
Introduction to Cryptology

11.2 - Digital Signatures

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020



Overview

2/12

Digital signatures provide integrity and authenticity in the
public-key setting.

Public-key analogue of MACs.

A concrete application: digital signatures allow clients to verify
that software updates are authentic.

An update is signed by the company using their secret key;

each client can verify the authenticity of the update by
verifying the signature against the company’s public key.



Overview

2/12

Digital signatures provide integrity and authenticity in the
public-key setting.

Public-key analogue of MACs.

A concrete application: digital signatures allow clients to verify
that software updates are authentic.

An update is signed by the company using their secret key;

each client can verify the authenticity of the update by
verifying the signature against the company’s public key.



Overview

3/12

If a signature σ on a message m is verified correctly against a
given public key PK, it ensures that:

the message was indeed sent by the owner of the public key;

the message was not modified in transit.



Digital signatures and MACs

4/12

Key distribution and key management are hugely
simplified.

Signatures are publicly verifiable, therefore they are
transferable.

Signers cannot deny having signed a message
(non-repudiation).

MACs produce tags that are shorter than signatures, and
they are more efficient to generate/verify .



Digital signature schemes

5/12

A digital signature scheme S = (KeyGen,Sign,Verify) consists
of three PPT algorithms:

(PK,SK)← KeyGen(n): on input a security parameter n,
it returns a public key PK and its matching secret key SK.

σ ← Sign(SK,m): it takes a secret key SK and a message m
from the message space M, and returns a signature σ.

1/0← Verify(PK,m, σ): a deterministic algorithm that, on
input a public key PK, a message m and a signature σ,
returns either 1 (valid signature) or 0 (invalid signature).

Correctness: for every m ∈M, and except with negligible
probability over (PK,SK)← KeyGen(n), it holds

Verify(PK,m,Sign(SK,m)) = 1.



Unforgeability

6/12

The Signature Experiment Sigforge
A,S (n)

Challenger Ch Adversary A

(PK,SK)← KeyGen(n)
PK−−−−−−−→

Q = {queried m} Access to Sign(SK, ·)

Outputs (m∗, σ∗)

A wins the game, i.e. Sigforge
A,S (n) = 1, if m∗ /∈ Q and

Verify(PK,m∗, σ∗) = 1.



Unforgeability

6/12

The Signature Experiment Sigforge
A,S (n)

Challenger Ch Adversary A

(PK,SK)← KeyGen(n)
PK−−−−−−−→

Q = {queried m} Access to Sign(SK, ·)

Outputs (m∗, σ∗)

A wins the game, i.e. Sigforge
A,S (n) = 1, if m∗ /∈ Q and

Verify(PK,m∗, σ∗) = 1.



Unforgeability

6/12

The Signature Experiment Sigforge
A,S (n)

Challenger Ch Adversary A

(PK,SK)← KeyGen(n)
PK−−−−−−−→

Q = {queried m} Access to Sign(SK, ·)

Outputs (m∗, σ∗)

A wins the game, i.e. Sigforge
A,S (n) = 1, if m∗ /∈ Q and

Verify(PK,m∗, σ∗) = 1.



Existentially Unforgeable Signature Schemes

7/12

Definition
A signature scheme S = (KeyGen,Sign,Verify) is existentially
unforgeable under an adaptive chosen-message attack, if for
every PPT adversaries A, it holds

Pr(Sigforge
A,S (n) = 1) ≤ negl(n) .



Hash-and-Sign Paradigm

8/12

Let S = (KeyGen,Sign,Verify) be a digital signature scheme for
messages of length `(n), and (KeyGenH,H) a hash function with
output length `(n).

The signature scheme S′ = (KeyGen′,Sign′,Verify′) for
messages of arbitrary length is defined as follows:

(PK,SK)← KeyGen′(n): it runs KeyGen and KeyGenH on
input a security parameter n, obtaining a pair of keys
(PK′,SK′) and a key s.
It outputs PK := (PK′, s) and SK := (SK′, s).

σ ← Sign′(SK,m ∈ {0, 1}∗): it takes a secret key (SK′, s)
and a message m, and returns σ := Sign(SK′,Hs(m)).

1/0← Verify′(PK,m, σ): on input a public key (PK′, s), a
message m and a signature σ, it and outputs 1 if
Verify(PK′,Hs(m), σ) = 1, 0 otherwise.



Hash-and-Sign Paradigm

9/12

Theorem
If S is an existentially unforgeable digital signature scheme for
messages of length `(n) and (KeyGenH,H) is a
collision-resistant hash function with output length `(n), then S′

is an existentially unforgeable digital signature scheme for
arbitrary-length messages.



Further Reading I

10/12

Carlisle Adams and Steve Lloyd.
Understanding PKI: concepts, standards, and deployment
considerations.
Addison-Wesley Professional, 2003.

Dan Boneh, Ben Lynn, and Hovav Shacham.
Short signatures from the Weil pairing.
Journal of cryptology, 17(4):297–319, 2004.

Tim Dierks.
The transport layer security (TLS) protocol version 1.2.
2008.
Carl Ellison and Bruce Schneier.
Ten risks of PKI: What you’re not being told about public
key infrastructure.
Comput Secur J, 16(1):1–7, 2000.



Further Reading II

11/12

Amos Fiat and Adi Shamir.
How to prove yourself: Practical solutions to identification
and signature problems.
In Advances in Cryptology—CRYPTO’86, pages 186–194.
Springer, 1987.

Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, and Vitaly Shmatikov.
The most dangerous code in the world: validating SSL
certificates in non-browser software.
In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 38–49. ACM, 2012.



Further Reading III

12/12

Hugo Krawczyk.
Cryptographic extraction and key derivation: The HKDF
scheme.
In Annual Cryptology Conference, pages 631–648. Springer,
2010.
Hugo Krawczyk, Kenneth G Paterson, and Hoeteck Wee.
On the security of the TLS protocol: A systematic analysis.
In Advances in Cryptology–CRYPTO 2013, pages 429–448.
Springer, 2013.

Leslie Lamport.
Constructing digital signatures from a one-way function.
Technical report, Technical Report CSL-98, SRI
International Palo Alto, 1979.


