
Introduction to Cryptology

8.2 - Hash functions: Further
Applications

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

Hash Functions: Additional Applications

2/10

Fingerprinting: The digest H(x) of a file x (which could be a
virus) acts as a fingerprint/identifier of the file.

Deduplication: used to eliminate duplicate copies of data. It is
particularly important for cloud storage.

The hash of the file to store is sent to the service (e.g.
DropBox);

the service checks if a file with this hash already exists;

if yes, they do not need to store the file again.

Hash Functions: Additional Applications

2/10

Fingerprinting: The digest H(x) of a file x (which could be a
virus) acts as a fingerprint/identifier of the file.

Deduplication: used to eliminate duplicate copies of data. It is
particularly important for cloud storage.

The hash of the file to store is sent to the service (e.g.
DropBox);

the service checks if a file with this hash already exists;

if yes, they do not need to store the file again.

Merkle Trees

3/10

How to create the fingerprint of a set
of n files x1, · · · , xn (where n is a power of 2)?

Instead of computing i.e. H(x1, · · · , xn), Ralph Merkle proposed
the following solution (Merkle Trees):

Compute h1,2 ← H(x1, x2), · · · , hn−1,n ← H(xn−1, xn).
Compute h1,2,3,4 ← H(h1,2, h3,4), · · · , hn−3,n−2,n−1,n ←
H(hn−3,n−2, hn−1,n)

The process is iterated, until the root h1,··· ,n is computed.

Possible alternative to the Merkle-Damgård transform. It is not
collision-resistant if n is not fixed.

Merkle Trees

3/10

How to create the fingerprint of a set
of n files x1, · · · , xn (where n is a power of 2)?

Instead of computing i.e. H(x1, · · · , xn), Ralph Merkle proposed
the following solution (Merkle Trees):

Compute h1,2 ← H(x1, x2), · · · , hn−1,n ← H(xn−1, xn).
Compute h1,2,3,4 ← H(h1,2, h3,4), · · · , hn−3,n−2,n−1,n ←
H(hn−3,n−2, hn−1,n)

The process is iterated, until the root h1,··· ,n is computed.

Possible alternative to the Merkle-Damgård transform. It is not
collision-resistant if n is not fixed.

Merkle Trees

3/10

How to create the fingerprint of a set
of n files x1, · · · , xn (where n is a power of 2)?

Instead of computing i.e. H(x1, · · · , xn), Ralph Merkle proposed
the following solution (Merkle Trees):

Compute h1,2 ← H(x1, x2), · · · , hn−1,n ← H(xn−1, xn).
Compute h1,2,3,4 ← H(h1,2, h3,4), · · · , hn−3,n−2,n−1,n ←
H(hn−3,n−2, hn−1,n)

The process is iterated, until the root h1,··· ,n is computed.

Possible alternative to the Merkle-Damgård transform. It is not
collision-resistant if n is not fixed.

Merkle Trees

3/10

How to create the fingerprint of a set
of n files x1, · · · , xn (where n is a power of 2)?

Instead of computing i.e. H(x1, · · · , xn), Ralph Merkle proposed
the following solution (Merkle Trees):

Compute h1,2 ← H(x1, x2), · · · , hn−1,n ← H(xn−1, xn).
Compute h1,2,3,4 ← H(h1,2, h3,4), · · · , hn−3,n−2,n−1,n ←
H(hn−3,n−2, hn−1,n)

The process is iterated, until the root h1,··· ,n is computed.

Possible alternative to the Merkle-Damgård transform. It is not
collision-resistant if n is not fixed.

Password Hashing

4/10

A hash of the password is usually stored
instead of the password itself.

Passwords must not be chosen from a small space.

To rely on the preimage resistance of a hash function H,
passwords must be uniformly sampled.

If passwords are random combinations of 8 alphanumeric
characters, the password space has cardinality N = 628 ≈ 247.6.

There is an attack (that requires some preprocessing)
which only uses time and space N2/3 ≈ 232.

Mechanisms to mitigate this threat (long random salt, etc.).

Password Hashing

4/10

A hash of the password is usually stored
instead of the password itself.

Passwords must not be chosen from a small space.

To rely on the preimage resistance of a hash function H,
passwords must be uniformly sampled.

If passwords are random combinations of 8 alphanumeric
characters, the password space has cardinality N = 628 ≈ 247.6.

There is an attack (that requires some preprocessing)
which only uses time and space N2/3 ≈ 232.

Mechanisms to mitigate this threat (long random salt, etc.).

Password Hashing

4/10

A hash of the password is usually stored
instead of the password itself.

Passwords must not be chosen from a small space.

To rely on the preimage resistance of a hash function H,
passwords must be uniformly sampled.

If passwords are random combinations of 8 alphanumeric
characters, the password space has cardinality N = 628 ≈ 247.6.

