Introduction to Cryptology 9.2 - Hybrid Encryption

Federico Pintore Mathematical Institute, University of Oxford (UK)

A combination of a public-key scheme and a symmetric-key encryption can be used to deal with arbitrary-length messages.

A combination of a public-key scheme and a symmetric-key encryption can be used to deal with arbitrary-length messages.

- The public-key primitive, called key-encapsulation mechanism (KEM), is used to obtain a shared key.
- The shared key is used with a symmetric-key encryption scheme, called data-encapsulation mechanism.

A combination of a public-key scheme and a symmetric-key encryption can be used to deal with arbitrary-length messages.

- The public-key primitive, called key-encapsulation mechanism (KEM), is used to obtain a shared key.
- The shared key is used with a symmetric-key encryption scheme, called data-encapsulation mechanism.

Symmetric-key encryption schemes are significantly faster (2 or 3 orders of magnitude) than public ones.

Key-encapsulation mechanisms (KEMs)

A key-encapsulation mechanism (KeyGen, Encaps, Decaps) consists of three algorithms:

- ▶ $(PK, SK) \leftarrow KeyGen(n)$: on input a security parameter n, it returns a pair of keys (PK, SK) the public key PK and its matching secret key SK each of length n.
- **▶** (c,k) ← Encaps(PK, n): on input a public key PK and n, it outputs a ciphertext c and a key $k \in \{0,1\}^{\ell(n)}$.
- ▶ $k/\bot \leftarrow \text{Decaps}(SK, c)$: deterministic algorithm that takes a secret key SK and a ciphertext c, and returns a key k or \bot .

Correctness: for any (PK, SK) output by KeyGen on input n it holds

$$\Pr(\text{Decaps}(SK, c) = k | (c, k) \leftarrow \text{Encaps}(PK, n)) = 1$$

CPA Indistinguishability $\text{KEM}_{A,\Pi}^{\text{cpa}}(n)$

CPA Indistinguishability $\text{KEM}_{\mathcal{A},\Pi}^{\text{cpa}}(n)$

Challenger Ch

Adversary \mathcal{A}

$$(PK, SK) \leftarrow KeyGen(n)$$

$$(c, k) \leftarrow Encaps(PK, n)$$

$$b \leftarrow \{0, 1\}$$

$$If b = 0, \hat{k} := k$$

$$else \hat{k} \leftarrow \{0, 1\}^{\ell(n)}$$

$$(PK, c, \hat{k})$$

Output their guess b'

CPA Indistinguishability $\text{KEM}_{\mathcal{A},\Pi}^{\text{cpa}}(n)$

Challenger Ch

Adversary \mathcal{A}

$$\begin{aligned} (\mathrm{PK},\mathrm{SK}) &\leftarrow \mathrm{KeyGen}(n) \\ (c,k) &\leftarrow \mathrm{Encaps}(\mathrm{PK},n) \\ b &\leftarrow \{0,1\} \\ & \text{If } b = 0, \, \hat{k} := k \\ & \text{else } \hat{k} \leftarrow \{0,1\}^{\ell(n)} \end{aligned} \qquad \xrightarrow{(\mathrm{PK},c,\hat{k})}$$

Output their guess b'

 \mathcal{A} wins the game, i.e. $\text{KEM}_{\mathcal{A},\Pi}^{\text{cpa}}(n) = 1$, if b' = b.

CPA Indistinguishability $\text{KEM}_{\mathcal{A},\Pi}^{\text{cpa}}(n)$

Challenger Ch

Adversary \mathcal{A}

$$(PK, SK) \leftarrow KeyGen(n)$$

$$(c,k) \leftarrow \operatorname{Encaps}(\operatorname{PK},n)$$

$$b \leftarrow \{0,1\}$$

If
$$b = 0$$
, $\hat{k} := k$
else $\hat{k} \leftarrow \{0, 1\}^{\ell(n)}$

$$\xrightarrow{ (\mathrm{PK},c,\hat{k}) }$$

Output their guess b'

 \mathcal{A} wins the game, i.e. $\text{KEM}_{A,\Pi}^{\text{cpa}}(n) = 1$, if b' = b.

Definition

A KEM Π is CPA-secure if, for every PPT adversary A, it holds

$$\operatorname{Adv}_{A\Pi}^{\operatorname{cpa}}(n) = \Pr(\operatorname{KEM}_{A\Pi}^{\operatorname{cpa}}(n) = 1) \le 1/2 + \operatorname{negl}(n)$$
.

