Sheet 3

Preamble

This sheet is split into two parts. Problems 1-2 may be attempted after lecture 6 and problems 3-6 should be attempted after lecture 8.

Questions

Problem 1

Prove that the following modifications of CBC-MAC do not yield a secure fixed-length MAC:

- (a) Modify CBC-MAC so that a random IV is used each time a tag is computed (and the IV is output along with t_l). I.e., $t_0 \leftarrow \{0,1\}^n$ is chosen uniformly at random rather than being fixed to 0^n , and the tag is (t_0, t_l) .
- (b) Modify CBC-MAC so that all blocks t_1, \ldots, t_l are output (rather than just t_l).

Problem 2

In this question we define basic notation required for protocol exchange and ask you what vulnerabilities several protocols may possess. We define the following notation.

- We let A, B denote Alice and Bob respectively.
- We let C denote a trusted third-party server, who adheres honestly to the protocol.
- Let Id_A, Id_B, Id_C, Id_E , also denote the publicly known identities of Alice, Bob, the trusted third-party server and Eve, respectively.
- We let E denote Eve, an adversary who has the power to passively eavesdrop, modify, block, store or entirely replace any transmission they perceive.
- We let N_i (for $i \in \mathbb{N}$) denote a *Nonce*, or a randomly sampled number used only once. Any party may create any number of nonces.
- $\{m\}_{k(X,Y)}$ denotes that the message *m* has been encrypted with a symmetric key *k* shared by *X* and *Y*. *m* may be recursively defined as m = m', m'' or $m = \{m'\}_k$ or $m = Id_x$ or $m = N_i$.
- n. $X :\longrightarrow Y : m$ is interpreted as "In step n, X sends Y the message m".

Alice and Bob live in an almost perfect world, where they have unbreakable symmetric-key encryption. This world (much like yourselves in the course) has not yet seen the introduction of public-key cryptography. The only thing that they both know is the public identity of each other and that C is a trusted third-party server, with whom they share the keys with (A and C both possess knowledge of k(A, C) whilst B and C both possess knowledge of k(B, C)).

In protocol 1) Alice and Bob seek to establish a shared secret key k(A, B). In protocol 2), Bob seeks to confirm that he is communicating with Alice.

Can the protocols be subverted by Eve? Consider a range of attacks such as key recovery, impersonation, ect.

Protocol 1: Key Establishment
1. $A \longrightarrow B$: $Id_A, \{Id_A, N_a\}_{k(A,C)}$
2. $B \longrightarrow C$: Id_B , $\{Id_A, \{Id_A, N_a\}_{k(A,C)}\}_{k(B,C)}$
3. $C \longrightarrow B$: $Id_C, \{Id_A, N_a\}_{k(B,C)}$
4. $k(A,B) := N_a$

Protocol 2: Identity establishment 1. $A \longrightarrow B$: Id_A 2. $B \longrightarrow A$: N_b 3. $A \longrightarrow B$: $\{N_b\}_{k(A,C)}$ 4. $B \longrightarrow C$: $\{A, \{N_b\}_{k(A,C)}\}_{k(B,C)}$ 5. $C \longrightarrow B$: $\{N_b\}_{k(B,C)}$

Problem 3

Let (Gen_1, H_1) , (Gen_2, H_2) be two hash functions. Define (Gen, H) so that Gen runs Gen₁ and Gen₂ to obtain keys s_1 and s_2 , respectively.

Then define $H^{s_1,s_2}(x) := H_1^{s_1}(x) ||H_2^{s_2}(x).$

- (a) Prove that if at least one of (Gen_1, H_1) and (Gen_2, H_2) is collision resistant, then (Gen, H) is collision resistant.
- (b) Is (Gen, H) pre-image resistant if at least one of (Gen_1, H_1) and (Gen_2, H_2) is pre-image resistant?

Problem 4

The definition of collision-resistance for hash-functions was provided to you in the lectures:

Definition (Collision-resistant hash-function)

A hash-function $\Pi = (\text{Gen}, H)$ is collision resistant if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that the success probability of \mathcal{A} winning the Hash-coll_{\mathcal{A},Π}(n) experiment defined below is negligible.

The collision-finding experiment $\mathsf{Hash-coll}_{\mathcal{A},\Pi}(n)$:

- 1. A key $s \leftarrow \text{Gen}(1^n)$ is generated.
- 2. The adversary \mathcal{A} is given s and outputs $x, x' \in \{0, 1\}^*$ (the length is restricted to $x, x' \in \{0, 1\}^{l'(n)}$ if Π is a fixed length hash-function).
- 3. The output of the experiment is defined to be 1 if and only if $x \neq x'$ and $H^{s}(x) = H^{s}(x')$. In this case we say that \mathcal{A} has found a collision.

Create a formal definition for *second-preimage resistance* as given in the lectures and prove that a collision-resistant hash-function is also second-preimage resistant.

Problem 5

Let (Gen, H) be a collision-resistant hash function. Is (Gen, \hat{H}) defined by $\hat{H}^s(x) := H^s(H^s(x))$ necessarily collision resistant?

Problem 6

Before HMAC was invented, it was quite common to define a MAC by $Mac_k(m) = H^s(k||m)$ where H is a collision-resistant hash-function. Show that this is not a secure MAC when H is constructed via the Merkle-Damgård transform.