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Hybrid Encryption

A combination of a public-key scheme and a symmetric-key
encryption can be used to deal with arbitrary-length messages.
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Hybrid Encryption

A combination of a public-key scheme and a symmetric-key
encryption can be used to deal with arbitrary-length messages.

= The public-key primitive, called key-encapsulation
mechanism (KEM), is used to obtain a shared key.

= The shared key is used with a symmetric-key encryption
scheme, called data-encapsulation mechanism.

Symmetric-key encryption schemes are significantly faster (2 or
3 orders of magnitude) than public ones.
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Key-encapsulation mechanisms (KEMs)

A key-encapsulation mechanism (KeyGen, Encaps, Decaps)
consists of three algorithms:

= (PK,SK) <+ KeyGen(n): on input a security parameter n,
it returns a pair of keys (PK, SK) - the public key PK and
its matching secret key SK - each of length n.

= (c,k) < Encaps(PK,n): on input a public key PK and n, it
outputs a ciphertext ¢ and a key k € {0,1}°",

= k/L <+ Decaps(SK,c): deterministic algorithm that takes a
secret key SK and a ciphertext ¢, and returns a key k or L.

Correctness: for any (PK, SK) output by KeyGen on input » it
holds
Pr(Decaps(SK, ¢) = k|(c, k) + Encaps(PK,n)) =1
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KEMs - Definition of Security

CPA Indistinguishability KEM{'};(n)
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CPA Indistinguishability KEM{'};(n)

Challenger Ch Adversary A
(PK, SK) + KeyGen(n)
(¢, k) < Encaps(PK, n)
b« {0,1}

Ifb=0,k:=k :
~ Y (PK,c,k)
else k + {0,1}*™

Output their guess b’
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KEMs - Definition of Security

CPA Indistinguishability KEM{'};(n)

Challenger Ch Adversary A
(PK, SK) + KeyGen(n)
(¢, k) < Encaps(PK, n)
b« {0,1}

Ifb=0,k:=k .
N (PK,c,k)
else k + {0,1}*™

Output their guess b’

A wins the game, i.e. KEM}(n) = 1, if b =b.
Definition
A KEM II is CPA-secure if, for every PPT adversary A, it holds
Advff%(n) = Pr(KEMi{”%(n) =1)<1/2+negl(n). o
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Hybrid Encryption

A hybrid encryption scheme (KeyGen™, Enc” Dec™) is a
public-key encryption scheme obtained combining a KEM

IT = (KeyGen, Encaps, Decaps) and a symmetric-key encryption
scheme E = (KeyGen’, Enc, Dec) as follows.

* (PK,SK) + KeyGen™(n): it runs KeyGen on input a
security parameter n, and returns its output (PK, SK).
* (c,c) « Enc™(PK,m € {0,1}*): given a public key PK
and a message m it
* computes (c, k) «+ Encaps(PK, n);
= computes ¢’ « Enc(k,m);
> outputs the ciphertext (c,c’).
= m < Dec”(SK, (c,c)): on input a secret key SK and a
ciphertext (c,c’), it
» computes k < Decaps(SK, c);
» outputs m <+ Dec(k, c’). o



Hybrid Encryption: Efficiency

Consider a = cost(Encaps(-,n)) and = cost(Enc(-, 1 bit)) for a
fixed security parameter n.
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Hybrid Encryption: Efficiency

Consider a = cost(Encaps(-,n)) and = cost(Enc(-, 1 bit)) for a
fixed security parameter n.

To encrypt a message m, the cost per bit is:

cost(Enc™ (-, 1 bit)) = %HM = %’ + 5.

For a sufficiently long m, cost(Enc™(-, 1 bit)) approaches £, i.e.

cost(Enc™ (-, 1 bit)) ~ cost(Enc(-, 1 bit)).
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Security of the Hybrid Encryption Scheme

Theorem
Consider the hybrid encryption scheme E" . If

= II = (KeyGen, Encaps, Decaps) is a CPA-secure
key-encapsulation mechanism,

= E = (KeyGen', Enc, Dec) is a symmetric-key encryption
scheme which has indistinguishable encryptions in the
presence of an eavesdropper,

then EM is a CPA-secure public-key encryption scheme.
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Security of the Hybrid Encryption Scheme

Proof

eav

Let A" be an adversary playing the PubK ‘i giw(n) game. The
goal is proving that:

1
Pr(PubK%i g (n) =1) < 3 + negl(n) .
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Security of the Hybrid Encryption Scheme

Proof
eav

Let A" be an adversary playing the PubK ‘i giw(n) game. The
goal is proving that:

1
Pr(PubK%i g (n) =1) < 3 + negl(n) .

From the union formula and the definition of conditional
probability we deduce:

1
Pr(PubK%y o (n) =1) = 5 Pr(A™ outputs 0[m = my)

Ahy Shy
1
t3 Pr(A" outputs 1jm = my).
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Security of the Hybrid Encryption Scheme

Using A™ as a subroutine, we construct an adversary A;
against the CPA-security of II.

