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Proposed by Ronald Cramer and Victor Shoup in 1998. It is
based on the ElGamal Encryption Scheme.

It was the first efficient public-key encryption scheme proven to
be CCA-secure in the standard model.

Its CCA-security relies on the hardness of the DDH problem.
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It is relative to a group generation algorithm G that, on input a
security parameter n, returns:

a description of a cyclic group G having prime order q,
where ||q|| = blog2 qc+ 1 = n;

a couple of generators g1, g2 for G.

The Cramer-Shoup encryption scheme relative to G

CS = (KeyGen,Enc,Dec)

is defined as follows.
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(PK,SK)← KeyGen(n): it runs G on input a security
parameter n, obtaining a group G, its order q, and a couple
of generators g1, g2 for G.

Then, it specifies a collision-resistant hash function
H : {0, 1}∗ → {1, . . . , q}, picks uniform x1, x2, y1, y2, w1,
w2 ∈ {1, . . . , q} and computes:

c := gx1
1 gx2

2 ;
d := gy1

1 gy2
2 ;

h := gw1
1 gw2

2 .

The public key is PK = (G, q, g1, g2, c, d, h,H).

The secret key is SK = (x1, x2, y1, y2,w1,w2).
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CT ← Enc(PK,m ∈ G): on input a public key PK and a
message m, it chooses a uniform k ∈ Zq, and computes:

u1 = gk
1, u2 = gk

2;
e = hkm;
α = H(u1, u2, e);
v = ckdkα.

The ciphertext CT is (u1, u2, e, v).
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m← Dec(CT,SK): on input a ciphertext CT = (u1, u2, e, v)
and a secret key SK = (x1, x2, y1, y2, z1, z2), it computes
α = H(u1, u2, e).

If ux1
1 ux2

2 (uy1
1 uy2

2 )α 6= v, it outputs ⊥.

Otherwise it outputs m = e/(uw1
1 uw2

2 )

Correctness: e/(uw1
1 uw2

2 ) = hkm/gkw1
1 gkw2

2 = hkm/hk = m.
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Proof.

Let A be a PPT adversary in the experiment PubKcca
A,CS.

A is exploited, as a subroutine, to construct a distinguisher D
for the DDH problem relative to G.

D receives (G, q, g1, g̃2, g3, g4), picks uniform x1, x2, y1, y2,
w1,w2 ∈ {1, . . . , q} and sets

PK := (G, q, g1, g̃2, c := gx1
1 g̃x2

2 , d := gy1
1 g̃y2

2 , h := gw1
1 g̃w2

2 ,H).

PK is sent to A.
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Decryption queries:

On input (u1, u2, e, v) ∈ G4, D computes α = H(u1, u2, e). If

ux1+αy1
1 ux2+αy2

2 6= v

it outputs ⊥, otherwise it outputs

m′ =
e

uw1
1 uw2

2

.
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D receives (m0,m1) from A, picks a uniform bit b ∈ {0, 1} and
computes

e∗ = gw1
3 gw2

4 mb,

α∗ = H(g3, g4, e∗),

CT∗ = (g3, g4, e∗, v∗ := gx1+α∗y1
3 gx2+α∗y2

4 ).

CT∗ is sent to A, who has still access to the decryption oracle.

When D receives A’s guess b′, it returns 1 if b′ = b, 0 otherwise.
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Fact 1: from the hardness of the DDH problem, it follows that∣∣Pr(D = 1|DH)− Pr(D = 1|Random)
∣∣ ≤ negl1(n).

Fact 2:

Pr(D = 1|DH) = Pr(PubKcca
A,CS(n) = 1) + negl2(n).

Fact 3: ∣∣Pr(D = 1|Random)
∣∣ ≤ 1

2
+ negl3(n).

Combining the three facts, the proof follows.
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Proof of Fact 2:

Let I be the event g̃2 ∈ {1, g1}. Then Pr(I|DH) = 2/q.

Using the conditional probability and the union formula we
obtain: Pr(D = 1|DH) = Pr(D = 1|DH ∩ Ī) + negl2(n).

