
Introduction to Cryptology

7.2 - Hash functions:
Constructions and
Applications

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

How to Design a Hash Function?

2/15

Is it possible to derive a collision-resistant hash function
from a collision-resistant, fixed-length hash function?

Merkle-Damgård transform is a very famous approach for
domain extension.

Used for MD5 and the SHA family.

Theoretical implication: if you can compress by a single
bit, then you can compress by an arbitrary amount of bits!

How to Design a Hash Function?

2/15

Is it possible to derive a collision-resistant hash function
from a collision-resistant, fixed-length hash function?

Merkle-Damgård transform is a very famous approach for
domain extension.

Used for MD5 and the SHA family.

Theoretical implication: if you can compress by a single
bit, then you can compress by an arbitrary amount of bits!

How to Design a Hash Function?

2/15

Is it possible to derive a collision-resistant hash function
from a collision-resistant, fixed-length hash function?

Merkle-Damgård transform is a very famous approach for
domain extension.

Used for MD5 and the SHA family.

Theoretical implication: if you can compress by a single
bit, then you can compress by an arbitrary amount of bits!

The Merkle-Damgård Transform

3/15

Let (KeyGen, h) be a fixed-length hash function, with `′(n) = 2n
and `(n) = n. Define an arbitrary-length hash function

(KeyGen,H)

as follows:

s← KeyGen(n) : KeyGen is the same for the two hash
functions.

Hs(x)← H(s, x) : on input a key s and a string x ∈ {0, 1}∗
of length L < 2n, it proceeds as follows:

x is padded with zeros to get a string of length B · n;
x = (x1, . . . , xB) and xB+1 := L;
z0 (also called IV) is set to 0n;
zi := hs(zi−1||xi), for i = 1, · · · ,B + 1;
Hs(x) := zB+1.

The Merkle-Damgård Transform

4/15

From [Katz-Lindell].

Theorem
If (KeyGen, h) is collision-resistant, then so is (KeyGen,H).

The Merkle-Damgård Transform

5/15

Proof.
Let x and x′ be two distinct strings s.t. Hs(x) = Hs(x′).

Assume |x| = L and |x′| = L′. After the padding, x = x1, · · ·
· · · , xB+1 and x′ = x′1, · · · , x′B+1, with xB+1 = L and x′B′+1 = L′.

L 6= L′: then Hs(x) = zB+1 = hs(zB||L) = hs(z′B′ ||L′) =
z′B′+1 = Hs(x′). Hence zB||L 6= z′B′ ||L′ is a collision for hs.

L = L′: in this case B = B′. Consider Ji = zi−1||xi and
J′i = z′i−1||x′i for i = 1, . . . ,B + 2, where

JB+2 = zB+1 = z′B+1 = J′B+2.

Let N be the largest integer s.t. IN 6= I′N (which exists since
x 6= x′). Since N ≤ B + 1, then hs(IN) = zN = z′N = hs(I′N).

MACs using Hash Functions 6/15

MACs using Hash Functions

MAC using Hash Functions

MACs using Hash Functions 7/15

Hash functions offer an alternative to CBC-MAC to construct
MACs for arbitrary-length messages.

The general idea is simple and widely used.

Step 1: a collision-resistant hash function (KeyGen,H) is
used to hash a message m into a fixed-length string Hs(m).

Step 2: a fixed-length MAC is applied to Hs(m).

MAC using Hash Functions

MACs using Hash Functions 7/15

Hash functions offer an alternative to CBC-MAC to construct
MACs for arbitrary-length messages.

The general idea is simple and widely used.

Step 1: a collision-resistant hash function (KeyGen,H) is
used to hash a message m into a fixed-length string Hs(m).

Step 2: a fixed-length MAC is applied to Hs(m).

MAC using Hash Functions

MACs using Hash Functions 7/15

Hash functions offer an alternative to CBC-MAC to construct
MACs for arbitrary-length messages.

The general idea is simple and widely used.

