m, t): it outputs 1 if Verifyk(H

s(m), t) is
equal to 1, 0 otherwise.
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Theorem
If SMAC is a secure MAC for messages of length `(n) and
(KeyGenH,H) is a collision-resistant hash function, then S′MAC is
a secure MAC for arbitrary-length messages.
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HMAC is a standardised secure message authentication code
that uses two layers of hashing.

It can be viewed as an instantiation
of the hash-and-MAC technique.

HMAC is very efficient and widely used in practice.
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Let (KeyGenH,H) be a hash function obtained from a
fixed-length hash function (KeyGenh, h), with `′(n) = 2n and
`(n) = n, applying the Merkle-Damgård transform. Let opad
and ipad be two fixed strings of length n.

A MAC S = (KeyGen,Mac,Verify) for arbitrary-length
messages can be defined as follows:

(s, k)← KeyGen(n): given a security parameter n, it
samples a uniform k ∈ {0, 1}n and runs KeyGenH on input
n, obtaining s. It outputs the key (s, k).

t← Mac((s, k),m ∈ {0, 1}∗): it returns the output

Hs((k ⊕ opad)||Hs((k ⊕ ipad)||m)).

1/0← Verify((s, k),m, t): it is the canonical verification.
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