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A combination of a public-key scheme and a symmetric-key
encryption can be used to deal with arbitrary-length messages.

The public-key primitive, called key-encapsulation
mechanism (KEM), is used to obtain a shared key.

The shared key is used with a symmetric-key encryption
scheme, called data-encapsulation mechanism.

Symmetric-key encryption schemes are significantly faster (2 or
3 orders of magnitude) than public ones.
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A key-encapsulation mechanism (KeyGen,Encaps,Decaps)
consists of three algorithms:

(PK,SK)← KeyGen(n): on input a security parameter n,
it returns a pair of keys (PK,SK) - the public key PK and
its matching secret key SK - each of length n.

(c, k)← Encaps(PK, n): on input a public key PK and n, it
outputs a ciphertext c and a key k ∈ {0, 1}`(n).

k/⊥ ← Decaps(SK, c): deterministic algorithm that takes a
secret key SK and a ciphertext c, and returns a key k or ⊥.

Correctness: for any (PK,SK) output by KeyGen on input n it
holds

Pr(Decaps(SK, c) = k|(c, k)← Encaps(PK, n)) = 1
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CPA Indistinguishability KEMcpa
A,Π(n)

Challenger Ch Adversary A

(PK,SK)← KeyGen(n)

(c, k)← Encaps(PK, n)

b← {0, 1}

If b = 0, k̂ := k
else k̂← {0, 1}`(n)

(PK,c,k̂)−−−−−−−−→

Output their guess b′

A wins the game, i.e. KEMcpa
A,Π(n) = 1, if b′ = b.

Definition
A KEM Π is CPA-secure if, for every PPT adversary A, it holds

Advcpa
A,Π(n) = Pr(KEMcpa

A,Π(n) = 1) ≤ 1/2 + negl(n) .
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A hybrid encryption scheme (KeyGenhy,Enchy,Dechy) is a
public-key encryption scheme obtained combining a KEM
Π = (KeyGen,Encaps,Decaps) and a symmetric-key encryption
scheme E = (KeyGen′,Enc,Dec) as follows.

(PK,SK)← KeyGenhy(n): it runs KeyGen on input a
security parameter n, and returns its output (PK,SK).

(c, c′)← Enchy(PK,m ∈ {0, 1}∗): given a public key PK
and a message m it

computes (c, k)← Encaps(PK, n);
computes c′ ← Enc(k,m);
outputs the ciphertext (c, c′).

m← Dechy(SK, (c, c′)): on input a secret key SK and a
ciphertext (c, c′), it

computes k← Decaps(SK, c);
outputs m← Dec(k, c′).
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Consider α = cost(Encaps(·, n)) and β = cost(Enc(·, 1 bit)) for a
fixed security parameter n.

To encrypt a message m, the cost per bit is:

cost(Enchy(·, 1 bit)) = α+ β · |m|
|m|

=
α

|m|
+ β.

For a sufficiently long m, cost(Enchy(·, 1 bit)) approaches β, i.e.

cost(Enchy(·, 1 bit)) ≈ cost(Enc(·, 1 bit)).
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Theorem
Consider the hybrid encryption scheme Ehy. If

Π = (KeyGen,Encaps,Decaps) is a CPA-secure
key-encapsulation mechanism,

E = (KeyGen′,Enc,Dec) is a symmetric-key encryption
scheme which has indistinguishable encryptions in the
presence of an eavesdropper,

then Ehy is a CPA-secure public-key encryption scheme.
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Proof

Let Ahy be an adversary playing the PubKeav
Ahy,Shy(n) game. The

goal is proving that:

Pr(PubKeav
Ahy,Shy(n) = 1) ≤ 1

2
+ negl(n) .

From the union formula and the definition of conditional
probability we deduce:

Pr(PubKeav
Ahy,Shy(n) = 1) =

1

2
Pr(Ahy outputs 0|m = m0)

+
1

2
Pr(Ahy outputs 1|m = m1).
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Using Ahy as a subroutine, we construct an adversary A1

against the CPA-security of Π.

A1 receives (PK, c, k̂) from Ch and sends PK to Ahy;

upon reception of (m0,m1) from Ahy, it obtains c′ running
Enc on input k̂ and m0, and sends (c, c′) to Ahy;

A1 outputs the bit b′ received from Ahy.



