
Introduction to Cryptology

8.3 - Hash functions:
Practical Constructions

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

Constructing hash functions

2/26

Hash functions used in practice are commonly constructed in
two steps:

a fixed-length collision-resistant hash function h is
constructed;

a techniques (e.g. the Merkle-Damgård transform) is
applied to extend h to arbitrary-length inputs.

Hash Functions From Block Ciphers

3/26

Block ciphers can be used to build fixed-length
collision-resistant hash functions h.

There exist different constructions. Davies-Meyer construction
is one of the most common.

Given a block cipher with n as key length and ` as block- ength,
h is defined as follows:

h : {0, 1}n+` →{0, 1}`

(k, x) 7→ h(k, x) = Fk(x)⊕ x.

Hash Functions From Block Ciphers

3/26

Block ciphers can be used to build fixed-length
collision-resistant hash functions h.

There exist different constructions. Davies-Meyer construction
is one of the most common.

Given a block cipher with n as key length and ` as block- ength,
h is defined as follows:

h : {0, 1}n+` →{0, 1}`

(k, x) 7→ h(k, x) = Fk(x)⊕ x.

Hash Functions From Block Ciphers

3/26

Block ciphers can be used to build fixed-length
collision-resistant hash functions h.

There exist different constructions. Davies-Meyer construction
is one of the most common.

Given a block cipher with n as key length and ` as block- ength,
h is defined as follows:

h : {0, 1}n+` →{0, 1}`

(k, x) 7→ h(k, x) = Fk(x)⊕ x.

Hash Functions From Block Ciphers

4/26

Not known how to prove the collision resistance of h relying on
the assumption that F is a strong pseudorandom permutation.

Something similar to the random oracle model is used.

F is modelled as an ideal cipher (each key specifies a
uniform permutation Fk).

Each party has to query an oracle to compute F(k, x) or
F−1(k, y).

MD5

5/26

MD5 was designed in 1991. It is now totally broken, as
collisions can be found in less than a minute on a PC!

MD5 has output length equal to 128. Given an input x:

the bit 1 is appended;

the bit 0 is appended until the length of the string is
congruent to 448 modulo 512;

the length of the original input is appended, encoded as a
64-bit string;

the padded string is divided into blocks of length 512. Each
block is divided into 16 chunks Mi of 32 bits each.

MD5

5/26

MD5 was designed in 1991. It is now totally broken, as
collisions can be found in less than a minute on a PC!

MD5 has output length equal to 128.

Given an input x:

the bit 1 is appended;

the bit 0 is appended until the length of the string is
congruent to 448 modulo 512;

the length of the original input is appended, encoded as a
64-bit string;

the padded string is divided into blocks of length 512. Each
block is divided into 16 chunks Mi of 32 bits each.

MD5

5/26

MD5 was designed in 1991. It is now totally broken, as
collisions can be found in less than a minute on a PC!

MD5 has output length equal to 128. Given an input x:

the bit 1 is appended;

the bit 0 is appended until the length of the string is
congruent to 448 modulo 512;

the length of the original input is appended, encoded as a
64-bit string;

the padded string is divided into blocks of length 512. Each
block is divided into 16 chunks Mi of 32 bits each.

MD5

6/26

For each block, 64 operations are executed. They are grouped
into 4 rounds, each of 16 operations.

At the very beginning, four 32-bit strings, A, B, C and D, are
initialised to constant values.

The i-th operation sends B in C, C in D and D in A. The
new value of B is obtained as

B+ ≪s[i] (F(B,C,D) + K[i] + Mg(i));

≪s[i] (·) denotes a bit rotation to the left of s[i] places,
where s is a fixed list;
the non-linear function F(·) and the index g(·) vary
depending on the round;
K[i] denotes a 32-bit constant, different for each operation.
Addition is done modulo 232.

MD5

7/26

One MD5 operation (from wikipedia)

The string obtained after processing a block is added to the
value of (A||B||C||D) at the beginning of the four rounds,
obtaining a new initial state for the next block.

MD5

8/26

Round 1
F(B,C,D) = (B ∧ C) ∨ (¬B ∧ D);

g(i) = i.

Round 2
F(B,C,D) = (B ∧ D) ∨ (C ∧ ¬D) ;

g(i) = 5i + 1 (mod 16).

