
Introduction to Cryptology

11.1 - RSA and other
factoring-based schemes

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

RSA Encryption Scheme

2/15

Designed by R. Rivest, A. Shamir and L. Adleman in 1977.

Variants of the original scheme still used nowadays, for both
public-key encryption and digital signatures.

Security is based on the RSA problem.

Plain RSA encryption algorithm

3/15

The RSA encryption scheme ERSA = (KeyGen,Enc,Dec) is
composed by three PPT algorithms defined as follows.

(PK,SK)← KeyGen(n): it runs a GenRSA algorithm on
input a security parameter n. Then PK is set to (N, e),
while SK is set to (N, d)1.

c← Enc(PK,m ∈ Z∗
N): on input a public key (N, e) and a

message m, it outputs c = me.

m← Dec(SK, c): on input a secret key (N, d) and a
ciphertext c, it computes m = cd.

Correctness: cd = (me)d = med = m`ϕ(N)+1 = m.

1We recall that N = pq, where p and q are two distinct n-bit odd primes,
while [e]ϕ(N)[d]ϕ(N) = [1]ϕ(N).

Plain RSA encryption algorithm

3/15

The RSA encryption scheme ERSA = (KeyGen,Enc,Dec) is
composed by three PPT algorithms defined as follows.

(PK,SK)← KeyGen(n): it runs a GenRSA algorithm on
input a security parameter n. Then PK is set to (N, e),
while SK is set to (N, d)1.

c← Enc(PK,m ∈ Z∗
N): on input a public key (N, e) and a

message m, it outputs c = me.

m← Dec(SK, c): on input a secret key (N, d) and a
ciphertext c, it computes m = cd.

Correctness: cd = (me)d = med = m`ϕ(N)+1 = m.

1We recall that N = pq, where p and q are two distinct n-bit odd primes,
while [e]ϕ(N)[d]ϕ(N) = [1]ϕ(N).

Plain RSA security

4/15

ERSA is deterministic, so it does not have indistinguishable
encryptions in the presence of an eavesdropper.

The factoring assumption implies that it is computationally
infeasible to recover the private key from the public key.

The RSA assumption implies that an adversary A cannot
recover m from (N, e) and c if m is uniform in Z∗

N .

What if m is not chosen uniformly from Z∗
N?

What if A learns partial information about m?

Padded RSA

5/15

Idea: to encrypt m, first map it to an element m̃ ∈ Z∗
N . The map

should be randomised and reversible.

Enc chooses a uniform r ∈ {0, 1}`(n), and sets m̃ = r||m.

The security of the padded variant depends on `(n).

`(n) = O(log n) is a bad choice;

provable security based on the RSA assumption when
m ∈ {0, 1} and ` is as large as possible;

for other cases, no security proof, but no attacks are
known either!

Padded RSA

5/15

Idea: to encrypt m, first map it to an element m̃ ∈ Z∗
N . The map

should be randomised and reversible.

Enc chooses a uniform r ∈ {0, 1}`(n), and sets m̃ = r||m.

The security of the padded variant depends on `(n).

`(n) = O(log n) is a bad choice;

provable security based on the RSA assumption when
m ∈ {0, 1} and ` is as large as possible;

for other cases, no security proof, but no attacks are
known either!

RSA-OAEP

6/15

CCA-secure variant which uses optimal asymmetric encryption
padding OAEP. Part of RSA PKCS#1 since version 2.0.

It uses integer-valued functions `(n), k0(n), k1(n) where
k0(n), k1(n) = Θ(n) and `(n)+ k0(n)+ k1(n) smaller than the
minimum bit-length of the moduli output by GenRSA(n).

Two hash functions H and G are also employed. They are
modelled as random oracles in the security proof.

The transformation executed by OAEP is a two-round
Feistel network (G and H are the round functions).

RSA-OAEP

6/15

CCA-secure variant which uses optimal asymmetric encryption
padding OAEP. Part of RSA PKCS#1 since version 2.0.

It uses integer-valued functions `(n), k0(n), k1(n) where
k0(n), k1(n) = Θ(n) and `(n)+ k0(n)+ k1(n) smaller than the
minimum bit-length of the moduli output by GenRSA(n).

Two hash functions H and G are also employed. They are
modelled as random oracles in the security proof.

The transformation executed by OAEP is a two-round
Feistel network (G and H are the round functions).

