

Introduction to Cryptology

9.3 - Dlog, DHKE and ElGamal

Federico Pintore

Mathematical Institute, University of Oxford (UK)

UNIVERSITY OF
OXFORD

The Discrete Logarithm Problem (Dlog)

A **group generation algorithm** \mathcal{G} is a PPT algorithm which:

- ☒ on input a security parameter n , outputs a description of a cyclic group \mathbb{G} , its order q and a generator $g \in \mathbb{G}$.
- ☒ $\lceil \log_2 q \rceil + 1 = n$.
- ☒ Computing the group operation of \mathbb{G} is efficient.

Given $h \in \mathbb{G}$, $\log_g h$ denotes the unique $x \in \{1, \dots, q\}$ s.t. $h = g^x$.

The Discrete Logarithm Problem (Dlog)

A **group generation algorithm** \mathcal{G} is a PPT algorithm which:

- ☒ on input a security parameter n , outputs a description of a cyclic group \mathbb{G} , its order q and a generator $g \in \mathbb{G}$.
- ☒ $\lceil \log_2 q \rceil + 1 = n$.
- ☒ Computing the group operation of \mathbb{G} is efficient.

Given $h \in \mathbb{G}$, $\log_g h$ denotes the unique $x \in \{1, \dots, q\}$ s.t. $h = g^x$.

Discrete logarithm (Dlog) problem relative to \mathcal{G} : given $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(n)$ and a uniform $h \in \mathbb{G}$, compute x .

The Discrete Logarithm Problem (Dlog)

A **group generation algorithm** \mathcal{G} is a PPT algorithm which:

- ☒ on input a security parameter n , outputs a description of a cyclic group \mathbb{G} , its order q and a generator $g \in \mathbb{G}$.
- ☒ $\lceil \log_2 q \rceil + 1 = n$.
- ☒ Computing the group operation of \mathbb{G} is efficient.

Given $h \in \mathbb{G}$, $\log_g h$ denotes the unique $x \in \{1, \dots, q\}$ s.t. $h = g^x$.

Discrete logarithm (Dlog) problem relative to \mathcal{G} : given $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(n)$ and a uniform $h \in \mathbb{G}$, compute x .

The Dlog problem is **hard** relative to \mathcal{G} if, for every PPT adversary \mathcal{A} , their success probability is negligible in n .

Diffie-Hellman Problem and its variants

Computational Diffie-Hellman (CDH) problem relative to \mathcal{G} :

given $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(n)$ and two uniform $h, k \in \mathbb{G}$, where $h_1 = g^x$ and $h_2 = g^y$, compute g^{xy} .

- If the Dlog problem is easy, also the CDH problem is.
- The reverse implication is not clear.

Diffie-Hellman Problem and its variants

Computational Diffie-Hellman (CDH) problem relative to \mathcal{G} :

given $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(n)$ and two uniform $h, k \in \mathbb{G}$, where $h_1 = g^x$ and $h_2 = g^y$, compute g^{xy} .

- If the Dlog problem is easy, also the CDH problem is.
- The reverse implication is not clear.

Decisional Diffie-Hellman (DDH) problem relative to \mathcal{G} : given $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(n)$, two uniform $h_1, h_2 \in \mathbb{G}$, where $h_1 = g^x$ and $h_2 = g^y$, and a third element z , decide if $z = g^{xy}$ or it is a uniform group element.

- If the CDH problem is easy, then also the DDH problem is.
- The reverse implication does not appear to be true.

Gap Diffie-Hellman \mathcal{G}

Definition

A group generation algorithm \mathcal{G} is gap-DH if the DDH problem relative to \mathcal{G} is easy but the CDH problem is still hard.

There exist concrete group generation algorithms that are gap-DH.

Diffie-Hellman Key-Exchange

Public parameters: $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(n)$.

