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Constructing hash functions
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Hash functions used in practice are commonly constructed in
two steps:

a fixed-length collision-resistant hash function h is
constructed;

a techniques (e.g. the Merkle-Damgård transform) is
applied to extend h to arbitrary-length inputs.



Hash Functions From Block Ciphers
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Block ciphers can be used to build fixed-length
collision-resistant hash functions h.

There exist different constructions. Davies-Meyer construction
is one of the most common.

Given a block cipher with n as key length and ` as block- ength,
h is defined as follows:

h : {0, 1}n+` →{0, 1}`

(k, x) 7→ h(k, x) = Fk(x)⊕ x.
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Not known how to prove the collision resistance of h relying on
the assumption that F is a strong pseudorandom permutation.

Something similar to the random oracle model is used.

F is modelled as an ideal cipher (each key specifies a
uniform permutation Fk).

Each party has to query an oracle to compute F(k, x) or
F−1(k, y).



MD5
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MD5 was designed in 1991. It is now totally broken, as
collisions can be found in less than a minute on a PC!

MD5 has output length equal to 128. Given an input x:

the bit 1 is appended;

the bit 0 is appended until the length of the string is
congruent to 448 modulo 512;

the length of the original input is appended, encoded as a
64-bit string;

the padded string is divided into blocks of length 512. Each
block is divided into 16 chunks Mi of 32 bits each.
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For each block, 64 operations are executed. They are grouped
into 4 rounds, each of 16 operations.

At the very beginning, four 32-bit strings, A, B, C and D, are
initialised to constant values.

The i-th operation sends B in C, C in D and D in A. The
new value of B is obtained as

B+ ≪s[i] (F(B,C,D) + K[i] + Mg(i));

≪s[i] (·) denotes a bit rotation to the left of s[i] places,
where s is a fixed list;
the non-linear function F(·) and the index g(·) vary
depending on the round;
K[i] denotes a 32-bit constant, different for each operation.
Addition is done modulo 232.



MD5
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One MD5 operation (from wikipedia)

The string obtained after processing a block is added to the
value of (A||B||C||D) at the beginning of the four rounds,
obtaining a new initial state for the next block.



MD5
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Round 1
F(B,C,D) = (B ∧ C) ∨ (¬B ∧ D);

g(i) = i.

Round 2
F(B,C,D) = (B ∧ D) ∨ (C ∧ ¬D) ;

g(i) = 5i + 1 (mod 16).

Round 3
F(B,C,D) = B ⊕ C ⊕ D ;

g(i) = 3i + 5 (mod 16).

Round 4
F(B,C,D) = C ⊕ (B ∨ ¬D);

g(i) = 7i (mod 16).



Secure Hash Algorithms: SHA-1 and SHA-2
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A family of cryptographic hash functions standardised by NIST.

First, the Davies-Meyer construction is used to obtain a
fixed-length collision-resistant hash function from a block
cipher.

The block ciphers were specifically designed for this purpose.

SHACAL-1 - with block length equal to 160 - for SHA1.

SHACAL-2 - with block length equal to 256 - for SHA2.

Keys are 512-bit strings in both block ciphers.

Second, they are extended to handle arbitrary-length inputs
using the Merkle-Damgård transform.
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SHA-1 was introduced in 1995. Its use is not recommended (in
2017, a collision was obtained after ≈ 263 SHA-1 evaluations).

It has output length equal to 160.

Given an input x:

the same padding of MD5 is executed;

after the padding, each 512-bit block is expanded into
eighty 32-bit chunks Wj;

for 17 ≤ j ≤ 80, Wj := Wj−3 ⊕ Wj−8 ⊕ Wj−14 ⊕ Wj−16.
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For each block, 80 operations are executed. They are grouped
into 4 rounds, each of 20 operations.

At the very beginning, five 32-bit strings, A, B, C, D and E, are
initialised to constant values.

The t-th operation sends A in B, ≪30 (B) in C, C in D and
D in E. The new value of A is obtained as

≪5 (A) + E + F(B,C,D) + K[t] + Wt;

the non-linear function F(·) varies depending on the round;
K[t] denotes a 32-bit constant, different for each round.
Addition is done modulo 232.
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One SHA-1 operation (from wikipedia)

A blogpost on the functioning of SHA-1: http://www.
metamorphosite.com/one-way-hash-encryption-sha1-data-software

http://www.metamorphosite.com/one-way-hash-encryption-sha1-data-software
http://www.metamorphosite.com/one-way-hash-encryption-sha1-data-software
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Round 1
F(B,C,D) = (B ∧ C) ∨ (¬B ∧ D).