= A, receives (PK,c, k) from Ch and sends PK to A™:

= upon reception of (mg,m;) from AP , it obtains ¢’ running
Enc on input k and mg, and sends (c,c’) to A™;

» A; outputs the bit b’ received from A"
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Security of the Hybrid Encryption Scheme

/ KEM ) . Ay A )
Challenger | (PK.c. k) PK
(PK,SK) + KeyGen(n) (mg, my)
(e, k) «+ Encaps(PK, n) . - ,
g ¢ « Enc(k, mp) (e, e
+« {0, >
b=0=k=k % B b
_ i k|
\b=1=k« {0,1}* /

Pr(A; outputs 0|b = 0) = Pr(A" outputs 0|k = k, m = mq)
Pr(A; outputs 1|b = 1) = Pr(A™ outputs 1|k = k', m = mg)
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Security of the Hybrid Encryption Scheme

Since the key-encapsulation scheme II is CPA-secure, we have:

Pr(KEM ' ;(n) = 1) =

1
— Pr(A; outputs 0/b = 0)+

+ - Pr(A; outputs 1|p =1) =

_l’_

<

~ Pr(A" outputs 0|1Ac =k,m=my)+

Pr(A" outputs 1|k = k', m = mg) <

N =N =N

+ negl, (n)

11/24



Security of the Hybrid Encryption Scheme

Using A™ as a subroutine, we construct an adversary A,
against the CPA-security of II.

= Ay receives (PK, ¢, k) from Ch and sends PK to A™:

= upon reception of (mg,m;) from AP , it obtains ¢’ running
Enc on input k and m;, and sends (c,c’) to A™;

» Ay outputs 1 — &', where b’ is the bit received from A".
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Security of the Hybrid Encryption Scheme

[ KEM \ - Ay ) A )
Challenger (PK, ¢, k) PK
(PK.SK) + KeyGen(n) (mg,my)
(¢, k) + Encaps(PK.n) N - ,
e ¢ + Enc(k,m;) (e.c)
« {0, >
b=0=k=k | 1-0V B b
— I K|
\b=1=k+ {0,1}}* /

Pr(Ajy outputs 0|b = 0) = Pr(A™ outputs 1|k = k,m = m,)
Pr(A; outputs 1|b = 1) = Pr(A™ outputs Ok = k', m = my)
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Security of the Hybrid Encryption Scheme

Since the key-encapsulation scheme II is CPA-secure, we have:

Pr(KEM ) ;(n) = 1) =

1
— Pr( Az outputs 0/b = 0)+

+ - Pr(A; outputs 1|p = 1) =

_l’_

<

~ Pr(A™ outputs 1|k = k,m = m;)+

Pr(A" outputs Ok = k', m = m;) <

N =N =N

+ negly(n)
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Security of the Hybrid Encryption Scheme

Using A™ as a subroutine, we construct an adversary A’
against the indistinguishability of E.

= A’ runs KeyGen, obtaining (PK, SK). They compute
(¢,k) + Encaps(PK,n) and send PK to A"

"

Upon reception of (mg,m;) from AW A’ sends them to the
challenger, receiving a ciphertext c’;

= A sends (c,c’) to AP,

» A outputs the bit &’ received from A"
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Security of the Hybrid Encryption Scheme

(" PrivKS ) A Y A"
Challenger (PK,SK) « KeyGen(n) —
k'« KeyGen'(n) | (mg.m;) (mg.m)
LSRR ; (e, k) + Encaps(PK,n) (c,)
¢ < Enc(k',my) ¢ —,)'
v b
N N -

Pr(A’ outputs 0|b = 0) = Pr(A" outputs Ok = k', m = mg)
Pr(A’ outputs 1|b = 1) = Pr(A" outputs 1|k = k', m = my)
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Security of the Hybrid Encryption Scheme

The symmetric-key encryption scheme E has indistinguishable
encryptions in the presence of an eavesdropper. Therefore:

1
Pr(PrivK4"z(n) = 1) = 5 Pr(A’ outputs 0|b = 0)+

2
+ %Pr(A’ outputs 1| = 1) =
= % Pr(.Ahy outputs OUA{ =K,m=mp)+
+ %Pr(Ahy outputs 1k = k',m = m;) <
< % + negl’(n)
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Security of the Hybrid Encryption Scheme

negl; (n) + negly(n) + negl’(n) is a negligible function negl(n).

Summing all the above inequalities we obtain:

1 A
5 Pr(A™ outputs 0|k = k,m = mg)+
1 A
b Pr(A" outputs 1|k = k', m = mg)+
1 A
5 Pr(A" outputs 1|k = k,m = m; )+
1 A
3 Pr(A" outputs 0|k = k', m = my)+
1 A
0 Pr(A" outputs 0|k = k', m = mg)+
1 A
5 Pr(A" outputs 1)k = k',m = m,)

3
< 5 + negl(n).

18/24



Security of the Hybrid Encryption Scheme

Furthermore, we have:
1 A
5 Pr(A" outputs 1|k = k', m = mg)+
1, . 1
D Pr(A"™ outputs Ok = k', m = mg) = 3
and

1 A
b Pr(A" outputs 0k = k', m = my)+

1 . 1
3 Pr(A" outputs 1|k = k',m = m;) = 5
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Security of the Hybrid Encryption Scheme

Hence, it remains
1 h ~
b Pr(A™ outputs 0|k = k,m = mg)+
1 R
b Pr(A" outputs 1|k = k,m = m;) =
1
Pr(PubK%y g,) < 5 + negl(n),

which concludes the proof.
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Security of the Hybrid Encryption Scheme

The definition of CCA-security of a KEM relies on an game,
similar to KEM};(n), where A is also given access to a
decapsulation oracle Decaps(SK, -).
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Security of the Hybrid Encryption Scheme

The definition of CCA-security of a KEM relies on an game,
similar to KEM (), where A is also given access to a
decapsulation oracle Decaps(SK, -).

Theorem
If11 is a CCA-secure key-encapsulation mechanism and E is a
CCA-secure symmetric-key encryption scheme, the

corresponding hybrid encryption scheme E™ is a CCA-secure
public-key encryption scheme.
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