Introduction to Cryptology

10.1 & 10.2- Cramer-Shoup
Encryption Scheme, and
Hash Functions

Federico Pintore

Mathematical Institute, University of Oxford (UK)

OXFORD

Cramer-Shoup Encryption Scheme

Proposed by Ronald Cramer and Victor Shoup in 1998. It is
based on the ElGamal Encryption Scheme.

It was the first efficient public-key encryption scheme proven to
be CCA-secure in the standard model.

Its CCA-security relies on the hardness of the DDH problem.

2/29

Cramer-Shoup Encryption Scheme

It is relative to a group generation algorithm G that, on input a
security parameter n, returns:

= a description of a cyclic group G having prime order g,
where [|g|| = |logy q| +1 =n;

= a couple of generators g1, g2 for G.

3/29

Cramer-Shoup Encryption Scheme

It is relative to a group generation algorithm G that, on input a
security parameter n, returns:

= a description of a cyclic group G having prime order g,
where [|g|| = |logy q| +1 =n;

= a couple of generators g1, g2 for G.

The Cramer-Shoup encryption scheme relative to G
CS = (KeyGen, Enc, Dec)

is defined as follows.

3/29

Cramer-Shoup Encryption Scheme

= (PK,SK) < KeyGen(n): it runs G on input a security
parameter n, obtaining a group G, its order ¢, and a couple
of generators g1, g2 for G.

Then, it specifies a collision-resistant hash function
H:{0,1}* — {1,...,q}, picks uniform xj, x2, y1, y2, w1,
we € {1,...,q} and computes:

* o= g8y
*odi=g'g);
* hi=glgh”.

The public key is PK = (G, ¢, g1, 82,¢,d,h, H).
The secret key is SK = (x1,x2,y1, y2, Wi, w2).

4/29
|

Cramer-Shoup Encryption Scheme

» CT + Enc(PK,m € G): on input a public key PK and a
message m, it chooses a uniform k € Z,, and computes:

_ k _ k.
s oup = g1,U2 = &9;
* e=Hm;
* o= H(up,us,e);
» v =ckd*.

The ciphertext CT is (u1,us2,e,v).

5/29

Cramer-Shoup Encryption Scheme

= m < Dec(CT,SK): on input a ciphertext CT = (u1, uz,e,v)

and a secret key SK = (x1,x2,y1,¥2,21,22), it computes
a = H(u,uz,e).

If ' wy? (1) w?)® # v, it outputs L.
1 g Uy Uy

Otherwise it outputs m = e/ (u} uy?)

Correctness: e/(u} uy?) = h*m/g"" ¢8> = Wom/hk = m.

6/29

Cramer-Shoup: Security Proof

Proof.
Let A be a PPT adversary in the experiment PubK .

A is exploited, as a subroutine, to construct a distinguisher D
for the DDH problem relative to G.

7/29

Cramer-Shoup: Security Proof

Proof.
Let A be a PPT adversary in the experiment PubK .

A is exploited, as a subroutine, to construct a distinguisher D
for the DDH problem relative to G.

D receives (G7q7g17g27g37g4)’ piCkS uniform X1,X2, Y1,Y2,
wi,we € {1,...,q} and sets

PK := (Gaqagl?‘é?ac = 8?5’52"1 = gﬁlggz?h = gvlt)IgVQ‘QaH)'

PK is sent to A.

7/29

Cramer-Shoup: Security Proof

Decryption queries:

On input (u1,us,e,v) € G*, D computes o = H(uy, us, e). If

X1+ay1 xo+oyz
u; Uy #v

it outputs L, otherwise it outputs

, e

m = ——-.
w1 w2
up iy

8/29

Cramer-Shoup: Security Proof

D receives (mg,m;) from A, picks a uniform bit b € {0,1} and

computes
* w w
et = 8384 Mp,

= o =H(gs, g4, €"),

* CT" = (837g4,€*,v* = g§1+a ylg“ff"‘a y2).

CT* is sent to A, who has still access to the decryption oracle.

