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The Birthday Problem

2/17

Suppose there are q people in a room.

What is the probability that two people have the same
birthday?

How many people are required to have a probability larger
than 1/2 ?

The answer is 23:

Pr(all distinct) = 364
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The Birthday Problem
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Suppose you choose q elements uniformly in a set of N elements.

What is the probability that two elements are equal?

How large should q be with respect to N to have a
probability larger than 1/2 ?

A formal solution to these problems in the following slides.
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Assume q balls are thrown to N bins (q <
√
2N), and denote by

Coll the event that two balls end up being in the same bin.

We can show that

q(q− 1)/4N ≤ Pr(Coll) ≤ q(q− 1)/2N.

Upper bound: For the event Colli (the i-th ball falls into an
already occupied bin), it holds that Pr(Colli) ≤ (i− 1)/N (at
most i− 1 bins are already occupied).

Pr(Coll) = Pr(
q⋃

i=1

Colli) ≤
q∑

i=1

Pr(Colli) ≤

≤ 0/N + · · ·+ (q− 1)/N =
q(q− 1)

2N
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Lower bound: For the event NoColli (no collisions after
throwing the i-th ball), it holds

Pr(NoColli+1|NoColli) = (N − (i))/N. (1)

We note
Pr(NoCollq) = 1− Pr(Coll). (2)

Now,
Pr(NoCollq) = Pr(NoCollq ∩NoCollq−1) =

= Pr(NoCollq|NoCollq−1) · Pr(NoCollq−1)

and, iterating the above reasoning, we obtain:

Pr(NoCollq) =
q−1∏
i=1

Pr(NoColli+1|NoColli). (3)
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From equations (1), and (3) we obtain

Pr(NoCollq) =
q−1∏
i=1

(
1− i

N

)
(4)

Since 1− x ≤ e−x when x ≤ 1 and i/N < 1, it holds

Pr(NoCollq) ≤ e−
∑q−1

i=1 (i/N) = e−q(q−1)/2N . (5)

Thanks to equation (2)

Pr(Coll) ≥ 1− e−q(q−1)/2N

where
1− e−q(q−1)/2N ≥ q(q− 1)/4N

since q <
√
2N and e−x ≤ 1− x/2 when |x| ≤ 1.
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The probability of having a collision is ≈ 1/2 when q ≈ N1/2.

How does the birthday problem relate to hash functions?
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Hash functions: The Birthday attack
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Consider the function F : {0, 1}∗ → {0, 1}`. Its range has size
N = 2`.

When q ≈ 2`/2 evaluations are executed, the probability of
finding a collision is ≈ 1/2.

There are no generic attacks for preimage and second-preimage
resistance.
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Hash Functions: A Better Birthday Attack
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The original birthday attack uses lots of memory storage, as it
has to store O(q) = O

(
2`/2

)
digests.

Managing storage for 260 bytes is often more difficult than
executing 260 CPU instructions.

Anything better?
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The Floyd’s cycle finding idea can be exploited!

https://visualgo.net/bn/cyclefinding

https://visualgo.net/bn/cyclefinding
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Let x0 be a uniform input of the H and denote Hi(x0) by xi.

Suppose xI = xJ for some distinct I, J ∈ [1, q].

Then, there is i < J s.t. xi = x2i.

From xI, the sequence is periodic with a period ∆ that
divides J − I;

let i < J be the smallest multiple of ∆ greater than or equal
to I (xI, xI+1, . . . , xJ−1 contains ∆ consecutive indices);

xi = x2i since i > I and 2i− i = i is a multiple of ∆.

The index i is found after an exhaustive search (in the i-th
iteration H(xi−1) and H(H(x2(i−1))) are computed).
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Starting from x0 and after a maximum of i-steps, a cycle is
entered.

The goal is finding the first element of the cycle. To this end,
two starting points, x := x0 and x′ := xi, are considered.

At each step, x and x′ are updated with an evaluation of H;

while x is out of the cycle, x 6= x′, since x′ is moving within
the cycle;

as soon x enters the cycle, it meets x′, i.e. x = x′. Indeed, if
j is the smallest index for which xj is in the cycle, then
x′ = xi+j where i ≡ 0 (mod ∆).

Also j is found after an exhaustive search.

We note that xj−1 and xi+j−1 form a collision (one point out of
the cycle, the other inside).
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Let H : {0, 1}∗ → {0, 1}` be an unkeyed hash function. The goal
is finding x, x′ s.t. H(x) = H(x′).

x0←$ {0, 1}`+1

x′ := x0, x := x0, ` := 0

for i = 1, 2, · · · do
` = `+ 1

x = H(x) = H(i)(x0)

x′ = H(H(x′)) = H(2i)(x0)

if x = x′ break
x′ := x, x := x0, i := `

for j = 1 · · · , i

if H(x) = H(x′) return x, x′

else x = H(x) = H(j)(x0)

x = H(x′) = H(i+j)(x0)
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The algorithm has approximately the same time complexity of
the birthday attack. The success probability is the same.

It only requires O(1) memory, namely,
storage of two digests at each step!
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