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Hash Functions: Additional Applications

Fingerprinting: The digest H(x) of a file x (which could be a
virus) acts as a fingerprint /identifier of the file.
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Hash Functions: Additional Applications

Fingerprinting: The digest H(x) of a file x (which could be a
virus) acts as a fingerprint/identifier of the file.

Deduplication: used to eliminate duplicate copies of data. It is
particularly important for cloud storage.

= The hash of the file to store is sent to the service (e.g.
DropBox);

= the service checks if a file with this hash already exists;

= if yes, they do not need to store the file again.
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Merkle Trees

How to create the fingerprint of a set
of n files x1,- -+ ,x, (where n is a power of 2)?

3/10



Merkle Trees

How to create the fingerprint of a set
of n files x1,- -+ ,x, (where n is a power of 2)?

Instead of computing i.e. H(x1,--- ,x,), Ralph Merkle proposed
the following solution (Merkle Trees):

3/10



Merkle Trees

How to create the fingerprint of a set
of n files x1,- -+ ,x, (where n is a power of 2)?

Instead of computing i.e. H(x1,--- ,x,), Ralph Merkle proposed
the following solution (Merkle Trees):

= Compute hy 2 < H(x1,x2), - hy_1, < H(Xp—1,%,).

= Compute h1 234 < H(h12,h34), s hp—3p—2n—10 <
H(hn—B,n—Qv hn—l,n)
= The process is iterated, until the root hy.... , is computed.

3/10



Merkle Trees

How to create the fingerprint of a set
of n files x1,- -+ ,x, (where n is a power of 2)?

Instead of computing i.e. H(x1,--- ,x,), Ralph Merkle proposed
the following solution (Merkle Trees):

= Compute hy 2 < H(x1,x2), - hy_1, < H(Xp—1,%,).

= Compute h1 234 < H(h12,h34), s hp—3p—2n—10 <
H(hn—B,n—Qv hn—l,n)
= The process is iterated, until the root hy.... , is computed.

Possible alternative to the Merkle-Damgard transform. It is not
collision-resistant if n is not fixed.
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Password Hashing

A hash of the password is usually stored
instead of the password itself.
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A hash of the password is usually stored
instead of the password itself.

= Passwords must not be chosen from a small space.

= To rely on the preimage resistance of a hash function H,
passwords must be uniformly sampled.
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Password Hashing

A hash of the password is usually stored
instead of the password itself.

= Passwords must not be chosen from a small space.

= To rely on the preimage resistance of a hash function H,
passwords must be uniformly sampled.

If passwords are random combinations of 8 alphanumeric
characters, the password space has cardinality N = 628 ~ 2476,

= There is an attack (that requires some preprocessing)
which only uses time and space N?/3 232,

= Mechanisms to mitigate this threat (long random salt, etc.).
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Commitment Schemes

A commitment scheme allows a party to commit to
a value v by producing a commitment on it.
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Commitment Schemes

A commitment scheme allows a party to commit to
a value v by producing a commitment on it.

The commitment keeps the value v hidden, i.e. it reveals
nothing about it (Hiding property).

m

= The party cannot open the commitment to two different
values v1, vy (Biding property).
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Commitments Schemes

Definition
A commitment scheme consists of two algorithms, Gen and
Commit, defined as follows:

= p + Gen(n) : on input a security parameter n, it outputs
public parameters p.

* com, < Commit(p,m € {0,1}",r € {0,1}") : it takes the
public parameters, a message m and a random value r,
and outputs com,,,).
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Commitments Schemes

Definition
A commitment scheme consists of two algorithms, Gen and
Commit, defined as follows:

= p + Gen(n) : on input a security parameter n, it outputs
public parameters p.

* com, < Commit(p,m € {0,1}",r € {0,1}") : it takes the
public parameters, a message m and a random value r,
and outputs com,,,).

The sender opens their commitment by revealing both m and r.

A commitment scheme is secure if it is both binding and hiding.
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Commitments Schemes

Let H be a collision resistant hash function. Define a
commitment scheme where H(m||r) - Commit(p, m,r).
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Commitments Schemes

Let H be a collision resistant hash function. Define a
commitment scheme where H(m||r) - Commit(p, m,r).

Binding: follows from the collision resistance of H.

Hiding: follows from the uniformity of r in {0,1}" (H modelled
as a random oracle).
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Commitments Schemes

Let H be a collision resistant hash function. Define a
commitment scheme where H(m||r) - Commit(p, m,r).

Binding: follows from the collision resistance of H.

Hiding: follows from the uniformity of r in {0,1}" (H modelled
as a random oracle).

There exist commitment schemes proven
secure in the standard model.
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