9/29

Cramer-Shoup: Security Proof

D receives (mg,m;) from A, picks a uniform bit b € {0,1} and
computes

E3 w w:
e :831842”%7

:. af = H(g37g47 e*)u

= CT" — (gg,g4,e*,v* — g§1+a*y1g22+a*y2).
CT* is sent to A, who has still access to the decryption oracle.

When D receives A’s guess b, it returns 1 if b’ = b, 0 otherwise.

9/29

Cramer-Shoup: Security Proof

Fact 1: from the hardness of the DDH problem, it follows that

| Pr(D = 1|DH) — Pr(D = 1|Random)| < negl, (n).

Fact 2:

Pr(D = 1|DH) = Pr(PubK*s(n) = 1) + negly(n).

Fact 3:
| Pr(D = 1|Random)| <

N =

+ negl;(n).

Combining the three facts, the proof follows.
10/29

Cramer-Shoup: Security Proof

Proof of Fact 2:

Let I be the event g5 € {1,g1}. Then Pr(/|DH) = 2/4.

Using the conditional probability and the union formula we
obtain: Pr(D = 1|DH) = Pr(D = 1|DH N 1) + negly(n).

11/29

Cramer-Shoup: Security Proof

Proof of Fact 2:

Let I be the event g5 € {1,g1}. Then Pr(/|DH) = 2/4.

Using the conditional probability and the union formula we
obtain: Pr(D = 1|DH) = Pr(D = 1|DH N 1) + negly(n).

When D gets a DH tuple with g5 ¢ {1, g1}, then g9 is a second
generator and there exists k s.t.:

(817§2783 = g]{7g4 = gé)
In this case, A’s view is distributed exactly as in the game
PubK'{s(n), and hence:

Pr(D = 1|DH) = Pr(PubK*(n) = 1) + negly(n). o
e

Cramer-Shoup: Security Proof

Proof of Fact 3: (a bit long...)

General idea: even if A can compute discrete logarithms we
have

1
Pr(D = 1|Random) < 3 + negl (n)’

provided A can make polynomially-many decryption queries.

12/29

Cramer-Shoup: Security Proof

Proof of Fact 3: (a bit long...)

General idea: even if A can compute discrete logarithms we
have 1
Pr(D = 1|Random) < 3 + negl (n)’

provided A can make polynomially-many decryption queries.

When D gets a random tuple, it is of the form
(81,82 =¢l,83 =gk, 81 =)
where r, k, ¥ € {1,...,q}. We can assume r # 0 and k # .

12/29

Cramer-Shoup: Security Proof

What does A learn about wq, ws?

13/29

Cramer-Shoup: Security Proof

What does A learn about wq, ws?

From the public key PK, A learns

log, h = w1+ rws. (1)

13/29

Cramer-Shoup: Security Proof

Decryption queries

Consider a decryption query CT = (uy,us2,e,v) made by A.

We say that CT is
* illegal if log,, u1 # logg, uz;

= legal otherwise.

14/29

Cramer-Shoup: Security Proof

Decryption queries

Consider a decryption query CT = (uy,us2,e,v) made by A.

We say that CT is
* illegal if log,, u1 # logg, uz;

= legal otherwise.

We will prove that

1. A does not learn additional information about wy and wy
from legal ciphertexts and from illegal ciphertext for which
D returns a message;

2. the probability that D decrypts illegal ciphertexts is
negligibly low.

14/29

Cramer-Shoup: Security Proof

Assume the validity of the above two points and consider an
arbitrary p € G.

The only value in CT* which directly depends on my; is

* wi W2
e —g3 g4 mp.

Suppose p = g5*gy*. Then:

logg, 1 = kws + rr'wy @)

15/29

Cramer-Shoup: Security Proof

Assume the validity of the above two points and consider an
arbitrary p € G.

The only value in CT* which directly depends on my; is

* wi W2
e —g3 g4 mp.

Suppose p = g5*gy*. Then:

logg, 1 = kws + rr'wy @)

Equations (1) and (2) form a system of linear equations in wy
and wo (over Z,) with matrix of coefficients equal to

1 r
B_<k rr')

. . . . /
which is non singular since r # 0 and k # r'. 1510

Cramer-Shoup: Security Proof

w1 _wg

Each ;1 € G is a possible value for g5*g)>.

