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Let Π be a cryptosystem using a hash function H.

The property that H is collision/preimage resistant might be
not enough to to be able prove the security of Π.

Instead of using cryptosystems that have no proof of security,
an alternative approach was proposed.
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In the Random Oracle Model (ROM), each cryptographic hash
function H is idealised.

H is considered to be truly random;

it is assumed that this random function is public;

additionally, it can be evaluated only querying it as an
oracle (or a black box).

In the real world, each ideal hash function is instantiated
by an appropriate hash function.
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What is the meaning of appropriate hash function?

No clear definitions!

Concrete hash functions are deterministic and fixed, they
cannot behave like random functions!

What is the relevance of a proof of security in the ROM?

Perhaps, the scheme does not have “inherent design flaws”;

i.e, the only possible attacks are those due to weaknesses in
the used hash functions.
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Why is the ROM widely used?

So far, there have been no successful real-world attacks on
real-world schemes that are proven secure in the ROM.

Schemes proven secure in the ROM are usually efficient.

If hash functions are not idealised in the proof of security for Π,
then Π is said to be secure in the standard model.
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In ROM security definitions:

the probability is taken over the random choice of H;

whereas, in the real world, H is instantiated by a
deterministic function.
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In ROM security proofs:

the adversary A needs to query an oracle to evaluate H;

if x has not been queried yet, then the value H(x) is
uniform.

In ROM proofs by reduction:

the oracle is simulated in the reduction.

Extractability: when A queries x, the reduction learns x.

Programmability: the reduction sets the (uniformly
distributed) values of H(xi) to answer A’s queries.
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