Round 2
F(B,C,D) = B ⊕ C ⊕ D.

Round 3
F(B,C,D) = (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D).

Round 4
F(B,C,D) = B ⊕ C ⊕ D.

The string obtained after processing a block is added to the
value of (A||B||C||D||E) at the beginning of the four rounds,
obtaining a new initial state for the next block.
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SHA-2 is a set of hash functions designed by the NSA and
published in 2001.

The output length is equal to 256.

Given an input x:

the same padding of MD5 and SHA-1 is executed;

after the padding, each 512-bit block is expanded into
sixty-four 32-bit chunks Wj;

for 17 ≤ j ≤ 80:

s0 := (≫7 (Wj−15)⊕ (≫18 (Wj−15)⊕ (≫3 (Wj−15)

s1 := (≫17 (Wj−2)⊕ (≫19 (Wj−2)⊕ (≫10 (Wj−2)

Wj := Wj−16 + s0 + Wj−7 + s1
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For each block, 64 operations are executed.

At the very beginning, eight 32-bit strings, A, B, C, D, E, F, G
and H are initialised to constant values.

The t-th operation sends A in B, B in C, C in D, E in F, F
in G and G in H. The new value of A is obtained as

Wt + K[t] + H + Ch(E,F,G) + Σ1(E) + Ma(A,B,C) + Σ0(A).

The new value of E is obtained as

Wt + K[t] + H + Ch(E,F,G) + Σ1(E) + D.

K[t] denotes a 32-bit constant, different for each round.
Addition is done modulo 232.
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One SHA-2 operation (from wikipedia)

A detailed description of SHA-2:
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf

http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf


SHA-256
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The logical functions are as follows:

Ch(E,F,G) = (E ∧ F)⊕ (¬E ∧ G)

Ma(A,B,C) = (A ∧ B)⊕ (A ∧ C)⊕ (B ∧ C)

Σ0(A) = (≫2 (A))⊕ (≫13 (A))⊕ (≫22 (A))

Σ1(E) = (≫6 (E))⊕ (≫11 (E))⊕ (≫25 (E))

The constant words, K[1], · · · ,K[64] are the first 32 bits of the
fractional parts of the cube roots of the first sixty-four primes.

The string obtained after processing a block is added to the
value of (A||B||C||D||E||F||G||H) before the 64 operations,
obtaining a new initial state for the next block.
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In 2012, Keccak was announced as the winner of the NIST
competition (called SHA-3) to design a new (family of) hash
function(s).

It uses an unkeyed permutation f with block length equal to
1600.

Keccak uses a new construction, named sponge construction for
the domain extension.
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The permutation f operates on blocks of length 1600. The
output length d lies in {224, 256, 384, 512}.

A rate r is fixed. The capacity is c = 1600− r. The bigger c, the
bigger the number of bits of security and the slower the
execution.

The digest is obtained after two phases: the absorbing phase,
and the squeezing phase.



SHA-3 - Absorbing

20/26

The initial input is padded:

the bit 1 is appended;

the bit 0 is appended until the length of the string is
congruent to r − 1 modulo r;

the bit 1 is appended.

The string is divided into n blocks M0, . . . ,Mn−1 of length r. For
each block, an evaluation of f is performed.

The state S is initialised as a string of 1600 zeros.

Mi is extended appending c = 1600− r zeros, obtaining M′
i .

The new state S is f (S ⊕ M′
i).



SHA-3 - Squeezing
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Z is initialised as the empty string.

While the length of Z is less than d, the first r bits of S are
appended to Z and S is updated applying f .

Z is truncated to d bits.
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Complete description: http://sponge.noekeon.org/CSF-0.1.pdf

http://sponge.noekeon.org/CSF-0.1.pdf


SHA-3 (Keccak)
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The permutation f works on a state S represented by a 5x5
matrix of 64-bit words.

The image is computed by repeating 24 times a round
composed by 5 steps: θ, ρ, π, χ and ι.

Only χ is not linear.
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