Step 1: a collision-resistant hash function (KeyGen,H) is
used to hash a message m into a fixed-length string Hs(m).

Step 2: a fixed-length MAC is applied to Hs(m).

Hash-and-MAC

MACs using Hash Functions 8/15

Let SMAC = (KeyGenM,Mac,Verify) be a fixed-length MAC for
messages of length `(n), and (KeyGenH,H) a hash function with
output length `(n).

A MAC for arbitrary length messages

S′MAC = (KeyGen′,Mac′,Verify′)

can be defined as follows.

(k, s)← KeyGen′(1n): given a security parameter n, it runs
KeyGenM and KeyGenH on input n, obtaining two keys, k
and s. The output is (k, s).
t← Mac′((k, s),m ∈ {0, 1}∗): t := Mack(Hs(m)).
1/0← Verify′((k, s),m, t): it outputs 1 if Verifyk(H

s(m), t) is
equal to 1, 0 otherwise.

Hash-and-MAC

MACs using Hash Functions 9/15

Theorem
If SMAC is a secure MAC for messages of length `(n) and
(KeyGenH,H) is a collision-resistant hash function, then S′MAC is
a secure MAC for arbitrary-length messages.

HMAC

MACs using Hash Functions 10/15

HMAC is a standardised secure message authentication code
that uses two layers of hashing.

It can be viewed as an instantiation
of the hash-and-MAC technique.

HMAC is very efficient and widely used in practice.

HMAC

MACs using Hash Functions 11/15

Let (KeyGenH,H) be a hash function obtained from a
fixed-length hash function (KeyGenh, h), with `′(n) = 2n and
`(n) = n, applying the Merkle-Damgård transform. Let opad
and ipad be two fixed strings of length n.

A MAC S = (KeyGen,Mac,Verify) for arbitrary-length
messages can be defined as follows:

(s, k)← KeyGen(n): given a security parameter n, it
samples a uniform k ∈ {0, 1}n and runs KeyGenH on input
n, obtaining s. It outputs the key (s, k).

t← Mac((s, k),m ∈ {0, 1}∗): it returns the output

Hs((k ⊕ opad)||Hs((k ⊕ ipad)||m)).

1/0← Verify((s, k),m, t): it is the canonical verification.

HMAC

MACs using Hash Functions 12/15

Further Reading I

MACs using Hash Functions 13/15

Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing
efficient protocols.
In Proceedings of the 1st ACM conference on Computer
and communications security, pages 62–73. ACM, 1993.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche.
Keccak sponge function family main document.
Submission to NIST (Round 2), 3:30, 2009.

Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud,
and Prashant Puniya.
Merkle-Damgård revisited: How to construct a hash
function.
In Advances in Cryptology–CRYPTO 2005, pages 430–448.
Springer, 2005.

Further Reading II

MACs using Hash Functions 14/15

Morris J Dworkin.
SHA-3 standard: Permutation-based hash and
extendable-output function.
No. Federal Inf. Process. Stds.(NIST FIPS)-202, 2015.

Pierre Karpman, Thomas Peyrin, and Marc Stevens.
Practical free-start collision attacks on 76-step SHA-1.
In Advances in Cryptology–CRYPTO 2015, pages 623–642.
Springer, 2015.

Neal Koblitz and Alfred J Menezes.
The random oracle model: a twenty-year retrospective.
Designs, Codes and Cryptography, pages 1–24, 2015.

Further Reading III

MACs using Hash Functions 15/15

Alfred J Menezes, Paul C Van Oorschot, and Scott A
Vanstone.
Handbook of applied cryptography.
CRC press, 1996.

Marc Stevens.
New collision attacks on SHA-1 based on optimal joint
local-collision analysis.
In Advances in Cryptology–EUROCRYPT 2013, pages
245–261. Springer, 2013.

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange
Albertini, and Yarik Markov.
The first collision for full SHA-1.
In Annual International Cryptology Conference–CRYPTO
2017, pages 570–596. Springer, CHam, 2005.

	MACs using Hash Functions