Round 3
F(B,C,D) = B ⊕ C ⊕ D ;

g(i) = 3i + 5 (mod 16).

Round 4
F(B,C,D) = C ⊕ (B ∨ ¬D);

g(i) = 7i (mod 16).

Secure Hash Algorithms: SHA-1 and SHA-2

9/26

A family of cryptographic hash functions standardised by NIST.

First, the Davies-Meyer construction is used to obtain a
fixed-length collision-resistant hash function from a block
cipher.

The block ciphers were specifically designed for this purpose.

SHACAL-1 - with block length equal to 160 - for SHA1.

SHACAL-2 - with block length equal to 256 - for SHA2.

Keys are 512-bit strings in both block ciphers.

Second, they are extended to handle arbitrary-length inputs
using the Merkle-Damgård transform.

Secure Hash Algorithms: SHA-1 and SHA-2

9/26

A family of cryptographic hash functions standardised by NIST.

First, the Davies-Meyer construction is used to obtain a
fixed-length collision-resistant hash function from a block
cipher.

The block ciphers were specifically designed for this purpose.

SHACAL-1 - with block length equal to 160 - for SHA1.

SHACAL-2 - with block length equal to 256 - for SHA2.

Keys are 512-bit strings in both block ciphers.

Second, they are extended to handle arbitrary-length inputs
using the Merkle-Damgård transform.

Secure Hash Algorithms: SHA-1 and SHA-2

9/26

A family of cryptographic hash functions standardised by NIST.

First, the Davies-Meyer construction is used to obtain a
fixed-length collision-resistant hash function from a block
cipher.

The block ciphers were specifically designed for this purpose.

SHACAL-1 - with block length equal to 160 - for SHA1.

SHACAL-2 - with block length equal to 256 - for SHA2.

Keys are 512-bit strings in both block ciphers.

Second, they are extended to handle arbitrary-length inputs
using the Merkle-Damgård transform.

Secure Hash Algorithms: SHA-1 and SHA-2

9/26

A family of cryptographic hash functions standardised by NIST.

First, the Davies-Meyer construction is used to obtain a
fixed-length collision-resistant hash function from a block
cipher.

The block ciphers were specifically designed for this purpose.

SHACAL-1 - with block length equal to 160 - for SHA1.

SHACAL-2 - with block length equal to 256 - for SHA2.

Keys are 512-bit strings in both block ciphers.

Second, they are extended to handle arbitrary-length inputs
using the Merkle-Damgård transform.

SHA-1

10/26

SHA-1 was introduced in 1995. Its use is not recommended (in
2017, a collision was obtained after ≈ 263 SHA-1 evaluations).

It has output length equal to 160.

Given an input x:

the same padding of MD5 is executed;

after the padding, each 512-bit block is expanded into
eighty 32-bit chunks Wj;

for 17 ≤ j ≤ 80, Wj := Wj−3 ⊕ Wj−8 ⊕ Wj−14 ⊕ Wj−16.

SHA-1

10/26

SHA-1 was introduced in 1995. Its use is not recommended (in
2017, a collision was obtained after ≈ 263 SHA-1 evaluations).

It has output length equal to 160. Given an input x:

the same padding of MD5 is executed;

after the padding, each 512-bit block is expanded into
eighty 32-bit chunks Wj;

for 17 ≤ j ≤ 80, Wj := Wj−3 ⊕ Wj−8 ⊕ Wj−14 ⊕ Wj−16.

SHA-1

11/26

For each block, 80 operations are executed. They are grouped
into 4 rounds, each of 20 operations.

At the very beginning, five 32-bit strings, A, B, C, D and E, are
initialised to constant values.

The t-th operation sends A in B, ≪30 (B) in C, C in D and
D in E. The new value of A is obtained as

≪5 (A) + E + F(B,C,D) + K[t] + Wt;

the non-linear function F(·) varies depending on the round;
K[t] denotes a 32-bit constant, different for each round.
Addition is done modulo 232.

SHA-1

12/26

One SHA-1 operation (from wikipedia)

A blogpost on the functioning of SHA-1: http://www.
metamorphosite.com/one-way-hash-encryption-sha1-data-software

http://www.metamorphosite.com/one-way-hash-encryption-sha1-data-software
http://www.metamorphosite.com/one-way-hash-encryption-sha1-data-software

SHA-1

13/26

Round 1
F(B,C,D) = (B ∧ C) ∨ (¬B ∧ D).