- Alice chooses a uniform $a \in \{1, \dots, q\}$, and sends $h_A = g^a$ to Bob.
- Bob chooses a uniform $b \in \{1, \dots, q\}$, and sends $h_B = g^b$ to Alice.
- Alice computes $(g^b)^a = g^{ab}$.
- Bob computes $(g^a)^b = g^{ab}$.

Diffie-Hellman security

The security follows *almost* directly from the hardness of the DDH problem relative to \mathcal{G} .

The hardness of the Dlog problem is **necessary** for the security of the Diffie-Hellman key-exchange, but it **may not be sufficient**.

ElGamal Encryption Scheme

The ElGamal public-key encryption scheme (KeyGen, Enc, Dec) relative to a group generation algorithm \mathcal{G} is defined as follows:

- $(\text{PK}, \text{SK}) \leftarrow \text{KeyGen}(1^n)$: on input a security parameter n , it runs \mathcal{G} on n , obtaining a description of a cyclic group \mathbb{G} - having order q , with $\|q\| = n$ - together with a generator g .

It picks a uniform $x \in \{1, \dots, q\}$ and computes $h \leftarrow g^x$. The public key is $\text{PK} = (\mathbb{G}, g, q, h)$ and the secret key is $\text{SK} = x$.

- $c \leftarrow \text{Enc}(\text{PK}, m \in \mathbb{G})$: given a public key PK and a message m , it chooses a uniform $y \in \mathbb{Z}_q$, and outputs

$$c = (c_1, c_2) := (g^y, h^y \cdot m).$$

- $m \leftarrow \text{Dec}(\text{SK}, c)$: on input a secret key $\text{SK} = x$ and a ciphertext $c = (c_1, c_2)$, it outputs $m = c_2/c_1^x$.

Correctness: $c_2/c_1^x = h^y \cdot m / (g^y)^x = (g^x)^y \cdot m / (g^y)^x = m$.

ElGamal Encryption Scheme

Lemma

Let \mathbb{G} be a finite group. If an arbitrary element $m \in \mathbb{G}$ is multiplied by an uniform group element $k \in \mathbb{G}$, the result $k \cdot m$ is a uniform group element as well.

ElGamal Encryption Scheme

Lemma

Let \mathbb{G} be a finite group. If an arbitrary element $m \in \mathbb{G}$ is multiplied by an uniform group element $k \in \mathbb{G}$, the result $k \cdot m$ is a uniform group element as well.

Proof.

Given $g \in \mathbb{G}$, we have

$$\Pr(k \cdot m = g) = \Pr(k = g \cdot m^{-1}).$$

Because k is uniform, we obtain

$$\Pr(k = g \cdot m^{-1}) = 1/|\mathbb{G}|.$$

Security of the ElGamal Encryption Scheme

Theorem

If the DDH problem is hard relative to \mathcal{G} , then the ElGamal encryption scheme relative to \mathcal{G} is CPA-secure.

Proof.

Let \mathcal{A} a PPT adversary against the ElGamal encryption scheme, which we denote by S .

\mathcal{A} is used as a subroutine to construct a PPT distinguisher D against the DDH problem relative to \mathcal{G} .

D receives an instance of the DDH problem, i.e.

$$(\mathbb{G}, q, g, h_1 = g^x, h_2 = g^y, z),$$

and it has to determine if $z = g^{xy}$ or $z = g^w$ for a uniform $w \in \{1, \dots, q\}$.

Security of ElGamal Encryption Scheme

D works as follows:

- It sets $\text{PK} = (\mathbb{G}, q, g, h_1)$ and sends it to \mathcal{A} .
- Upon reception of (m_0, m_1) from \mathcal{A} , D picks $b \in \{0, 1\}$, sets $c_1 = h_2$ and $c_2 = z \cdot m_b$, and sends $c = (c_1, c_2)$ to \mathcal{A} .
- It outputs 1 if the bit b' received from \mathcal{A} is equal to b , 0 otherwise.