A hybrid encryption scheme (KeyGen^{hy}, Enc^{hy}, Dec^{hy}) is a public-key encryption scheme obtained combining a KEM $\Pi = (\text{KeyGen, Encaps, Decaps})$ and a symmetric-key encryption scheme E = (KeyGen', Enc, Dec) as follows.

- ▶ $(PK, SK) \leftarrow KeyGen^{hy}(n)$: it runs KeyGen on input a security parameter n, and returns its output (PK, SK).
- **▶** $(c,c') \leftarrow \operatorname{Enc}^{hy}(\operatorname{PK}, m \in \{0,1\}^*)$: given a public key PK and a message m it
 - ightharpoonup computes $(c,k) \leftarrow \text{Encaps}(PK, n)$;
 - computes $c' \leftarrow \operatorname{Enc}(k, m)$;
 - outputs the ciphertext (c, c').
- **▶** $m \leftarrow \text{Dec}^{hy}(SK, (c, c'))$: on input a secret key SK and a ciphertext (c, c'), it
 - ightharpoonup computes $k \leftarrow \text{Decaps}(SK, c)$;
 - outputs $m \leftarrow \mathrm{Dec}(k, c')$.

Hybrid Encryption: Efficiency

Consider $\alpha = \text{cost}(\text{Encaps}(\cdot, n))$ and $\beta = \text{cost}(\text{Enc}(\cdot, 1 \text{ bit}))$ for a fixed security parameter n.

Hybrid Encryption: Efficiency

Consider $\alpha = \text{cost}(\text{Encaps}(\cdot, n))$ and $\beta = \text{cost}(\text{Enc}(\cdot, 1 \text{ bit}))$ for a fixed security parameter n.

To encrypt a message m, the cost per bit is:

$$cost(\operatorname{Enc}^{hy}(\cdot, 1 \text{ bit})) = \frac{\alpha + \beta \cdot |m|}{|m|} = \frac{\alpha}{|m|} + \beta.$$

Hybrid Encryption: Efficiency

Consider $\alpha = \text{cost}(\text{Encaps}(\cdot, n))$ and $\beta = \text{cost}(\text{Enc}(\cdot, 1 \text{ bit}))$ for a fixed security parameter n.

To encrypt a message m, the cost per bit is:

$$cost(Enc^{hy}(\cdot, 1 \text{ bit})) = \frac{\alpha + \beta \cdot |m|}{|m|} = \frac{\alpha}{|m|} + \beta.$$

For a sufficiently long m, $cost(Enc^{hy}(\cdot, 1 \text{ bit}))$ approaches β , i.e.

$$cost(Enc^{hy}(\cdot, 1 \text{ bit})) \approx cost(Enc(\cdot, 1 \text{ bit})).$$

Theorem

Consider the hybrid encryption scheme E^{hy} . If

- **■** *E* = (KeyGen', Enc, Dec) is a symmetric-key encryption scheme which has indistinguishable encryptions in the presence of an eavesdropper,

then E^{hy} is a CPA-secure public-key encryption scheme.

Proof

Let \mathcal{A}^{hy} be an adversary playing the PubK^{eav}_{\mathcal{A}^{hy},S^{hy}}(n) game. The goal is proving that:

$$\Pr(\operatorname{PubK}^{\operatorname{eav}}_{\mathcal{A}^{hy},S^{hy}}(n)=1) \leq \frac{1}{2} + \operatorname{negl}(n).$$

Proof

Let \mathcal{A}^{hy} be an adversary playing the PubK^{eav}_{\mathcal{A}^{hy},S^{hy}}(n) game. The goal is proving that:

$$\Pr(\operatorname{PubK}^{\operatorname{eav}}_{\mathcal{A}^{hy},\mathcal{S}^{hy}}(n) = 1) \le \frac{1}{2} + \operatorname{negl}(n).$$

From the union formula and the definition of conditional probability we deduce:

$$\Pr(\operatorname{PubK}_{\mathcal{A}^{hy},\mathcal{S}^{hy}}^{\operatorname{eav}}(n) = 1) = \frac{1}{2}\Pr(\mathcal{A}^{hy} \text{ outputs } 0 | m = m_0) + \frac{1}{2}\Pr(\mathcal{A}^{hy} \text{ outputs } 1 | m = m_1).$$

Using \mathcal{A}^{hy} as a subroutine, we construct an adversary \mathcal{A}_1 against the CPA-security of Π .