When D gets a DH tuple with g̃2 /∈ {1, g1}, then g̃2 is a second
generator and there exists k s.t.:

(g1, g̃2, g3 = gk
1, g4 = g̃k

2).

In this case, A’s view is distributed exactly as in the game
PubKcca

A,CS(n), and hence:

Pr(D = 1|DH) = Pr(PubKcca
A,CS(n) = 1) + negl2(n).
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Proof of Fact 3: (a bit long...)

General idea: even if A can compute discrete logarithms we
have

Pr(D = 1|Random) ≤ 1

2
+ negl(n)′

provided A can make polynomially-many decryption queries.

When D gets a random tuple, it is of the form

(g1, g̃2 = gr
1, g3 = gk

1, g4 = g̃r′
2 )

where r, k, r′ ∈ {1, . . . , q}. We can assume r 6= 0 and k 6= r′.
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What does A learn about w1,w2?

From the public key PK, A learns

logg1 h = w1 + rw2. (1)
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Decryption queries

Consider a decryption query CT = (u1, u2, e, v) made by A.

We say that CT is

illegal if logg1 u1 6= logg̃2 u2;

legal otherwise.

We will prove that

1. A does not learn additional information about w1 and w2

from legal ciphertexts and from illegal ciphertext for which
D returns a message;

2. the probability that D decrypts illegal ciphertexts is
negligibly low.
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Assume the validity of the above two points and consider an
arbitrary µ ∈ G.

The only value in CT∗ which directly depends on mb is
e∗ = gw1

3 gw2
4 mb.

Suppose µ = gw1
3 gw2

4 . Then:

logg1 µ = kw1 + rr′w2 (2)

Equations (1) and (2) form a system of linear equations in w1

and w2 (over Zq) with matrix of coefficients equal to

B =

(
1 r
k rr′

)
which is non singular since r 6= 0 and k 6= r′.
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Each µ ∈ G is a possible value for gw1
3 gw2

4 .

Therefore, the adversary A cannot predict the value of gw1
3 gw2

4

with probability better than 1/q.

Since gw1
3 gw2

4 is uniformly distributed in G from A’s point of
view, also gw1

3 gw2
4 mb is uniformly distributed. Thus A has no

information about mb.
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1. When logg1 u1 = logg̃2 u2 = r′′, then A learns from the
decrypted message m′ that

logg1 m′ = logg1 e− r′′w1 − r′′rw2 (3)

But equation (3) is linearly dependent with equation (1),
so no extra information about w1,w2 in this case.

When D returns ⊥, it means that

v 6= ux1+y1H(u1,u2,e)
1 ux2+y2H(u1,u2,e)

2 .

Since w1,w2 are not involved in this check, also in this case
no information about them is leaked.
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2 We consider two phases: before the challenge ciphertext is
sent, and after.

Before the challenge ciphertext is sent

From the public key PK, A learns the following about
x1, x2, y1, y2:

logg1 c = x1 + rx2 (4)

logg1 d = y1 + ry2 (5)

From A’s point of view, there are q2 possibilities for x1, x2,
y1, y2.
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Consider an arbitrary µ ∈ G, and suppose µ = ux1+αy1
1 ux2+αy2

2 .
Then we have:

logg1 µ = r′′(x1 + αy1) + rr′′′(x2 + αy2) (6)

Equations (4), (5) and (6) form a system of linear equations in
x1, x2, y1, y2 (over Zq) with matrix of coefficients equal to

C =

 1 r 0 0
0 0 1 r
r′′ rr′′′ αr′′ αrr′′′


which has rank 3 since r′′ 6= r′′′ (the considered query is illegal).
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Each µ ∈ G is a possible value for ux1+αy1
1 ux2+αy2

2 .

We have q2 possible values for x1, x2, y1, y2 from (4), (5).

The map sending a possible value (x1, x2, y1, y2) in
ux1+αy1
1 ux2+αy2

2 is surjective (with the range bein G), and the
preimage of each µ ∈ G contains q distinct elements.

Fixed u1, u2, e, the adversary A cannot predict the value of
ux1+αy1
1 ux2+αy2

2 with probability better than 1/q.
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If the first illegal decryption query (u1, u2, e, v) is rejected, A
learns that v 6= ux1+αy1

1 ux2+αy2
2 .

