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Digital signatures provide integrity and authenticity in the
public-key setting.

Public-key analogue of MACs.

A concrete application: digital signatures allow clients to verify
that software updates are authentic.

An update is signed by the company using their secret key;

each client can verify the authenticity of the update by
verifying the signature against the company’s public key.
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If a signature σ on a message m is verified correctly against a
given public key PK, it ensures that:

the message was indeed sent by the owner of the public key;

the message was not modified in transit.



Digital signatures and MACs
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Key distribution and key management are hugely
simplified.

Signatures are publicly verifiable, therefore they are
transferable.

Signers cannot deny having signed a message
(non-repudiation).

MACs produce tags that are shorter than signatures, and
they are more efficient to generate/verify .



Digital signature schemes
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A digital signature scheme S = (KeyGen,Sign,Verify) consists
of three PPT algorithms:

(PK,SK)← KeyGen(n): on input a security parameter n,
it returns a public key PK and its matching secret key SK.

σ ← Sign(SK,m): it takes a secret key SK and a message m
from the message space M, and returns a signature σ.

1/0← Verify(PK,m, σ): a deterministic algorithm that, on
input a public key PK, a message m and a signature σ,
returns either 1 (valid signature) or 0 (invalid signature).

Correctness: for every m ∈M, and except with negligible
probability over (PK,SK)← KeyGen(n), it holds

Verify(PK,m,Sign(SK,m)) = 1.



Unforgeability
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The Signature Experiment Sigforge
A,S (n)

Challenger Ch Adversary A

(PK,SK)← KeyGen(n)
PK−−−−−−−→

Q = {queried m} Access to Sign(SK, ·)

Outputs (m∗, σ∗)

A wins the game, i.e. Sigforge
A,S (n) = 1, if m∗ /∈ Q and

Verify(PK,m∗, σ∗) = 1.
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Existentially Unforgeable Signature Schemes
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Definition
A signature scheme S = (KeyGen,Sign,Verify) is existentially
unforgeable under an adaptive chosen-message attack, if for
every PPT adversaries A, it holds

Pr(Sigforge
A,S (n) = 1) ≤ negl(n) .



Hash-and-Sign Paradigm

8/12

Let S = (KeyGen,Sign,Verify) be a digital signature scheme for
messages of length `(n), and (KeyGenH,H) a hash function with
output length `(n).

The signature scheme S′ = (KeyGen′,Sign′,Verify′) for
messages of arbitrary length is defined as follows:

(PK,SK)← KeyGen′(n): it runs KeyGen and KeyGenH on
input a security parameter n, obtaining a pair of keys
(PK′,SK′) and a key s.
It outputs PK := (PK′, s) and SK := (SK′, s).

σ ← Sign′(SK,m ∈ {0, 1}∗): it takes a secret key (SK′, s)
and a message m, and returns σ := Sign(SK′,Hs(m)).

1/0← Verify′(PK,m, σ): on input a public key (PK′, s), a
message m and a signature σ, it and outputs 1 if
Verify(PK′,Hs(m), σ) = 1, 0 otherwise.



Hash-and-Sign Paradigm
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Theorem
If S is an existentially unforgeable digital signature scheme for
messages of length `(n) and (KeyGenH,H) is a
collision-resistant hash function with output length `(n), then S′

is an existentially unforgeable digital signature scheme for
arbitrary-length messages.
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