- ▶ A_1 receives (PK, c, \hat{k}) from Ch and sends PK to A^{hy} ;
- upon reception of (m_0, m_1) from \mathcal{A}^{hy} , it obtains c' running Enc on input \hat{k} and m_0 , and sends (c, c') to \mathcal{A}^{hy} ;
- ▶ \mathcal{A}_1 outputs the bit b' received from \mathcal{A}^{hy} .

$$\Pr(\mathcal{A}_1 \text{ outputs } 0|b=0) = \Pr(\mathcal{A}^{hy} \text{ outputs } 0|\hat{k}=k, m=m_0)$$

 $\Pr(\mathcal{A}_1 \text{ outputs } 1|b=1) = \Pr(\mathcal{A}^{hy} \text{ outputs } 1|\hat{k}=k', m=m_0)$

Since the key-encapsulation scheme Π is CPA-secure, we have:

$$\Pr(\text{KEM}_{\mathcal{A}_{1},\Pi}^{\text{cpa}}(n) = 1) = \frac{1}{2} \Pr(\mathcal{A}_{1} \text{ outputs } 0 | b = 0) +$$

$$+ \frac{1}{2} \Pr(\mathcal{A}_{1} \text{ outputs } 1 | b = 1) =$$

$$= \frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 0 | \hat{k} = k, m = m_{0}) +$$

$$+ \frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 1 | \hat{k} = k', m = m_{0}) \leq$$

$$\leq \frac{1}{2} + \text{negl}_{1}(n)$$

Using \mathcal{A}^{hy} as a subroutine, we construct an adversary \mathcal{A}_2 against the CPA-security of Π .

- ▶ A_2 receives (PK, c, \hat{k}) from Ch and sends PK to A^{hy} ;
- upon reception of (m_0, m_1) from \mathcal{A}^{hy} , it obtains c' running Enc on input \hat{k} and m_1 , and sends (c, c') to \mathcal{A}^{hy} ;
- ▶ A_2 outputs 1 b', where b' is the bit received from A^{hy} .

$$\Pr(\mathcal{A}_2 \text{ outputs } 0|b=0) = \Pr(\mathcal{A}^{hy} \text{ outputs } 1|\hat{k}=k, m=m_1)$$

 $\Pr(\mathcal{A}_2 \text{ outputs } 1|b=1) = \Pr(\mathcal{A}^{hy} \text{ outputs } 0|\hat{k}=k', m=m_1)$

Since the key-encapsulation scheme Π is CPA-secure, we have:

$$\Pr(\text{KEM}_{\mathcal{A}_2,\Pi}^{\text{cpa}}(n) = 1) = \frac{1}{2} \Pr(\mathcal{A}_2 \text{ outputs } 0 | b = 0) +$$

$$+ \frac{1}{2} \Pr(\mathcal{A}_2 \text{ outputs } 1 | b = 1) =$$

$$= \frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 1 | \hat{k} = k, m = m_1) +$$

$$+ \frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 0 | \hat{k} = k', m = m_1) \leq$$

$$\leq \frac{1}{2} + \text{negl}_2(n)$$

Using \mathcal{A}^{hy} as a subroutine, we construct an adversary \mathcal{A}' against the indistinguishability of E.

- **▶** \mathcal{A}' runs KeyGen, obtaining (PK, SK). They compute $(c,k) \leftarrow \text{Encaps}(\text{PK},n)$ and send PK to \mathcal{A}^{hy} .
- Upon reception of (m_0, m_1) from \mathcal{A}^{hy} , \mathcal{A}' sends them to the challenger, receiving a ciphertext c';
- \mathcal{A}' sends (c,c') to \mathcal{A}^{hy} .
- **▶** \mathcal{A}' outputs the bit b' received from \mathcal{A}^{hy} .

$$\Pr(\mathcal{A}' \text{ outputs } 0|b=0) = \Pr(\mathcal{A}^{hy} \text{ outputs } 0|\hat{k}=k', m=m_0)$$

 $\Pr(\mathcal{A}' \text{ outputs } 1|b=1) = \Pr(\mathcal{A}^{hy} \text{ outputs } 1|\hat{k}=k', m=m_1)$