Security of the Hybrid Encryption Scheme

10/24

Pr(A1 outputs 0|b = 0) = Pr(Ahy outputs 0|k̂ = k,m = m0)

Pr(A1 outputs 1|b = 1) = Pr(Ahy outputs 1|k̂ = k′,m = m0)
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Since the key-encapsulation scheme Π is CPA-secure, we have:

Pr(KEMcpa
A1,Π

(n) = 1) =
1

2
Pr(A1 outputs 0|b = 0)+

+
1

2
Pr(A1 outputs 1|b = 1) =

=
1

2
Pr(Ahy outputs 0|k̂ = k,m = m0)+

+
1

2
Pr(Ahy outputs 1|k̂ = k′,m = m0) ≤

≤ 1

2
+ negl1(n)
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Using Ahy as a subroutine, we construct an adversary A2

against the CPA-security of Π.

A2 receives (PK, c, k̂) from Ch and sends PK to Ahy;

upon reception of (m0,m1) from Ahy, it obtains c′ running
Enc on input k̂ and m1, and sends (c, c′) to Ahy;

A2 outputs 1− b′, where b′ is the bit received from Ahy.
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Pr(A2 outputs 0|b = 0) = Pr(Ahy outputs 1|k̂ = k,m = m1)

Pr(A2 outputs 1|b = 1) = Pr(Ahy outputs 0|k̂ = k′,m = m1)
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Since the key-encapsulation scheme Π is CPA-secure, we have:

Pr(KEMcpa
A2,Π

(n) = 1) =
1

2
Pr(A2 outputs 0|b = 0)+

+
1

2
Pr(A2 outputs 1|b = 1) =

=
1

2
Pr(Ahy outputs 1|k̂ = k,m = m1)+

+
1

2
Pr(Ahy outputs 0|k̂ = k′,m = m1) ≤

≤ 1

2
+ negl2(n)
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Using Ahy as a subroutine, we construct an adversary A′

against the indistinguishability of E.

A′ runs KeyGen, obtaining (PK,SK). They compute
(c, k)← Encaps(PK, n) and send PK to Ahy.

Upon reception of (m0,m1) from Ahy, A′ sends them to the
challenger, receiving a ciphertext c′;

A′ sends (c, c′) to Ahy.

A′ outputs the bit b′ received from Ahy.
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Pr(A′ outputs 0|b = 0) = Pr(Ahy outputs 0|k̂ = k′,m = m0)

Pr(A′ outputs 1|b = 1) = Pr(Ahy outputs 1|k̂ = k′,m = m1)
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The symmetric-key encryption scheme E has indistinguishable
encryptions in the presence of an eavesdropper. Therefore:

Pr(PrivKeav
A′,E(n) = 1) =

1

2
Pr(A′ outputs 0|b = 0)+

+
1

2
Pr(A′ outputs 1|b = 1) =

=
1

2
Pr(Ahy outputs 0|k̂ = k′,m = m0)+

+
1

2
Pr(Ahy outputs 1|k̂ = k′,m = m1) ≤

≤ 1

2
+ negl′(n)
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negl1(n) + negl2(n) + negl′(n) is a negligible function negl(n).

Summing all the above inequalities we obtain:

1

2
Pr(Ahy outputs 0|k̂ = k,m = m0)+

1

2
Pr(Ahy outputs 1|k̂ = k′,m = m0)+

1

2
Pr(Ahy outputs 1|k̂ = k,m = m1)+

1

2
Pr(Ahy outputs 0|k̂ = k′,m = m1)+

1

2
Pr(Ahy outputs 0|k̂ = k′,m = m0)+

1

2
Pr(Ahy outputs 1|k̂ = k′,m = m1)

≤ 3

2
+ negl(n).
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Furthermore, we have:

1

2
Pr(Ahy outputs 1|k̂ = k′,m = m0)+

1

2
Pr(Ahy outputs 0|k̂ = k′,m = m0) =

1

2

and

1

2
Pr(Ahy outputs 0|k̂ = k′,m = m1)+

1

2
Pr(Ahy outputs 1|k̂ = k′,m = m1) =

1

2
.
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Hence, it remains

1

2
Pr(Ahy outputs 0|k̂ = k,m = m0)+

1

2
Pr(Ahy outputs 1|k̂ = k,m = m1) =

Pr(PubKeav
Ahy,Shy) ≤

1

2
+ negl(n) ,

which concludes the proof.
�
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The definition of CCA-security of a KEM relies on an game,
similar to KEMcpa

A,Π(n), where A is also given access to a
decapsulation oracle Decaps(SK, ·).

Theorem
If Π is a CCA-secure key-encapsulation mechanism and E is a
CCA-secure symmetric-key encryption scheme, the
corresponding hybrid encryption scheme Ehy is a CCA-secure
public-key encryption scheme.
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