Security of ElGamal Encryption Scheme

D works as follows:

- It sets $\text{PK} = (\mathbb{G}, q, g, h_1)$ and sends it to \mathcal{A} .
- Upon reception of (m_0, m_1) from \mathcal{A} , D picks $b \in \{0, 1\}$, sets $c_1 = h_2$ and $c_2 = z \cdot m_b$, and sends $c = (c_1, c_2)$ to \mathcal{A} .
- It outputs 1 if the bit b' received from \mathcal{A} is equal to b , 0 otherwise.

Let S' be a modified version of ElGamal, where Enc chooses uniform $y, w \in \{1, \dots, q\}$, and outputs $c = (g^y, g^w \cdot m)$.

S' does not satisfy correctness, but the game $\text{PubK}_{\mathcal{A}, S'}^{\text{eav}}(n) = 1$ is still well-defined.

Security of ElGamal Encryption Scheme

Since c_2 is a uniformly distributed group element, it holds

$$\Pr(\text{PubK}_{\mathcal{A},S'}^{\text{eav}}(n) = 1) = 1/2$$

Security of ElGamal Encryption Scheme

Since c_2 is a uniformly distributed group element, it holds

$$\Pr(\text{PubK}_{\mathcal{A},S'}^{\text{eav}}(n) = 1) = 1/2$$

Case 1 - random tuple: the view of \mathcal{A} when run as a subroutine by \mathcal{D} is distributed identically to their view in $\text{PubK}_{\mathcal{A},S'}^{\text{eav}}$. Hence:

$$\Pr(\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^w) = 1) = \Pr(\text{PubK}_{\mathcal{A},S'}^{\text{eav}}(n) = 1) = 1/2 \quad (1)$$

Security of ElGamal Encryption Scheme

Case 2 - DH tuple: the view of \mathcal{A} when run as a subroutine by \mathcal{D} is distributed identically to their view in $\text{PubK}_{\mathcal{A},S}^{\text{eav}}$. Therefore

$$\Pr(\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1) = \Pr(\text{PubK}_{\mathcal{A},S}^{\text{eav}}(n) = 1) \quad (2)$$

Security of ElGamal Encryption Scheme

Case 2 - DH tuple: the view of \mathcal{A} when run as a subroutine by \mathcal{D} is distributed identically to their view in $\text{PubK}_{\mathcal{A},S}^{\text{eav}}$. Therefore

$$\Pr(\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1) = \Pr(\text{PubK}_{\mathcal{A},S}^{\text{eav}}(n) = 1) \quad (2)$$

If the DDH problem is hard relative to \mathcal{G} , then

$$|\Pr(\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^w) = 1) - \Pr(\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1)| \leq \text{negl}(n) \quad (3)$$

Security of ElGamal Encryption Scheme

Case 2 - DH tuple: the view of \mathcal{A} when run as a subroutine by \mathcal{D} is distributed identically to their view in $\text{PubK}_{\mathcal{A},S}^{\text{eav}}$. Therefore

$$\Pr(\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1) = \Pr(\text{PubK}_{\mathcal{A},S}^{\text{eav}}(n) = 1) \quad (2)$$

If the DDH problem is hard relative to \mathcal{G} , then

$$|\Pr(\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^w) = 1) - \Pr(\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1)| \leq \text{negl}(n) \quad (3)$$

From equations (1), (2) and (3) we deduce

$$\Pr(\text{PubK}_{\mathcal{A},S}^{\text{eav}}(n)) \leq 1/2 + \text{negl}(n).$$

□

ElGamal Encryption Scheme - CCA-secure?

The ElGamal encryption scheme is **malleable**, hence it is not CCA-secure (CCA-secure schemes are non-malleable).

Malleability: given a ciphertext c , which is the encryption of an unknown message m , it is possible to generate an encryption c' of a message m' which has some known relation with m .

ElGamal Encryption Scheme - CCA-secure?

The ElGamal encryption scheme is **malleable**, hence it is not CCA-secure (CCA-secure schemes are non-malleable).

