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The Discrete Logarithm Problem (Dlog)

A group generation algorithm G is a PPT algorithm which:

= on input a security parameter n, outputs a description of a
cyclic group G, its order ¢ and a generator g € G.

* |lgll = [logyq] +1 =n.

= Computing the group operation of G is efficient.

Given h € G, log, h denotes the unique x € {1,...,q} s.t. h=g".
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Discrete logarithm (Dlog) problem relative to G: given
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The Discrete Logarithm Problem (Dlog)

A group generation algorithm G is a PPT algorithm which:

= on input a security parameter n, outputs a description of a
cyclic group G, its order ¢ and a generator g € G.

* |lgll = [logyq] +1 =n.

= Computing the group operation of G is efficient.

Given h € G, log, h denotes the unique x € {1,...,q} s.t. h=g".

Discrete logarithm (Dlog) problem relative to G: given
(G,q,g) + G(n) and a uniform h € G, compute x.

The Dlog problem is hard relative to G if, for every PPT

adversary A, their success probability is negligible in n.
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Diffie-Hellman Problem and its variants

Computational Diffie-Hellman (CDH) problem relative to G:
given (G, q,g) < G(n) and two uniform h,k € G, where h; = g*
and hy = g7, compute gv.

« If the Dlog problem is easy, also the CDH problem is.

= The reverse implication is not clear.
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Diffie-Hellman Problem and its variants

Computational Diffie-Hellman (CDH) problem relative to G:
given (G, q,g) < G(n) and two uniform h,k € G, where h; = g
and hy = g7, compute gv.

X

« If the Dlog problem is easy, also the CDH problem is.

= The reverse implication is not clear.

Decisional Diffie-Hellman (DDH) problem relative to G: given
(G,q,g) < G(n), two uniform hy, hy € G, where h; = g* and
ho = g”, and a third element z, decide if z = g% or it is a
uniform group element.

= If the CDH problem is easy, then also the DDH problem is.

= The reverse implication does not appear to be true.
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Gap Diffie-Hellman G

Definition
A group generation algorithm G is gap-DH if the DDH problem
relative to G is easy but the CDH problem is still hard.

There exist concrete group generation
algorithms that are gap-DH.
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Diffie-Hellman Key-Exchange

Public parameters: (G,q,g) < G(n).

= Alice chooses a uniform a € {1, ..

to Bob.

= Bob chooses a uniform b € {1,...

Alice.

= Alice computes (g)* = g®.

Bob computes (g)? = g®.

L

.,q}, and sends hy = g“

,q}, and sends hg = g° to
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Diffie-Hellman security

The security follows almost directly from the hardness of the
DDH problem relative to G.

The hardness of the Dlog problem is necessary for the security
of the Diffie-Hellman key-exchange, but it may not be sufficient.
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ElGamal Encryption Scheme

The ElGamal public-key encryption scheme (KeyGen, Enc, Dec)
relative to a group generation algorithm G is defined as follows:

= (PK,SK) «+ KeyGen(1"): on input a security parameter n,
it runs G on n, obtaining a description of a cyclic group G -
having order ¢, with ||g|| = n - together with a generator g.

It picks a uniform x € {1,...,¢} and computes & + g*. The
public key is PK = (G, g, ¢, h) and the secret key is SK = x.

m

¢ + Enc(PK,m € G): given a public key PK and a message
m, it chooses a uniform y € Z,, and outputs

c=(c1,c2) = (g, K -m).

= m « Dec(SK,c): on input a secret key SK = x and a
ciphertext ¢ = (c1,c¢2), it outputs m = ca/cj.

Correctness: ca/cy =h -m/(g) = (g") -m/(g") = m. i
e



ElGamal Encryption Scheme

Lemma

Let G be a finite group. If an arbitrary elementm € G is
multiplied by an uniform group element k € G, the resultk - m is
a uniform group element as well.
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ElGamal Encryption Scheme

Lemma

Let G be a finite group. If an arbitrary elementm € G is
multiplied by an uniform group element k € G, the resultk - m is
a uniform group element as well.

Proof.
Given g € G, we have

Pr(k-m=g)=Pr(k=g-m™1).
Because k is uniform, we obtain

Prik=g-m™ ') =1/|G|.
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Security of the EIGamal Encryption Scheme

Theorem
If the DDH problem is hard relative to G, then the ElIGamal
encryption scheme relative to G is CPA-secure.

Proof.
Let A a PPT adversary against the ElGamal encryption
scheme, which we denote by S.

A is used as a subroutine to construct a PPT distinguisher D
against the DDH problem relative to G.

D receives an instance of the DDH problem, i.e.
(G7q7g7h1 = gx7h2 = gy,Z),

and it has to determine if z = g or z = g" for a uniform

we{l,...,.q}. oir
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Security of EIGamal Encryption Scheme

D works as follows:

= It sets PK = (G, g, g,h1) and sends it to A.

= Upon reception of (mg,m;) from A, D picks b € {0, 1}, sets
c1 = hg and ¢a = z- myp, and sends ¢ = (c1,c2) to A.

"

It outputs 1 if the bit &’ received from A is equal to b, 0
otherwise.
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Security of EIGamal Encryption Scheme

D works as follows:

= It sets PK = (G, g, g,h1) and sends it to A.

= Upon reception of (mg,m;) from A, D picks b € {0, 1}, sets
c1 = hg and ¢a = z- myp, and sends ¢ = (c1,c2) to A.

"

It outputs 1 if the bit &’ received from A is equal to b, 0
otherwise.

Let S’ be a modified version of ElGamal, where Enc chooses
uniform y,w € {1,..., ¢}, and outputs ¢ = (g’,¢" - m).