Round 2
F(B,C,D) = B ⊕ C ⊕ D.

Round 3
F(B,C,D) = (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D).

Round 4
F(B,C,D) = B ⊕ C ⊕ D.

The string obtained after processing a block is added to the
value of (A||B||C||D||E) at the beginning of the four rounds,
obtaining a new initial state for the next block.

SHA-1

13/26

Round 1
F(B,C,D) = (B ∧ C) ∨ (¬B ∧ D).

Round 2
F(B,C,D) = B ⊕ C ⊕ D.

Round 3
F(B,C,D) = (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D).

Round 4
F(B,C,D) = B ⊕ C ⊕ D.

The string obtained after processing a block is added to the
value of (A||B||C||D||E) at the beginning of the four rounds,
obtaining a new initial state for the next block.

SHA-2

14/26

SHA-2 is a set of hash functions designed by the NSA and
published in 2001.

The output length is equal to 256.

Given an input x:

the same padding of MD5 and SHA-1 is executed;

after the padding, each 512-bit block is expanded into
sixty-four 32-bit chunks Wj;

for 17 ≤ j ≤ 80:

s0 := (≫7 (Wj−15)⊕ (≫18 (Wj−15)⊕ (≫3 (Wj−15)

s1 := (≫17 (Wj−2)⊕ (≫19 (Wj−2)⊕ (≫10 (Wj−2)

Wj := Wj−16 + s0 + Wj−7 + s1

SHA-2

14/26

SHA-2 is a set of hash functions designed by the NSA and
published in 2001.

The output length is equal to 256. Given an input x:

the same padding of MD5 and SHA-1 is executed;

after the padding, each 512-bit block is expanded into
sixty-four 32-bit chunks Wj;

for 17 ≤ j ≤ 80:

s0 := (≫7 (Wj−15)⊕ (≫18 (Wj−15)⊕ (≫3 (Wj−15)

s1 := (≫17 (Wj−2)⊕ (≫19 (Wj−2)⊕ (≫10 (Wj−2)

Wj := Wj−16 + s0 + Wj−7 + s1

SHA-2

15/26

For each block, 64 operations are executed.

At the very beginning, eight 32-bit strings, A, B, C, D, E, F, G
and H are initialised to constant values.

The t-th operation sends A in B, B in C, C in D, E in F, F
in G and G in H. The new value of A is obtained as

Wt + K[t] + H + Ch(E,F,G) + Σ1(E) + Ma(A,B,C) + Σ0(A).

The new value of E is obtained as

Wt + K[t] + H + Ch(E,F,G) + Σ1(E) + D.

K[t] denotes a 32-bit constant, different for each round.
Addition is done modulo 232.

SHA-2

16/26

One SHA-2 operation (from wikipedia)

A detailed description of SHA-2:
http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf

http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf

SHA-256

17/26

The logical functions are as follows:

Ch(E,F,G) = (E ∧ F)⊕ (¬E ∧ G)

Ma(A,B,C) = (A ∧ B)⊕ (A ∧ C)⊕ (B ∧ C)

Σ0(A) = (≫2 (A))⊕ (≫13 (A))⊕ (≫22 (A))

Σ1(E) = (≫6 (E))⊕ (≫11 (E))⊕ (≫25 (E))

The constant words, K[1], · · · ,K[64] are the first 32 bits of the
fractional parts of the cube roots of the first sixty-four primes.

The string obtained after processing a block is added to the
value of (A||B||C||D||E||F||G||H) before the 64 operations,
obtaining a new initial state for the next block.

SHA-256

17/26

The logical functions are as follows:

Ch(E,F,G) = (E ∧ F)⊕ (¬E ∧ G)

Ma(A,B,C) = (A ∧ B)⊕ (A ∧ C)⊕ (B ∧ C)

Σ0(A) = (≫2 (A))⊕ (≫13 (A))⊕ (≫22 (A))

Σ1(E) = (≫6 (E))⊕ (≫11 (E))⊕ (≫25 (E))

The constant words, K[1], · · · ,K[64] are the first 32 bits of the
fractional parts of the cube roots of the first sixty-four primes.

