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The Discrete Logarithm Problem (Dlog)
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A group generation algorithm G is a PPT algorithm which:

on input a security parameter n, outputs a description of a
cyclic group G, its order q and a generator g ∈ G.

||q|| = blog2 qc+ 1 = n.

Computing the group operation of G is efficient.

Given h ∈ G, logg h denotes the unique x ∈ {1, . . . , q} s.t. h = gx.

Discrete logarithm (Dlog) problem relative to G: given
(G, q, g)← G(n) and a uniform h ∈ G, compute x.

The Dlog problem is hard relative to G if, for every PPT
adversary A, their success probability is negligible in n.
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Computational Diffie-Hellman (CDH) problem relative to G:
given (G, q, g)← G(n) and two uniform h, k ∈ G, where h1 = gx

and h2 = gy, compute gxy.

If the Dlog problem is easy, also the CDH problem is.

The reverse implication is not clear.

Decisional Diffie-Hellman (DDH) problem relative to G: given
(G, q, g)← G(n), two uniform h1, h2 ∈ G, where h1 = gx and
h2 = gy, and a third element z, decide if z = gxy or it is a
uniform group element.

If the CDH problem is easy, then also the DDH problem is.

The reverse implication does not appear to be true.
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Gap Diffie-HellmanG
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Definition
A group generation algorithm G is gap-DH if the DDH problem
relative to G is easy but the CDH problem is still hard.

There exist concrete group generation
algorithms that are gap-DH.



Diffie-Hellman Key-Exchange
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Public parameters: (G, q, g)← G(n).

Alice chooses a uniform a ∈ {1, . . . , q}, and sends hA = ga

to Bob.

Bob chooses a uniform b ∈ {1, . . . , q}, and sends hB = gb to
Alice.

Alice computes (gb)a = gab.

Bob computes (ga)b = gab.



Diffie-Hellman security
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The security follows almost directly from the hardness of the
DDH problem relative to G.

The hardness of the Dlog problem is necessary for the security
of the Diffie-Hellman key-exchange, but it may not be sufficient.
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The ElGamal public-key encryption scheme (KeyGen,Enc,Dec)
relative to a group generation algorithm G is defined as follows:

(PK,SK)← KeyGen(1n): on input a security parameter n,
it runs G on n, obtaining a description of a cyclic group G -
having order q, with ||q|| = n - together with a generator g.

It picks a uniform x ∈ {1, . . . , q} and computes h← gx. The
public key is PK = (G, g, q, h) and the secret key is SK = x.

c← Enc(PK,m ∈ G): given a public key PK and a message
m, it chooses a uniform y ∈ Zq, and outputs

c = (c1, c2) := (gy, hy · m).

m← Dec(SK, c): on input a secret key SK = x and a
ciphertext c = (c1, c2), it outputs m = c2/cx

1.

Correctness: c2/cx
1 = hy · m/(gy)x = (gx)y · m/(gy)x = m.



ElGamal Encryption Scheme
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Lemma
Let G be a finite group. If an arbitrary element m ∈ G is
multiplied by an uniform group element k ∈ G, the result k · m is
a uniform group element as well.

Proof.
Given g ∈ G, we have

Pr(k · m = g) = Pr(k = g · m−1).

Because k is uniform, we obtain

Pr(k = g · m−1) = 1/|G|.
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Security of the ElGamal Encryption Scheme
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Theorem
If the DDH problem is hard relative to G, then the ElGamal
encryption scheme relative to G is CPA-secure.

Proof.
Let A a PPT adversary against the ElGamal encryption
scheme, which we denote by S.

A is used as a subroutine to construct a PPT distinguisher D
against the DDH problem relative to G.

D receives an instance of the DDH problem, i.e.

(G, q, g, h1 = gx, h2 = gy, z),

and it has to determine if z = gxy or z = gw for a uniform
w ∈ {1, . . . , q}.



Security of ElGamal Encryption Scheme
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D works as follows:

It sets PK = (G, q, g, h1) and sends it to A.

Upon reception of (m0,m1) from A, D picks b ∈ {0, 1}, sets
c1 = h2 and c2 = z · mb, and sends c = (c1, c2) to A.

It outputs 1 if the bit b′ received from A is equal to b, 0
otherwise.

Let S′ be a modified version of ElGamal, where Enc chooses
uniform y,w ∈ {1, . . . , q}, and outputs c = (gy, gw · m).

S′ does not satisfy correctness, but the game PubKeav
A,S′(n) = 1 is

still well-defined.
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Since c2 is a uniformly distributed group element, it holds

Pr(PubKeav
A,S′(n) = 1) = 1/2

Case 1 - random tuple: the view of A when run as a subroutine
by D is distributed identically to their view in PubKeav

A,S′ . Hence:

Pr(D(G, q, g, gx, gy, gw) = 1) = Pr(PubKeav
A,S′(n) = 1) = 1/2 (1)
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Case 2 - DH tuple: the view of A when run as a subroutine by
D is distributed identically to their view in PubKeav

A,S. Therefore

Pr(D(G, q, g, gx, gy, gxy) = 1) = Pr(PubKeav
A,S(n) = 1) (2)

If the DDH problem is hard relative to G, then

|Pr(D(G, q, g, gx, gy, gw) = 1)−
Pr(D(G, q, g, gx, gy, gxy) = 1)| ≤ negl(n)

(3)

From equations (1), (2) and (3) we deduce

Pr(PubKeav
A,S(n)) ≤ 1/2 + negl(n) .
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ElGamal Encryption Scheme - CCA-secure?
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The ElGamal encryption scheme is malleable, hence it is not
CCA-secure (CCA-secure schemes are non-malleable).

Malleability: given a ciphertext c, which is the encryption of an
unknown message m, it is possible to generate an encryption c′

of a message m′ which has some known relation with m.

Consider PK= (G, q, g, h) and the encryption (c1, c2) of a
message m.

In the modification (c1, c′2 = α · c2), where α ∈ G, we have
c1 = gy and c′2 = hy · α · m.

Hence (c1, c′2) is a valid encryption of α · m.
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A CPA-secure KEM based on DDH
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Consider the following key-encapsulation mechanism (KeyGen,
Encaps, Decaps) relative to a group generation algorithm G:

(PK,SK)← KeyGen(n): it runs G on a security parameter
n to generate (G, q, g). It then samples a uniform
x ∈ {1, . . . , q}, computes h = gx and specifies a hash
function H : G→ {0, 1}`(n).

The public key is PK = (G, q, g, h,H), the private key is x.

(c, k)← Encaps(PK, n): on input a public key PK and a
security parameter n, it chooses a uniform y ∈ {1, . . . , 1}
and outputs the ciphertext c := gy and the key H(hy).

k← Decaps(SK, c): on input a secret key SK = x and a
ciphertext c, it outputs H(cx).

If H is modelled as a random oracle and the CDH problem
relative to G is hard, then the above KEM is CPA-secure.
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