S’ does not satisfy correctness, but the game PubK$% (n) = 1 is

still well-defined.
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Security of EIGamal Encryption Scheme

Since ¢ is a uniformly distributed group element, it holds

Pr(PubKf%/(n) =1) = 1/2
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Security of EIGamal Encryption Scheme

Since ¢ is a uniformly distributed group element, it holds

Pr(PubKf%/(n) =1) = 1/2

Case 1 - random tuple: the view of A when run as a subroutine
eav

by D is distributed identically to their view in PubK’s,. Hence:

Pr(D(G,q,8,8" 8", ¢") =1) = Pr(PubKY s (n) = 1) =1/2 (1)
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Security of EIGamal Encryption Scheme

Case 2 - DH tuple: the view of A when run as a subroutine by
D is distributed identically to their view in PubK's. Therefore

Pr(D(G,q,¢,8% ¢",¢") = 1) = Pr(PubKZs(n) = 1) (2)
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Security of EIGamal Encryption Scheme

Case 2 - DH tuple: the view of A when run as a subroutine by
D is distributed identically to their view in PubK's. Therefore

Pr(D(G,q,¢,8% ¢",¢") = 1) = Pr(PubKZs(n) = 1) (2)

If the DDH problem is hard relative to G, then

|Pr(D(G, q,8,8",8",8") = 1)~
PI‘(D(G,q,g’gx,gy,gw) = 1)‘ < negl(n)
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Security of EIGamal Encryption Scheme

Case 2 - DH tuple: the view of A when run as a subroutine by
D is distributed identically to their view in PubK's. Therefore

Pr(D(G,q,¢,8% ¢",¢") = 1) = Pr(PubKZs(n) = 1) (2)

If the DDH problem is hard relative to G, then

|Pr(D(G, q,8,8",8",8") = 1)—
PI‘(D(G,q,g,gx,gy,gw) = 1)‘ < negl(n)

From equations (1), (2) and (3) we deduce

Pr(PubK%%(n)) < 1/2 + negl(n).
O
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ElGamal Encryption Scheme - CCA-secure?

The ElGamal encryption scheme is malleable, hence it is not
CCA-secure (CCA-secure schemes are non-malleable).

Malleability: given a ciphertext ¢, which is the encryption of an
unknown message m, it is possible to generate an encryption ¢’
of a message m’ which has some known relation with m.
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ElGamal Encryption Scheme - CCA-secure?

The ElGamal encryption scheme is malleable, hence it is not
CCA-secure (CCA-secure schemes are non-malleable).

Malleability: given a ciphertext ¢, which is the encryption of an
unknown message m, it is possible to generate an encryption ¢’
of a message m’ which has some known relation with m.

= Consider PK= (G, g, g, h) and the encryption (c1,c2) of a
message m.

= In the modification (c1,chy = a - ¢3), where o € G, we have
cg=g andch=r - a-m.
= Hence (c1,c}) is a valid encryption of o - m.
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A CPA-secure KEM based on DDH

Consider the following key-encapsulation mechanism (KeyGen,
Encaps, Decaps) relative to a group generation algorithm G:

= (PK,SK) < KeyGen(n): it runs G on a security parameter
n to generate (G, g, g). It then samples a uniform
x€{l,...,q}, computes h = g* and specifies a hash
function H : G — {0,1}°"),

The public key is PK = (G, g, g, h, H), the private key is x.

= (c,k) + Encaps(PK,n): on input a public key PK and a
security parameter n, it chooses a uniform y € {1,...,1}
and outputs the ciphertext ¢ := g” and the key H(R").

= k + Decaps(SK,c): on input a secret key SK = x and a
ciphertext ¢, it outputs H(c").
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A CPA-secure KEM based on DDH

Consider the following key-encapsulation mechanism (KeyGen,
Encaps, Decaps) relative to a group generation algorithm G:

= (PK,SK) < KeyGen(n): it runs G on a security parameter
n to generate (G, g, g). It then samples a uniform
x€{l,...,q}, computes h = g* and specifies a hash
function H : G — {0,1}°"),

The public key is PK = (G, g, g, h, H), the private key is x.

= (c,k) + Encaps(PK,n): on input a public key PK and a
security parameter n, it chooses a uniform y € {1,...,1}
and outputs the ciphertext ¢ := g” and the key H(R").

= k + Decaps(SK,c): on input a secret key SK = x and a
ciphertext ¢, it outputs H(c").

If H is modelled as a random oracle and the CDH problem
relative to G is hard, then the above KEM is CPA-secure. T
I



Further Reading

[ Mihir Bellare, Alexandra Boldyreva, and Silvio Micali.
Public-key encryption in a multi-user setting: Security
proofs and improvements.

In Bart Preneel, editor, Advances in Cryptology
EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 259-274. Springer Berlin
Heidelberg, 2000.

ﬁ Dan Boneh.
Simplified OAEP for the RSA and Rabin Functions.
In Joe Kilian, editor, Advances in Cryptology — CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science,
pages 275-291. Springer Berlin Heidelberg, 2001.

15117



Further Reading

Ronald Cramer and Victor Shoup.

De81gn and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack.
STAM Journal on Computing, 33(1):167-226, 2003.

ﬁ Whitfield Diffie and Martin E Hellman.
New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644-654,
1976.

[§ Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi
Shamir.
New attacks on feistel structures with improved memory
complexities.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, pages 433—454, 2015.

16/17



Further Reading

[§ Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki,
Akashi Satoh, and Adi Shamir.
Collision-based power analysis of modular exponentiation
using chosen-message pairs.
In Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, pages 1529,
2008.

1717