The string obtained after processing a block is added to the
value of (A||B||C||D||E||F||G||H) before the 64 operations,
obtaining a new initial state for the next block.

SHA-256

17/26

The logical functions are as follows:

Ch(E,F,G) = (E ∧ F)⊕ (¬E ∧ G)

Ma(A,B,C) = (A ∧ B)⊕ (A ∧ C)⊕ (B ∧ C)

Σ0(A) = (≫2 (A))⊕ (≫13 (A))⊕ (≫22 (A))

Σ1(E) = (≫6 (E))⊕ (≫11 (E))⊕ (≫25 (E))

The constant words, K[1], · · · ,K[64] are the first 32 bits of the
fractional parts of the cube roots of the first sixty-four primes.

The string obtained after processing a block is added to the
value of (A||B||C||D||E||F||G||H) before the 64 operations,
obtaining a new initial state for the next block.

SHA-3 (Keccak)

18/26

In 2012, Keccak was announced as the winner of the NIST
competition (called SHA-3) to design a new (family of) hash
function(s).

It uses an unkeyed permutation f with block length equal to
1600.

Keccak uses a new construction, named sponge construction for
the domain extension.

SHA-3 (Keccak)

19/26

The permutation f operates on blocks of length 1600. The
output length d lies in {224, 256, 384, 512}.

A rate r is fixed. The capacity is c = 1600− r. The bigger c, the
bigger the number of bits of security and the slower the
execution.

The digest is obtained after two phases: the absorbing phase,
and the squeezing phase.

SHA-3 - Absorbing

20/26

The initial input is padded:

the bit 1 is appended;

the bit 0 is appended until the length of the string is
congruent to r − 1 modulo r;

the bit 1 is appended.

The string is divided into n blocks M0, . . . ,Mn−1 of length r. For
each block, an evaluation of f is performed.

The state S is initialised as a string of 1600 zeros.

Mi is extended appending c = 1600− r zeros, obtaining M′
i .

The new state S is f (S ⊕ M′
i).

SHA-3 - Squeezing

21/26

Z is initialised as the empty string.

While the length of Z is less than d, the first r bits of S are
appended to Z and S is updated applying f .

Z is truncated to d bits.

Keccak- Sponge Function

22/26

Complete description: http://sponge.noekeon.org/CSF-0.1.pdf

http://sponge.noekeon.org/CSF-0.1.pdf

SHA-3 (Keccak)

23/26

The permutation f works on a state S represented by a 5x5
matrix of 64-bit words.

The image is computed by repeating 24 times a round
composed by 5 steps: θ, ρ, π, χ and ι.

Only χ is not linear.

Further Reading I

24/26

Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing
efficient protocols.
In Proceedings of the 1st ACM conference on Computer
and communications security, pages 62–73. ACM, 1993.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche.
Keccak sponge function family main document.
Submission to NIST (Round 2), 3:30, 2009.

Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud,
and Prashant Puniya.
Merkle-Damgård revisited: How to construct a hash
function.
In Advances in Cryptology–CRYPTO 2005, pages 430–448.
Springer, 2005.

Further Reading II

25/26

Morris J Dworkin.
SHA-3 standard: Permutation-based hash and
extendable-output function.
No. Federal Inf. Process. Stds.(NIST FIPS)-202, 2015.

Pierre Karpman, Thomas Peyrin, and Marc Stevens.
Practical free-start collision attacks on 76-step SHA-1.
In Advances in Cryptology–CRYPTO 2015, pages 623–642.
Springer, 2015.

Neal Koblitz and Alfred J Menezes.
The random oracle model: a twenty-year retrospective.
Designs, Codes and Cryptography, pages 1–24, 2015.

Further Reading III

26/26

Alfred J Menezes, Paul C Van Oorschot, and Scott A
Vanstone.
Handbook of applied cryptography.
CRC press, 1996.

Marc Stevens.
New collision attacks on SHA-1 based on optimal joint
local-collision analysis.
In Advances in Cryptology–EUROCRYPT 2013, pages
245–261. Springer, 2013.

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange
Albertini, and Yarik Markov.
The first collision for full SHA-1.
In Annual International Cryptology Conference–CRYPTO
2017, pages 570–596. Springer, CHam, 2005.