Malleability: given a ciphertext c , which is the encryption of an unknown message m , it is possible to generate an encryption c' of a message m' which has some known relation with m .

- Consider $\text{PK} = (\mathbb{G}, q, g, h)$ and the encryption (c_1, c_2) of a message m .
- In the modification $(c_1, c'_2 = \alpha \cdot c_2)$, where $\alpha \in \mathbb{G}$, we have $c_1 = g^y$ and $c'_2 = h^y \cdot \alpha \cdot m$.
- Hence (c_1, c'_2) is a valid encryption of $\alpha \cdot m$.

A CPA-secure KEM based on DDH

Consider the following key-encapsulation mechanism (KeyGen, Encaps, Decaps) relative to a group generation algorithm \mathcal{G} :

- $(\text{PK}, \text{SK}) \leftarrow \text{KeyGen}(n)$: it runs \mathcal{G} on a security parameter n to generate (\mathbb{G}, q, g) . It then samples a uniform $x \in \{1, \dots, q\}$, computes $h = g^x$ and specifies a hash function $H : \mathbb{G} \rightarrow \{0, 1\}^{\ell(n)}$.

The public key is $\text{PK} = (\mathbb{G}, q, g, h, H)$, the private key is x .

- $(c, k) \leftarrow \text{Encaps}(\text{PK}, n)$: on input a public key PK and a security parameter n , it chooses a uniform $y \in \{1, \dots, 1\}$ and outputs the ciphertext $c := g^y$ and the key $H(h^y)$.
- $k \leftarrow \text{Decaps}(\text{SK}, c)$: on input a secret key $\text{SK} = x$ and a ciphertext c , it outputs $H(c^x)$.

A CPA-secure KEM based on DDH

Consider the following key-encapsulation mechanism (KeyGen, Encaps, Decaps) relative to a group generation algorithm \mathcal{G} :

- $(\text{PK}, \text{SK}) \leftarrow \text{KeyGen}(n)$: it runs \mathcal{G} on a security parameter n to generate (\mathbb{G}, q, g) . It then samples a uniform $x \in \{1, \dots, q\}$, computes $h = g^x$ and specifies a hash function $H : \mathbb{G} \rightarrow \{0, 1\}^{\ell(n)}$.

The public key is $\text{PK} = (\mathbb{G}, q, g, h, H)$, the private key is x .

- $(c, k) \leftarrow \text{Encaps}(\text{PK}, n)$: on input a public key PK and a security parameter n , it chooses a uniform $y \in \{1, \dots, 1\}$ and outputs the ciphertext $c := g^y$ and the key $H(h^y)$.
- $k \leftarrow \text{Decaps}(\text{SK}, c)$: on input a secret key $\text{SK} = x$ and a ciphertext c , it outputs $H(c^x)$.

If H is modelled as a random oracle and the CDH problem relative to \mathcal{G} is hard, then the above KEM is CPA-secure.

Further Reading I

 Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user setting: Security proofs and improvements.

In Bart Preneel, editor, *Advances in Cryptology — EUROCRYPT 2000*, volume 1807 of *Lecture Notes in Computer Science*, pages 259–274. Springer Berlin Heidelberg, 2000.

 Dan Boneh.

Simplified OAEP for the RSA and Rabin Functions.

In Joe Kilian, editor, *Advances in Cryptology — CRYPTO 2001*, volume 2139 of *Lecture Notes in Computer Science*, pages 275–291. Springer Berlin Heidelberg, 2001.

Further Reading II

- Ronald Cramer and Victor Shoup.
Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.
- Whitfield Diffie and Martin E Hellman.
New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654, 1976.
- Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir.
New attacks on feistel structures with improved memory complexities.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages 433–454, 2015.

Further Reading III

- Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and Adi Shamir.

Collision-based power analysis of modular exponentiation using chosen-message pairs.

In Cryptographic Hardware and Embedded Systems - CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings, pages 15–29, 2008.