The OAEP mechanism

7/15

H : {0, 1}`+k1 → {0, 1}k0

G : {0, 1}k0 → {0, 1}`+k1

Input: m ∈ {0, 1}`

m′ := m||0k1

r ← {0, 1}k0

s := m′ ⊕ G(r) ∈ {0, 1}`+k1

t := r ⊕ H(s) ∈ {0, 1}k0

m̃ := s||t
return m̃

The OAEP mechanism

7/15

H : {0, 1}`+k1 → {0, 1}k0

G : {0, 1}k0 → {0, 1}`+k1

Input: m ∈ {0, 1}`

m′ := m||0k1

r ← {0, 1}k0

s := m′ ⊕ G(r) ∈ {0, 1}`+k1

t := r ⊕ H(s) ∈ {0, 1}k0

m̃ := s||t
return m̃

RSA-OAEP

8/15

The RSA-OAEP encryption scheme (KeyGen,Enc,Dec) is
composed by three PPT algorithms defined as follows.

(PK,SK)← KeyGen(n): it runs a GenRSA algorithm on
input a security parameter n and sets PK to (N, e) and SK
to (N, d).
c← Enc(PK,m ∈ {0, 1}`(n)): m is padded with the OAEP
mechanism, obtaining m̃. The ciphertext c is set to ([m̃]N)

e,
where PK = (N, e).
m← Dec(SK, c): on input a secret key SK = (N, d) and a
ciphertext c, m̃ is set to cd. If |m̃| 6= `+ k0 + k1, the
algorithm outputs ⊥. Otherwise:

it parses m̃ as (s||t), where s ∈ {0, 1}`+k1 , t ∈ {0, 1}k0 ;
it computes r := H(s)⊕ t;
it computes m′ := G(r)⊕ s. If the most-significant k1
bits of m′ are not all 0, it outputs ⊥. Otherwise, it
outputs the ` least-significant bits of m′.

Security of RSA-OAEP

9/15

RSA-OAEP is CCA-secure in the ROM.

In 2001, James Manger showed an attack on a variant of
RSA-OAEP specified in PKCS#1 v2.0.

It exploited implementation weaknesses, prone to
side-channel attack.

Two different conditions make Dec output ⊥. The times to
return the message errors were not identical.

The attack recovered the plaintext m with ||N|| queries to
an oracle leaking the error.

Cryptographic implementations should
adhere to the theoretical formalisations.

Security of RSA-OAEP

9/15

RSA-OAEP is CCA-secure in the ROM.

In 2001, James Manger showed an attack on a variant of
RSA-OAEP specified in PKCS#1 v2.0.

It exploited implementation weaknesses, prone to
side-channel attack.

Two different conditions make Dec output ⊥. The times to
return the message errors were not identical.

The attack recovered the plaintext m with ||N|| queries to
an oracle leaking the error.

Cryptographic implementations should
adhere to the theoretical formalisations.

Security of RSA-OAEP

9/15

RSA-OAEP is CCA-secure in the ROM.

In 2001, James Manger showed an attack on a variant of
RSA-OAEP specified in PKCS#1 v2.0.

It exploited implementation weaknesses, prone to
side-channel attack.

Two different conditions make Dec output ⊥. The times to
return the message errors were not identical.

The attack recovered the plaintext m with ||N|| queries to
an oracle leaking the error.

Cryptographic implementations should
adhere to the theoretical formalisations.

RSA - Weak-key Generator Attack

10/15

Suppose Alice computes a composite number NA = pqA, while
Bob computes NB = pqB.

Alice can compute qB = NB/p (Bob qA = NA/p).

Anyone can compute gcd(NA,NB) = p, and then qA and qB.

A concrete attack in 2012:

Ron was wrong, Whit is right, Lenstra et al.

It showed that 2/1000 of the gathered RSA keys were weak.

RSA - Weak-key Generator Attack

10/15

Suppose Alice computes a composite number NA = pqA, while
Bob computes NB = pqB.

Alice can compute qB = NB/p (Bob qA = NA/p).

Anyone can compute gcd(NA,NB) = p, and then qA and qB.

A concrete attack in 2012:

Ron was wrong, Whit is right, Lenstra et al.

It showed that 2/1000 of the gathered RSA keys were weak.

RSA - Weak-key Generator Attack

10/15

Suppose Alice computes a composite number NA = pqA, while
Bob computes NB = pqB.

Alice can compute qB = NB/p (Bob qA = NA/p).

Anyone can compute gcd(NA,NB) = p, and then qA and qB.

A concrete attack in 2012:

Ron was wrong, Whit is right, Lenstra et al.

It showed that 2/1000 of the gathered RSA keys were weak.

RSA - Weak-key Generator Attack

10/15

Suppose Alice computes a composite number NA = pqA, while
Bob computes NB = pqB.