Therefore, the adversary A cannot predict the value of g5 g)?

with probability better than 1/g.

Since g5'gy? is uniformly distributed in G from A’s point of

view, also g4' g} ?my, is uniformly distributed. Thus A has no
information about my,.

16/29

Cramer-Shoup: Security Proof

1. When log, u1 = logg, us = ¥, then A learns from the
decrypted message m’ that

log,, m' =log, e —r'"wy —r"rwy (3)

But equation (3) is linearly dependent with equation (1),
so no extra information about wy,ws in this case.

17/29

Cramer-Shoup: Security Proof

1. When log, u1 = logg, us = ¥, then A learns from the
decrypted message m’ that

log,, m' =log, e —r'"wy —r"rwy (3)
But equation (3) is linearly dependent with equation (1),

so no extra information about wy,ws in this case.

When D returns L, it means that

54 H(u1,uz,e) x H(ui,uz,e
v;ﬁuﬁ_yl 12)22+y2(12)'

Since w1, we are not involved in this check, also in this case
no information about them is leaked.

17/29

Cramer-Shoup: Security Proof

2 We consider two phases: before the challenge ciphertext is
sent, and after.

18/29

Cramer-Shoup: Security Proof

2 We consider two phases: before the challenge ciphertext is
sent, and after.

Before the challenge ciphertext is sent

From the public key PK, A learns the following about
X1,X2,Y¥1,Y2:
log,, ¢ = x1 + rx (4)
log,, d =y1 +1y2 (5)

From A’s point of view, there are ¢* possibilities for x1, xa,
Y1, Y2

18/29

Cramer-Shoup: Security Proof

Consider an arbitrary p € G, and suppose p = u{ﬁay 1u;2+ay 2.

Then we have:

logg, = r"(x1 4+ ay1) + rr’" (xa + ays) (6)

19/29

Cramer-Shoup: Security Proof

Consider an arbitrary p € G, and suppose p = u{ﬁay 1u;2+ay 2.

Then we have:

logg, = r"(x1 4+ ay1) + rr’" (xa + ays) (6)

Equations (4), (5) and (6) form a system of linear equations in
x1,%2,y1,y2 (over Z,) with matrix of coefficients equal to

1 r 0 0
cC=10 0 1 r

r/l rr/// Oér” arr!//

which has rank 3 since 7’ # """ (the considered query is illegal).

19/29

Cramer-Shoup: Security Proof

Each € G is a possible value for u}' w32 T2,

We have ¢? possible values for x1,xz, y1,y2 from (4), (5).

The map sending a possible value (x1,x2,y1,y2) in
] T2 g surjective (with the range bein G), and the

preimage of each p € G contains ¢ distinct elements.

Fixed uy, us, e, the adversary A cannot predict the value of
) T with probability better than 1/g.

20/29

Cramer-Shoup: Security Proof

If the first illegal decryption query (uy,us,e,v) is rejected, A
learns that v # u){1+04y1u)§2+o¢y2'

This eliminates 1 of ¢ possibile values for v.

The probability that the ¢(n)-th decryption query of this form is
not rejected is at most 1/(qg — (4(n) — 1)).

Thus the probability that one of these queries is not rejected is
at most ¢(n)/(q — (¢(n) — 1)), which is negligible in n (g is
exponential in n, £(n) is polynomial).

21/29

Cramer-Shoup: Security Proof

After the challenge ciphertext is sent

From the challenge ciphertext CT* = (uj, u3,e*,v"), A learns:

log,, v* = (x1 + a*y1)k + (x2 + a*yo)rr. (7)

22/29

Cramer-Shoup: Security Proof

After the challenge ciphertext is sent

From the challenge ciphertext CT* = (uj, u3,e*,v"), A learns:

log,, v* = (x1 + a"y1)k + (x2 + a"y2)rr’. (7)

We have three possible types of illegal queries (u1, us,e,v):

= (uy,ug,e) = (uj,us, e*) with v #v*. Since the hash values
are equal but v # v*, the decryption oracle rejects.

= (U, u9,e) # (uj,u5,e*) and a = . It means a collision in
H has been found. But H is collision-resistant, so this
happens only with negligible probability.

