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Integers modulo N
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Euclidean division: given two integers a, b, with b 6= 0, there
exist unique q, r ∈ Z such that a = bq + r, with 0 ≤ r < |b|.

Given a positive integer N, and a, b ∈ Z:

a (mod N) denotes the reminder of a when divided by N;

[a]N is the set of all integers having the same reminder of a
when divided by N;

we write a = b (mod N) if [a]N = [b]N .

ZN = {[i]N | i = 0, 1, . . . ,N − 1} is the set of integers modulo N.

Two binary operations can be defined on ZN :

[a]N + [b]N := [a + b]N , [a]N · [b]N := [ab]N .



Integers modulo N

2/24

Euclidean division: given two integers a, b, with b 6= 0, there
exist unique q, r ∈ Z such that a = bq + r, with 0 ≤ r < |b|.

Given a positive integer N, and a, b ∈ Z:

a (mod N) denotes the reminder of a when divided by N;

[a]N is the set of all integers having the same reminder of a
when divided by N;

we write a = b (mod N) if [a]N = [b]N .

ZN = {[i]N | i = 0, 1, . . . ,N − 1} is the set of integers modulo N.

Two binary operations can be defined on ZN :

[a]N + [b]N := [a + b]N , [a]N · [b]N := [ab]N .



Integers modulo N

2/24

Euclidean division: given two integers a, b, with b 6= 0, there
exist unique q, r ∈ Z such that a = bq + r, with 0 ≤ r < |b|.

Given a positive integer N, and a, b ∈ Z:

a (mod N) denotes the reminder of a when divided by N;

[a]N is the set of all integers having the same reminder of a
when divided by N;

we write a = b (mod N) if [a]N = [b]N .

ZN = {[i]N | i = 0, 1, . . . ,N − 1} is the set of integers modulo N.

Two binary operations can be defined on ZN :

[a]N + [b]N := [a + b]N , [a]N · [b]N := [ab]N .



Integers modulo N

3/24

(ZN ,+, ·) is an abelian ring ([0]N is the zero element, [1]N is
the identity).

[a]N is invertible if there exists [b]N ∈ ZN such that
[a]N · [b]N = [1]N .

Which are the invertible elements in ZN \ {[0]N}?

Given a, b ∈ Z, a is divided by b if a = bc for some c ∈ Z.

The greatest common divisor gcd(a, b) of a, b ∈ Z is the
biggest integer dividing both a and b.

For a, b ∈ Z, gcd(a, b) is the smallest positive integer of the
form aX + bY, with X,Y ∈ Z.
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Proposition
Given two integers b ≥ 1 and N > 1, [b]N is invertible if and only
if gcd(b,N) = 1 (i.e. b and N are relatively prime).

The set Z∗
N = {[b]N ∈ ZN | gcd(b,N) = 1} contains all the

invertible elements of ZN \ {[0]N}.

(Z∗
N , ·) is a group.

Define φ(N) as the cardinality of Z∗
N (φ : N→ N is called

the Euler phi function).

If N is a prime, then φ(N) = N − 1. If N = pq is a
semi-prime (product of two primes), φ(N) = (p− 1)(q− 1).
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Proposition
If (G, ·) is a finite abelian group of cardinality m, then gm = 1 for
every g ∈ G.

For [a]N ∈ Z∗
N , we have ([a]N)φ(N) = [1]N .

Let e ∈ Z be relatively prime with N. Then the map:

fe([x]N) = ([x]N)e

is a permutation of Z∗
N . Indeed, its inverse is the map fd,

where d is such that [d]φ(N)[e]φ(N) = [1]φ(N)

(de = `φ(N) + 1, ([x]N)`φ(N) = [1]N and ([x]N)`φ(N)+1 = [x]N)
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Let GenModulus be a PPT algorithm that, on input n, returns
(N, p, q), where N = pq and p, q are n-bit primes.

In the experiment FactorA,GenModulus(n), the adversary A is
given the composite number N output by GenModulus on input
n, and has to determine the divisors p, q.

Factoring is hard relative to GenModulus if, for every A, their
success probability in the above experiment is negligible in n.

Factoring assumption: there exists a GenModulus relative to
which factoring is hard.
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Let GenRSA be a PPT algorithm that, on input n, outputs
(N, p, q, e, d), where p and q are n-bit primes, N = pq, and
[e]ϕ(N)[d]ϕ(N) = [1]ϕ(N).