This eliminates 1 of q possibile values for v.

The probability that the `(n)-th decryption query of this form is
not rejected is at most 1/(q− (`(n)− 1)).

Thus the probability that one of these queries is not rejected is
at most `(n)/(q− (`(n)− 1)), which is negligible in n (q is
exponential in n, `(n) is polynomial).
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After the challenge ciphertext is sent

From the challenge ciphertext CT∗ = (u∗1, u∗2, e∗, v∗), A learns:

logg1 v∗ = (x1 + α∗y1)k + (x2 + α∗y2)rr′. (7)

We have three possible types of illegal queries (u1, u2, e, v):

(u1, u2, e) = (u∗1, u∗2, e∗) with v 6= v∗. Since the hash values
are equal but v 6= v∗, the decryption oracle rejects.

(u1, u2, e) 6= (u∗1, u∗2, e∗) and α = α∗. It means a collision in
H has been found. But H is collision-resistant, so this
happens only with negligible probability.
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(u1, u2, e) 6= (u∗1, u∗2, e∗) and α 6= α∗. The decryption oracle
accepts the query only if

logg1 v = (x1 + αy1)r̃ + (x2 + αy2)rr̃′ (8)

where r̃ = logg1 u1 6= r̃′ = logg̃2 u2.

In this case, the equations (4), (5), (7) and (8) are linearly
independent because

det


1 r 0 0
0 0 1 r
k r′r kα∗ rr′α∗

r̃ rr̃′ r̃α rr̃′α

 = (r2)(r′− k)(r̃− r̃′)(α−α∗) 6= 0.
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We have q possible values for x1, x2, y1, y2 from (4),(5),(7). For
each of them, only one value of v ∈ G makes D decrypt.

Fixed u1, u2, e, A cannot predict the value of ux1+αy1
1 ux2+αy2

2

with probability better than 1/q.

If the first illegal decryption query (u1, u2, e, v) is rejected, A
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Theorem
If the discrete logarithm is hard for some group generation
algorithm G, then collision-resistant hash functions exist.

Suppose G generates prime-order groups.

We define a fixed-length hash function (KeyGen,H) as follows:

s← KeyGen(n): it runs G on input a security parameter n,
obtaining a description of a cyclic group G of prime order q
(with ‖q‖ = n) and a generator g.

It then selects a uniform h ∈ G and outputs the key
s = (G, q, g, h).

Hs(x1, x2)← H(s, (x1, x2) ∈ Zq × Zq): on input a key s and a
pair (x1, x2), it outputs Hs(x1, x2) := gx1hx2 ∈ G.
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If a collision for Hs is found, the Dlog problem can be solved.

Suppose that Hs(x1, x2) = Hs(x′1, x′2) for (x1, x2) 6= (x′1, x′2).

Then gx1hx2 = gx′1hx′2 and hence:

gx1−x′1 = hx′2−x2 =⇒ logg h = [(x− x′1) · (x′2 − x2)−1 (mod q)].

Note that x′2 − x2 6= 0 (mod q), otherwise we have x1 = x′1
mod q and therefore no collision is found.

As q is prime, the inverse of (x′2 − x2) exists.



Further Reading I

27/29

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali.
Public-Key Encryption in a Multi-user Setting: Security
Proofs and Improvements.
In Bart Preneel, editor, Advances in Cryptology —
EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer Berlin
Heidelberg, 2000.

Dan Boneh.
Simplified OAEP for the RSA and Rabin Functions.
In Joe Kilian, editor, Advances in Cryptology — CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science,
pages 275–291. Springer Berlin Heidelberg, 2001.



Further Reading II

28/29

Ronald Cramer and Victor Shoup.
Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

Whitfield Diffie and Martin E Hellman.
New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654,
1976.
Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi
Shamir.
New attacks on Feistel Structures with Improved Memory
Complexities.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, pages 433–454, 2015.



Further Reading III

29/29

Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki,
Akashi Satoh, and Adi Shamir.
Collision-Based Power Analysis of Modular Exponentiation
Using Chosen-Message Pairs.
In Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, pages 15–29,
2008.