22/29

Cramer-Shoup: Security Proof

= (uy,u9,e) # (uj,u3,e*) and a # . The decryption oracle
accepts the query only if

logg, v = (x1 + ay1)7 + (x2 + ayg)ri’ (8)

where 7 = log,, uy # 7/ = logg, ua.

23/29

Cramer-Shoup: Security Proof

= (uy,u9,e) # (uj,u3,e*) and a # . The decryption oracle
accepts the query only if

log,, v = (x1 + ay1)7 + (x2 + ay)r¥ (8)

where 7 = log,, uy # 7/ = logg, ua.

In this case, the equations (4), (5), (7) and (8) are linearly
independent because

1 r 0 0
0 O 1 r
Gigts k rr ka* rfa*

Forf fa rfa

= (r2)(r/ —k)(F— ?’)(a —a*) #0.

23/29

Cramer-Shoup: Security Proof

We have g possible values for x1,x2,y1,y2 from (4),(5),(7). For
each of them, only one value of v € G makes D decrypt.

Fixed uy,us, e, A cannot predict the value of]! T 43> T2

with probability better than 1/g4.

If the first illegal decryption query (uq,us,e,v) is rejected, A
learns that v # u){1+O‘YIu)2€2+ay2'

This eliminates 1 of g possibile values for v.

The probability that the ¢(n)-th decryption query of this form is
not rejected is at most 1/(g — (4(n) — 1)).

Thus the probability that one of these queries is not rejected is
at most ¢(n)/(q — ({(n) — 1)), which is negligible in n (g is

exponential in n, £(n) is polynomial). s

Dlog-based Collision-Resistant Hash Functions

Theorem
If the discrete logarithm is hard for some group generation
algorithm G, then collision-resistant hash functions exist.

25/29

Dlog-based Collision-Resistant Hash Functions

Theorem
If the discrete logarithm is hard for some group generation
algorithm G, then collision-resistant hash functions exist.

Suppose G generates prime-order groups.

We define a fixed-length hash function (KeyGen, H) as follows:

= s < KeyGen(n): it runs G on input a security parameter n,
obtaining a description of a cyclic group G of prime order ¢
(with ||g|| = n) and a generator g.

It then selects a uniform h € G and outputs the key
§ = (G,q,é’»h)

= H'(x1,x2) < H(s, (x1,x2) € Zy X Zg): on input a key s and a
pair (x1,x2), it outputs H*(x1,x2) := g h™ € G. peo0
O

Dlog-based Collision-Resistant Hash Functions

If a collision for H® is found, the Dlog problem can be solved.
Suppose that H®(x1,x) = H*(x],x5) for (x1,x2) # (x,x5).

Then g h*? = g"ll i and hence:

gxl*xﬁ — o2 — log, h = [(x —) - (xh — x2)71 (mod gq)].

Note that xj — x3 # 0 (mod g), otherwise we have x; = x}
mod ¢ and therefore no collision is found.

As q is prime, the inverse of (x§ — xo) exists.

26/29

Further Reading

[Mihir Bellare, Alexandra Boldyreva, and Silvio Micali.
Public-Key Encryption in a Multi-user Setting: Security
Proofs and Improvements.

In Bart Preneel, editor, Advances in Cryptology
EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 259-274. Springer Berlin
Heidelberg, 2000.

ﬁ Dan Boneh.
Simplified OAEP for the RSA and Rabin Functions.
In Joe Kilian, editor, Advances in Cryptology — CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science,
pages 275-291. Springer Berlin Heidelberg, 2001.

27/29

Further Reading

Ronald Cramer and Victor Shoup.

De81gn and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack.
STAM Journal on Computing, 33(1):167-226, 2003.

ﬁ Whitfield Diffie and Martin E Hellman.
New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644-654,
1976.

[§ Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi
Shamir.
New attacks on Feistel Structures with Improved Memory
Complexities.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, pages 433—454, 2015.

28/29

Further Reading

[§ Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki,
Akashi Satoh, and Adi Shamir.
Collision-Based Power Analysis of Modular Exponentiation
Using Chosen-Message Pairs.
In Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, pages 1529,
2008.

29/29