In the experiment RSA− invA,GenRSA(n):

GenRSA is run on input n;

the adversary A is given N, e and a uniform element
[y]N ∈ Z∗

N ;

A has to determine [x]N ∈ Z∗
N such that ([x]N)e = [y]N .

The RSA problem is hard relative to GenRSA if, for every A,
their success probability in the above experiment is negligible in
n.

RSA assumption: there exists a GenRSA relative to which the
RSA problem is hard.
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If the factorisation of N is known, it is possible to compute φ(N)
and hence [d]φ(N) = ([e]φ(N))

−1.

The other implication is still open! The best we can say is:

Theorem
Given a composite integer N and integers e, d such that
[e]φ(N)[d]φ(N) = [1]φ(N), there is a PPT algorithm that can output
a factor of N except with negligible probability (in ‖N‖).
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If a positive integer a divides b ∈ Z, we call a a divisor of b. If
a /∈ {1, b}, a is said a non trivial divisor of b.

A positive integer p is prime if it has only trivial divisors.

There are infinitely many primes.

Fundamental Theorem of Arithmetic: any n ∈ Z can be
decomposed uniquely as a product of prime numbers.

Bertrand’s postulate: for any n ∈ N \ {0}, the fraction of
n-bit integers that are prime is at least 1/3n.

How to efficiently generate random n-bit primes?
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Naive approach: pick random n-bit integers and check if they
are prime.

Input : length n,parameter t

for i = 1, . . . , t do
p′ ← {0, 1}n−1

p := 1||p′

if Primality_test(p) = 1

return p

return ⊥
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Set t = 3n2. Then the probability that the previous algorithm
does not output a prime in t iterations is at most(

1− 1

3n

)t

=

((
1− 1

3n

)3n
)n

≤ (e−1)n = e−n

since (1− 1/x)x ≤ e−1 for all x ≥ 1.

This probability is negligible in n.

We still need to study algorithms that test primality.



Generating Random Primes

11/24

Set t = 3n2. Then the probability that the previous algorithm
does not output a prime in t iterations is at most(

1− 1

3n

)t

=

((
1− 1

3n

)3n
)n

≤ (e−1)n = e−n

since (1− 1/x)x ≤ e−1 for all x ≥ 1.

This probability is negligible in n.

We still need to study algorithms that test primality.



Primality testing algorithms

12/24

On input a n ∈ N, they decide whether n is prime or not.

There exist deterministic algorithms (see the AKS test,
proposed in 2002).

In practice, probabilistic algorithms are used, since they are
much faster.

Probabilistic algorithms have a small probability to return
“prime” for composite numbers.



Fermat test
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Fermat’s little theorem: if n is prime, then ([a]n)n−1 = [1]n for
all [a]n ∈ Z∗

n.

Idea: choose a uniform a ∈ {1, 2, . . . , n− 1} and check whether
([a]n)n−1 = [1]n. If not, then n is composite.

Any a ∈ {1, 2, . . . , n− 1} s.t. ([a]n)n−1 6= [1]n is a witness that n
is composite
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Input : integer n,parameter t

for i = 1, . . . , t do
a← {1, 2 · · · , n− 1}
if ([a]n)n−1 6= [1]n

return “composite”
return “prime”

Theorem
If the set {witnesses}n of witnesses that n is composite is not
empty, then

|{witnesses}n| ≥ |Z∗
n|/2.

Having a witness is not necessary for being composite.
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Carmichael numbers: composite numbers that do not have any
witnesses.

Fermat test needs to be refined.

Let n− 1 = 2ku, where u is odd and k ≥ 1 (n is odd).

Fermat test for n checks if ([a]n)n−1 = ([a]n)2
ku = [1]n.

What about ([a]n)u, ([a]n)2u, · · · , ([a]n)2
k−1u?

A strong witness that n is composite is an element
a ∈ {1, 2 . . . , n− 1} such that

([a]n)u 6= ±[1]n
([a]n)2

iu 6= [−1]n for all i ∈ {1, · · · , k − 1}
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Theorem
Let n be an odd positive integer that is not a prime power. Then
we have that at least half of the elements of Z∗

n are strong
witnesses that n is composite.

