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The plain RSA signature S = (KeyGen,Sign,Verify) is defined
as follows:

(PK,SK)← KeyGen(1): it runs a GenRSA algorithm on
input a security parameter n. Then PK is set to (N, e),
while SK is set to (N, d).1.

σ ← Sign(SK,m): it takes a secret key (N, d), a message
m ∈ Z∗

N and returns the signature σ := md.

1/0← Verify(PK,m, σ): on input a public key (N, e), a
message m and a signature σ, it returns 1 if m is equal to
σe, 0 otherwise.

1We recall that N = pq, where p and q are two distinct n-bit odd primes,
while [e]ϕ(N)[d]ϕ(N) = [1]ϕ(N)



Security of Textbook RSA
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The RSA assumption relative to GenRSA implies hardness of
forging signatures for a uniform message m.

What about forgeries for messages chosen by A?

What if A can learn signatures on other messages?

No message attack: given a public key (N, e), pick σ ∈ Z∗
N ,

compute the message as m := σe and output the forgery (m, σ).

Malleability: given two valid signatures σ1, σ2, for messages m1

and m2, σ1 · σ2 is a valid signature for m = m1 · m2.
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The RSA-Full Domain Hash signature

Π = (KeyGen,Sign,Verify)

is defined as follows.

(PK,SK)← KeyGen(n): it runs a GenRSA algorithm on
input n and identifies a function H : {0, 1}∗ → Z∗

N . It then
sets PK to (N, e,H) and SK to (N, d,H).

σ ← Sign(SK,m): on input a secret key (N, d,H) and a
message m ∈ {0, 1}∗, it returns σ := H(m)d.

1/0← Verify(PK,m, σ): it takes a public key (N, e,H), a
message m and a signature σ, and returns 1 if H(m) = σe, 0
otherwise.
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Theorem
If the RSA problem is hard relative to GenRSA and H is
modelled as a random oracle, then the digital signature
RSA-FDH is existentially unforgeable.



Security of (RSA-FDH)
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Proof.

Let A be a PPT adversary against the Sigforge
A,Π (n) experiment.

We make the following assumptions:

if A queries the signing oracle on a message m, then they
previously queried H on m;

the same is assumed for m∗ in the forgery (m∗, σ∗);

A makes exactly q(n) distinct queries to H.

A is exploited as a subroutine to construct an adversary A′

against the RSA− invA,GenRSA(n) experiment.
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A′ receives (N, e, y) and manages a table.

They choose a uniform element j in {1, · · · , q}.

They send PK = (N, e) to A.

Hash queries: when A makes its i-th query mi, A′ replies as
follows:

if i = j, the answer is y;

otherwise, a uniform σi is sampled in Z∗
N , yi := σe

i is
computed and (mi, σi, yi) is stored in the table. Then yi

is returned.



Security of RSA-FDH

8/12

Signing queries: when A makes a signing query on m, by
hypothesis m = mi for some mi already in the table. Then
A′ replies as follows:

if i = j, they abort;

otherwise they find the entry (mi, σi, yi) in the table,
and return σi to A.

If A’s forgery (m∗, σ∗) is valid and m∗ is equal to mj, then
A′ outputs σ∗.

To conclude, we observe that

Pr(RSA− invA′,GenRSA(n) = 1) =
Pr(Sigforge

A,Π (n) = 1)

q(n)
≤ negl(n)

�



RSA-FDH
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A signature scheme that can be viewed as a variant of
RSA-FDH is included in the RSA PKCS #1 v2.1 standard.

Practical attacks on RSA-FDH are known if H has a small
output length (the range of H should be close to all Z∗

N).

Hash functions such as SHA-1 are not suitable.
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