There is an attack (that requires some preprocessing)
which only uses time and space N2/3 ≈ 232.

Mechanisms to mitigate this threat (long random salt, etc.).

Commitment Schemes

5/10

A commitment scheme allows a party to commit to
a value v by producing a commitment on it.

The commitment keeps the value v hidden, i.e. it reveals
nothing about it (Hiding property).

The party cannot open the commitment to two different
values v1, v2 (Biding property).

Commitment Schemes

5/10

A commitment scheme allows a party to commit to
a value v by producing a commitment on it.

The commitment keeps the value v hidden, i.e. it reveals
nothing about it (Hiding property).

The party cannot open the commitment to two different
values v1, v2 (Biding property).

Commitments Schemes

6/10

Definition
A commitment scheme consists of two algorithms, Gen and
Commit, defined as follows:

p← Gen(n) : on input a security parameter n, it outputs
public parameters p.

com(m) ← Commit(p,m ∈ {0, 1}n, r ∈ {0, 1}n) : it takes the
public parameters, a message m and a random value r,
and outputs com(m).

The sender opens their commitment by revealing both m and r.

A commitment scheme is secure if it is both binding and hiding.

Commitments Schemes

6/10

Definition
A commitment scheme consists of two algorithms, Gen and
Commit, defined as follows:

p← Gen(n) : on input a security parameter n, it outputs
public parameters p.

com(m) ← Commit(p,m ∈ {0, 1}n, r ∈ {0, 1}n) : it takes the
public parameters, a message m and a random value r,
and outputs com(m).

The sender opens their commitment by revealing both m and r.

A commitment scheme is secure if it is both binding and hiding.

Commitments Schemes

6/10

Definition
A commitment scheme consists of two algorithms, Gen and
Commit, defined as follows:

p← Gen(n) : on input a security parameter n, it outputs
public parameters p.

com(m) ← Commit(p,m ∈ {0, 1}n, r ∈ {0, 1}n) : it takes the
public parameters, a message m and a random value r,
and outputs com(m).

The sender opens their commitment by revealing both m and r.

A commitment scheme is secure if it is both binding and hiding.

Commitments Schemes

7/10

Let H be a collision resistant hash function. Define a
commitment scheme where H(m||r)← Commit(p,m, r).

Binding: follows from the collision resistance of H.

Hiding: follows from the uniformity of r in {0, 1}n (H modelled
as a random oracle).

There exist commitment schemes proven
secure in the standard model.

Commitments Schemes

7/10

Let H be a collision resistant hash function. Define a
commitment scheme where H(m||r)← Commit(p,m, r).

Binding: follows from the collision resistance of H.

Hiding: follows from the uniformity of r in {0, 1}n (H modelled
as a random oracle).

There exist commitment schemes proven
secure in the standard model.

Commitments Schemes

7/10

Let H be a collision resistant hash function. Define a
commitment scheme where H(m||r)← Commit(p,m, r).

Binding: follows from the collision resistance of H.

Hiding: follows from the uniformity of r in {0, 1}n (H modelled
as a random oracle).

There exist commitment schemes proven
secure in the standard model.

Further Reading I

8/10

Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing
efficient protocols.
In Proceedings of the 1st ACM conference on Computer
and communications security, pages 62–73. ACM, 1993.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche.
Keccak sponge function family main document.
Submission to NIST (Round 2), 3:30, 2009.

Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud,
and Prashant Puniya.
Merkle-Damgård revisited: How to construct a hash
function.
In Advances in Cryptology–CRYPTO 2005, pages 430–448.
Springer, 2005.

Further Reading II

9/10

Morris J Dworkin.
SHA-3 standard: Permutation-based hash and
extendable-output function.
No. Federal Inf. Process. Stds.(NIST FIPS)-202, 2015.

Pierre Karpman, Thomas Peyrin, and Marc Stevens.
Practical free-start collision attacks on 76-step SHA-1.
In Advances in Cryptology–CRYPTO 2015, pages 623–642.
Springer, 2015.

Neal Koblitz and Alfred J Menezes.
The random oracle model: a twenty-year retrospective.
Designs, Codes and Cryptography, pages 1–24, 2015.

Further Reading III

10/10

Alfred J Menezes, Paul C Van Oorschot, and Scott A
Vanstone.
Handbook of applied cryptography.
CRC press, 1996.

Marc Stevens.
New collision attacks on SHA-1 based on optimal joint
local-collision analysis.
In Advances in Cryptology–EUROCRYPT 2013, pages
245–261. Springer, 2013.

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange
Albertini, and Yarik Markov.
The first collision for full SHA-1.
In Annual International Cryptology Conference–CRYPTO
2017, pages 570–596. Springer, CHam, 2005.