Testing whether n is a perfect power (power of an integer, not
necessarily prime) can be done in polynomial time.
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Input : integer n > 2,parameter t

if n is even
return “composite”

if n is a perfect power
return “composite”

determine u, k s.t. n− 1 := 2ku,where u is odd and k ≥ 1

for j = 1, . . . , t do
a← {1, · · · , n− 1}

if ([a]n)u 6= ±[1]n and ([a]n)2
iu 6= −[1]n for i ∈ {1, · · · , k − 1}

return “composite”
return “prime”
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Theorem
If n is prime, then the Miller-Rabin test always outputs “prime”.
If n is composite, the algorithm outputs “composite” except with
probability at most 2−t.



Quadratic Residues
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Definition
For any positive integer m, we define the set of quadratic
residues modulo m as

QR(m) := {a ∈ Zm| ∃b ∈ Zm such that b2 = a}.

Theorem
Given a prime p > 2, for each a ∈ QR(p) ∩ Z∗

p there exist two
elements b, b′ ∈ Z∗

p s.t. b2 = (b′)2 = a.
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Definition
Given a prime p > 2 and an integer x s.t. [x]p ∈ Z∗

p, we define
the Legendre symbol of x modulo p as follows:

Lp(x) =

{
+1 if [x]p ∈ QR(p)
−1 if [x]p 6∈ QR(p).

Theorem
Given a prime p > 2 and an integer x s.t. [x]p ∈ Z∗

p, we have

[Lp(x)]p = ([x]p)
p−1
2 .
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Theorem
Let N = pq - where p and q are distinct primes - and let y be an
integer such that [y]N ∈ Z∗

N . Then [y]N ∈ QR(N) if and only if
[y]p ∈ QR(p) and [y]q ∈ QR(q).

Theorem
Let N = pq, where p and q are two distinct odd primes. Given
x, x̃ s.t. [x]2N = [x̃]2N but [x]N 6= ±[x̃]N , it is possible to factor N in
time polynomial in ‖N‖.

Theorem
Let N = pq, where p and q are two distinct odd primes such that
[p]4 = [q]4 = [3]4. Then every quadratic residue modulo N has
exactly one square root that belongs to QR(N).



Quadratic Residues

21/24

Theorem
Let N = pq - where p and q are distinct primes - and let y be an
integer such that [y]N ∈ Z∗

N . Then [y]N ∈ QR(N) if and only if
[y]p ∈ QR(p) and [y]q ∈ QR(q).

Theorem
Let N = pq, where p and q are two distinct odd primes. Given
x, x̃ s.t. [x]2N = [x̃]2N but [x]N 6= ±[x̃]N , it is possible to factor N in
time polynomial in ‖N‖.

Theorem
Let N = pq, where p and q are two distinct odd primes such that
[p]4 = [q]4 = [3]4. Then every quadratic residue modulo N has
exactly one square root that belongs to QR(N).



Quadratic Residues

21/24

Theorem
Let N = pq - where p and q are distinct primes - and let y be an
integer such that [y]N ∈ Z∗

N . Then [y]N ∈ QR(N) if and only if
[y]p ∈ QR(p) and [y]q ∈ QR(q).

Theorem
Let N = pq, where p and q are two distinct odd primes. Given
x, x̃ s.t. [x]2N = [x̃]2N but [x]N 6= ±[x̃]N , it is possible to factor N in
time polynomial in ‖N‖.

Theorem
Let N = pq, where p and q are two distinct odd primes such that
[p]4 = [q]4 = [3]4. Then every quadratic residue modulo N has
exactly one square root that belongs to QR(N).



Further Reading I

22/24

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali.
Public-Key Encryption in a Multi-user Setting: Security
Proofs and Improvements.
In Bart Preneel, editor, Advances in Cryptology —
EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer Berlin
Heidelberg, 2000.

Dan Boneh.
Simplified OAEP for the RSA and Rabin Functions.
In Joe Kilian, editor, Advances in Cryptology — CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science,
pages 275–291. Springer Berlin Heidelberg, 2001.



Further Reading II

23/24

Ronald Cramer and Victor Shoup.
Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

Whitfield Diffie and Martin E Hellman.
New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654,
1976.
Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi
Shamir.
New attacks on Feistel Structures with Improved Memory
Complexities.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, pages 433–454, 2015.



Further Reading III

24/24

Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki,
Akashi Satoh, and Adi Shamir.
Collision-Based Power Analysis of Modular Exponentiation
Using Chosen-Message Pairs.
In Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, pages 15–29,
2008.


