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Fingerprinting: The digest H(x) of a file x (which could be a
virus) acts as a fingerprint/identifier of the file.

Deduplication: used to eliminate duplicate copies of data. It is
particularly important for cloud storage.

The hash of the file to store is sent to the service (e.g.
DropBox);

the service checks if a file with this hash already exists;

if yes, they do not need to store the file again.
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How to create the fingerprint of a set
of n files x1, · · · , xn (where n is a power of 2)?

Instead of computing i.e. H(x1, · · · , xn), Ralph Merkle proposed
the following solution (Merkle Trees):

Compute h1,2 ← H(x1, x2), · · · , hn−1,n ← H(xn−1, xn).
Compute h1,2,3,4 ← H(h1,2, h3,4), · · · , hn−3,n−2,n−1,n ←
H(hn−3,n−2, hn−1,n)

The process is iterated, until the root h1,··· ,n is computed.

Possible alternative to the Merkle-Damgård transform. It is not
collision-resistant if n is not fixed.



Merkle Trees

3/10

How to create the fingerprint of a set
of n files x1, · · · , xn (where n is a power of 2)?

Instead of computing i.e. H(x1, · · · , xn), Ralph Merkle proposed
the following solution (Merkle Trees):

Compute h1,2 ← H(x1, x2), · · · , hn−1,n ← H(xn−1, xn).
Compute h1,2,3,4 ← H(h1,2, h3,4), · · · , hn−3,n−2,n−1,n ←
H(hn−3,n−2, hn−1,n)

The process is iterated, until the root h1,··· ,n is computed.

Possible alternative to the Merkle-Damgård transform. It is not
collision-resistant if n is not fixed.



Merkle Trees

3/10

How to create the fingerprint of a set
of n files x1, · · · , xn (where n is a power of 2)?

Instead of computing i.e. H(x1, · · · , xn), Ralph Merkle proposed
the following solution (Merkle Trees):

Compute h1,2 ← H(x1, x2), · · · , hn−1,n ← H(xn−1, xn).
Compute h1,2,3,4 ← H(h1,2, h3,4), · · · , hn−3,n−2,n−1,n ←
H(hn−3,n−2, hn−1,n)

The process is iterated, until the root h1,··· ,n is computed.

Possible alternative to the Merkle-Damgård transform. It is not
collision-resistant if n is not fixed.



Merkle Trees

3/10

How to create the fingerprint of a set
of n files x1, · · · , xn (where n is a power of 2)?

Instead of computing i.e. H(x1, · · · , xn), Ralph Merkle proposed
the following solution (Merkle Trees):

Compute h1,2 ← H(x1, x2), · · · , hn−1,n ← H(xn−1, xn).
Compute h1,2,3,4 ← H(h1,2, h3,4), · · · , hn−3,n−2,n−1,n ←
H(hn−3,n−2, hn−1,n)

The process is iterated, until the root h1,··· ,n is computed.

Possible alternative to the Merkle-Damgård transform. It is not
collision-resistant if n is not fixed.



Password Hashing

4/10

A hash of the password is usually stored
instead of the password itself.

Passwords must not be chosen from a small space.

To rely on the preimage resistance of a hash function H,
passwords must be uniformly sampled.

If passwords are random combinations of 8 alphanumeric
characters, the password space has cardinality N = 628 ≈ 247.6.

There is an attack (that requires some preprocessing)
which only uses time and space N2/3 ≈ 232.

Mechanisms to mitigate this threat (long random salt, etc.).
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A commitment scheme allows a party to commit to
a value v by producing a commitment on it.

The commitment keeps the value v hidden, i.e. it reveals
nothing about it (Hiding property).

The party cannot open the commitment to two different
values v1, v2 (Biding property).
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Definition
A commitment scheme consists of two algorithms, Gen and
Commit, defined as follows:

p← Gen(n) : on input a security parameter n, it outputs
public parameters p.

com(m) ← Commit(p,m ∈ {0, 1}n, r ∈ {0, 1}n) : it takes the
public parameters, a message m and a random value r,
and outputs com(m).

The sender opens their commitment by revealing both m and r.

A commitment scheme is secure if it is both binding and hiding.
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Let H be a collision resistant hash function. Define a
commitment scheme where H(m||r)← Commit(p,m, r).

Binding: follows from the collision resistance of H.

Hiding: follows from the uniformity of r in {0, 1}n (H modelled
as a random oracle).

There exist commitment schemes proven
secure in the standard model.
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