Alice can compute qB = NB/p (Bob qA = NA/p).

Anyone can compute gcd(NA,NB) = p, and then qA and qB.

A concrete attack in 2012:

Ron was wrong, Whit is right, Lenstra et al.

It showed that 2/1000 of the gathered RSA keys were weak.

A CCA-secure KEM in the ROM

11/15

Consider a KEM (KeyGen,Encaps,Decaps) defined as follows:

(PK,SK)← KeyGen(n): given a security parameter n, it
runs a GenRSA algorithm on n and specifies a hash
function H : Z∗

N → {0, 1}n. Then it sets PK to (N, e,H) and
SK to (N, d,H).

(c, k)← Encaps(PK, n): on input a public key
PK = (N, e,H) and n, it picks a random r ∈ Z∗

N and
outputs the ciphertext c := re and the key k := H(r).

k← Decaps(SK, c): on input a secret key SK = (N, d,H)
and a ciphertext c, it outputs k := H(cd).

Its security relies on the RSA assumption. Part of the
ISO/IEC18033-2 standard for public-key encryption.

A CCA-secure KEM in the ROM

11/15

Consider a KEM (KeyGen,Encaps,Decaps) defined as follows:

(PK,SK)← KeyGen(n): given a security parameter n, it
runs a GenRSA algorithm on n and specifies a hash
function H : Z∗

N → {0, 1}n. Then it sets PK to (N, e,H) and
SK to (N, d,H).

(c, k)← Encaps(PK, n): on input a public key
PK = (N, e,H) and n, it picks a random r ∈ Z∗

N and
outputs the ciphertext c := re and the key k := H(r).

k← Decaps(SK, c): on input a secret key SK = (N, d,H)
and a ciphertext c, it outputs k := H(cd).

Its security relies on the RSA assumption. Part of the
ISO/IEC18033-2 standard for public-key encryption.

Rabin Encryption Scheme

12/15

The Rabin encryption scheme (KeyGen,Enc,Dec) consists of
three PPT algorithms:

(PK,SK)← KeyGen(n): it runs GenModulus on input a
security parameter n, obtaining (N, p, q), where N = pq and
p, q are n-bit primes with [p]4 = [q]4 = [3]4.
PK is set to N, SK is set to (p, q).

c← Enc(PK,m ∈ {0, 1}): on input a public key N and a
message m, it chooses a uniform r ∈ QR(N), where
lsb(r) = m, and outputs c := r2.

m← Dec(SK, c): given a secret key (p, q) and a ciphertext
c, it computes the unique r ∈ QR(N) s.t. r2 = c, and
outputs lsb(r).

Theorem
If the factoring problem is hard relative to GenModulus, then the
encryption scheme is CPA-secure.

Rabin Encryption Scheme

12/15

The Rabin encryption scheme (KeyGen,Enc,Dec) consists of
three PPT algorithms:

(PK,SK)← KeyGen(n): it runs GenModulus on input a
security parameter n, obtaining (N, p, q), where N = pq and
p, q are n-bit primes with [p]4 = [q]4 = [3]4.
PK is set to N, SK is set to (p, q).

c← Enc(PK,m ∈ {0, 1}): on input a public key N and a
message m, it chooses a uniform r ∈ QR(N), where
lsb(r) = m, and outputs c := r2.

m← Dec(SK, c): given a secret key (p, q) and a ciphertext
c, it computes the unique r ∈ QR(N) s.t. r2 = c, and
outputs lsb(r).

Theorem
If the factoring problem is hard relative to GenModulus, then the
encryption scheme is CPA-secure.

Further Reading I

13/15

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali.
Public-Key Encryption in a Multi-user Setting: Security
Proofs and Improvements.
In Bart Preneel, editor, Advances in Cryptology —
EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer Berlin
Heidelberg, 2000.

Dan Boneh.
Simplified OAEP for the RSA and Rabin Functions.
In Joe Kilian, editor, Advances in Cryptology — CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science,
pages 275–291. Springer Berlin Heidelberg, 2001.

Further Reading II

14/15

Ronald Cramer and Victor Shoup.
Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

Whitfield Diffie and Martin E Hellman.
New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654,
1976.
Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi
Shamir.
New attacks on Feistel Structures with Improved Memory
Complexities.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, pages 433–454, 2015.

Further Reading III

15/15

Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki,
Akashi Satoh, and Adi Shamir.
Collision-Based Power Analysis of Modular Exponentiation
Using Chosen-Message Pairs.
In Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington,
D.C., USA, August 10-13, 2008. Proceedings, pages 15–29,
2008.