The symmetric-key encryption scheme E has indistinguishable encryptions in the presence of an eavesdropper. Therefore:

$$\begin{split} \Pr(\operatorname{PrivK}^{\operatorname{eav}}_{\mathcal{A}',E}(n) &= 1) = \frac{1}{2} \Pr(\mathcal{A}' \text{ outputs } 0 | b = 0) + \\ &+ \frac{1}{2} \Pr(\mathcal{A}' \text{ outputs } 1 | b = 1) = \\ &= \frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 0 | \hat{k} = k', m = m_0) + \\ &+ \frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 1 | \hat{k} = k', m = m_1) \leq \\ &\leq \frac{1}{2} + \operatorname{negl}'(n) \end{split}$$

 $\operatorname{negl}_1(n) + \operatorname{negl}_2(n) + \operatorname{negl}'(n)$ is a negligible function $\operatorname{negl}(n)$.

Summing all the above inequalities we obtain:

$$\frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 0 | \hat{k} = k, m = m_0) +$$

$$\frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 1 | \hat{k} = k', m = m_0) +$$

$$\frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 1 | \hat{k} = k, m = m_1) +$$

$$\frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 0 | \hat{k} = k', m = m_1) +$$

$$\frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 0 | \hat{k} = k', m = m_0) +$$

$$\frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 0 | \hat{k} = k', m = m_0) +$$

$$\frac{1}{2} \Pr(\mathcal{A}^{hy} \text{ outputs } 1 | \hat{k} = k', m = m_1)$$

$$\leq \frac{3}{2} + \operatorname{negl}(n).$$

Furthermore, we have:

$$\begin{split} &\frac{1}{2}\Pr(\mathcal{A}^{hy} \text{ outputs } 1|\hat{k}=k', m=m_0) + \\ &\frac{1}{2}\Pr(\mathcal{A}^{hy} \text{ outputs } 0|\hat{k}=k', m=m_0) = \frac{1}{2} \end{split}$$

and

$$\frac{1}{2}\Pr(\mathcal{A}^{hy} \text{ outputs } 0|\hat{k}=k', m=m_1) +$$

$$\frac{1}{2}\Pr(\mathcal{A}^{hy} \text{ outputs } 1|\hat{k}=k', m=m_1) = \frac{1}{2}.$$

Hence, it remains

$$\begin{split} &\frac{1}{2}\Pr(\mathcal{A}^{hy} \text{ outputs } 0|\hat{k}=k, m=m_0) + \\ &\frac{1}{2}\Pr(\mathcal{A}^{hy} \text{ outputs } 1|\hat{k}=k, m=m_1) = \\ &\Pr(\text{PubK}^{\text{eav}}_{\mathcal{A}^{hy}, \mathcal{S}^{hy}}) \leq \frac{1}{2} + \text{negl}(n)\,, \end{split}$$

which concludes the proof.

The definition of CCA-security of a KEM relies on an game, similar to $\text{KEM}_{\mathcal{A},\Pi}^{\text{cpa}}(n)$, where \mathcal{A} is also given access to a decapsulation oracle Decaps(SK, ·).

The definition of CCA-security of a KEM relies on an game, similar to $\text{KEM}_{\mathcal{A},\Pi}^{\text{cpa}}(n)$, where \mathcal{A} is also given access to a decapsulation oracle Decaps(SK, ·).

Theorem

If Π is a CCA-secure key-encapsulation mechanism and E is a CCA-secure symmetric-key encryption scheme, the corresponding hybrid encryption scheme E^{hy} is a CCA-secure public-key encryption scheme.

Further Reading I

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-Key Encryption in a Multi-user Setting: Security Proofs and Improvements.

In Bart Preneel, editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 259–274. Springer Berlin Heidelberg, 2000.

Dan Boneh.

Simplified OAEP for the RSA and Rabin Functions. In Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 275–291. Springer Berlin Heidelberg, 2001.

Further Reading II

Ronald Cramer and Victor Shoup.

Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack.

SIAM Journal on Computing, 33(1):167–226, 2003.

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir.

New attacks on Feistel Structures with Improved Memory Complexities.

In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages 433–454, 2015.

Further Reading III

Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and Adi Shamir.

Collision-Based Power Analysis of Modular Exponentiation Using Chosen-Message Pairs.

In Cryptographic Hardware and Embedded Systems - CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings, pages 15–29, 2008.