
Introduction to Cryptology

12.1 - Schnorr and
DSA/ECDSA

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

Identification Protocols

2/20

Interactive protocols used for authentication.

The party who identify themselves is called prover; the party
that verifies the identity is called verifier.

The prover has a public key and its corresponding secret key.
The verifier only knows the prover’s public key.

We consider three-round identifications protocols:

the prover is specified by two algorithms, P1 and P2;

the verifier is specified by an algorithm V.

Identification Protocols

3/20

An identification protocol I = (KeyGen,P1,P2,V) consists of
four PPT algorithms that and a challenge space Ωch.

(PK,SK)← KeyGen(n): on input a security parameter n,
it returns a public-private key pair (PK,SK).

(com, st)← P1(PK): it takes a public key PK and returns
a commitment com together with with a state st.

rsp← P2(SK, st, ch): on input a secret key SK, a state st
and a challenge ch ∈ Ωch, it returns a response rsp.

1/0← V(PK, com, ch, rsp): a deterministic algorithm that
returns either 1 (accept) or 0 (reject).

Correctness:

Pr(V(PK, com, ch,P2(SK, st, ch)) = 1) = 1.

Security of Identification Protocols

4/20

The Identification Experiment IdentA,I(n)

Challenger Ch Adversary A

(PK,SK)← KeyGen(n)
PK−−−−−−−→

Access to TransSK

(com∗, st∗) := P1(PK)

com∗
←−−−−−−−−

ch∗ ← Ωch ch∗
−−−−−−−−→

Access to TransSK

Outputs rsp∗

The oracle TransSK, when queried without any input, runs I
and returns the resulting transcript (com, ch, rsp).

Security of Identification Protocols

4/20

The Identification Experiment IdentA,I(n)

Challenger Ch Adversary A

(PK,SK)← KeyGen(n)
PK−−−−−−−→

Access to TransSK

(com∗, st∗) := P1(PK)

com∗
←−−−−−−−−

ch∗ ← Ωch ch∗
−−−−−−−−→

Access to TransSK

Outputs rsp∗

The oracle TransSK, when queried without any input, runs I
and returns the resulting transcript (com, ch, rsp).

Security of Identification Protocols

5/20

A wins the game, i.e. IdentA,I(n) = 1, if

V(PK, com∗, ch∗, rsp∗) = 1.

Definition
The identification protocol I is secure against a passive attack
if, for every PPT adversary A, it holds that

Pr(IdentA,I(n) = 1) ≤ negl(n) .

Fiat-Shamir Transform

6/20

It turns an identification protocol
into a digital signature scheme.

The signer applies a hash function H to (m, com) in order to
generate the challenge ch.

The signature on m is the transcript (com, ch, rsp).

The verifier checks if

H(m, com) = ch;

V(PK, com, ch, rsp) = 1.

Security of the Fiat-Shamir Transform

7/20

Theorem
If I is an identification protocol secure against a passive attack
and H is modelled as a random oracle, the digital signature
scheme obtained by applying the Fiat-Shamir transform is
existentially unforgeable.

Schnorr Identification Scheme

8/20

The Schnorr identification scheme ISch = (KeyGen,P1,P2,V)
with Ωch = Zq is defined as follows.

(PK,SK)← KeyGen(n): it runs a group generation
algorithm G on a security parameter n, obtaining a
description of a cyclic group G - of order q, with ||q|| = n -
together with a generator g.

It samples a uniform x ∈ Zq and computes h := gx. Then it
sets PK to (G, q, g, h) and SK to x.

(com, st)← P1(PK): on input PK = (G, q, g, h), it samples
a uniform k ∈ Z∗

q and sets com := gk, st := k.

rsp← P2(SK, st, ch): on input a private key x, a state k
and a challenge ch, it returns ch · x + k (mod q).

1/0← V(PK, com, ch, rsp): for the public key
PK = (G, q, g, h), it checks whether grsp · h−ch = com.

Security of Schnorr Identification Scheme

9/20

Theorem
If the discrete logarithm problem is hard relative to G, then ISch

is secure against a passive attack.

Sketch proof.

Let A be a PPT adversary in the identification exeperiment.

Valid transcripts can be simulated from (G, q, g, h):

sample uniform and independent ch∗, rsp∗ ∈ Zq;
set com∗ := grsp∗

h−ch∗
.

The transcript (com∗, ch∗, rsp∗) is indistinguishable from
an honest one.

Learning an honest transcript (com, ch, rsp) does not give any
new information to A.

Security of Schnorr Identification Scheme

10/20

Sketch proof.

If A, given h, com ∈ G, can output a response for any challenge
with high probability, then it can respond with correct responses
rsp1, rsp2 to two distinct challenge values ch1, ch2 ∈ Zq.

Therefore, A implicitly knowns logg h, since:

grsp1 · h−ch1 = com = grsp2 · h−ch2 ⇒ h = g
rsp2−rsp1
ch2−ch1 .

A can be exploited as a subroutine to construct an adversary A′

against the discrete logarithm problem.

The Schnorr Signature Scheme

11/20

The Schnorr Signature Scheme (KeyGen′,Sign,Verify) is
obtained applying the Fiat-Shamir transform to the Schnorr
identification protocol.

(PK,SK)← KeyGen′(n): it runs KeyGen on input a
security parameter n, obtaining (G, q, g, h) and x. A hash
function H : {0, 1}∗ → Ωch is also specified.
Then PK is set to (G, q, g, h,H) and SK is set to (x,H).

σ ← Sign(SK,m ∈ {0, 1}∗): on input a secret key (x,H) and
a message m, it samples a uniform k ∈ Z∗

q, computes
com := gk, ch := H(com,m) and rsp := ch · x + k (mod q),
and returns σ := (com, ch, rsp).

1/0← Verify(PK,m, σ): given a public key (G, q, g, h,H), a
message m and a signature (com, ch, rsp), it outputs 1 if
H(com,m) = ch and grsp · h−ch = com.

Security of the Schnorr Signature Scheme

12/20

Corollary
If the discrete logarithm problem is hard relative to G and H is
modelled as a random oracle, then the Schnorr signature
scheme is existentially unforgeable.

Digital Signature Algorithm - DSA/ECDSA

13/20

Some of its versions go back to 1991.

Both in the Digital Signature Standard (DSS) by NIST.

It is based on an identification protocol that is secure if the
discrete logarithm problem is hard.

DSA/ECDSA Identification Scheme

14/20

The DSA/ECDSA identification scheme IDSA = (KeyGen, P1,
P2, V) with Ωch = Zq × Zq is defined as follows.

(PK,SK)← KeyGen(n): it runs a group generation
algorithm G on a security parameter n, obtaining a cyclic
group G - with |G| = q and ||q|| = n - and a generator g.

It samples a uniform x ∈ Zq and computes h := gx. Then it
sets PK to (G, q, g, h) and SK to x.

(com, st)← P1(PK): on input PK = (G, q, g, h), it samples
a uniform k ∈ Z∗

q and sets com := gk, st := k.

rsp← P2(SK, st, ch): on input a private key x, a state k and
a challenge ch = (c, α), it returns k−1(α+ x · c) (mod q).

1/0← V(PK, com, ch, rsp): for the public key
PK = (G, q, g, h), it checks whether rsp is different from 0
and gα·rsp

−1 · hc·rsp−1
= com.

DSA/ECDSA Identification Scheme

15/20

Correctness: as long as rsp 6= 0, i.e. α 6= −x · c (mod q), which
does not happen with negligible probability.

Security: it is based on the hardness of the discrete logarithm
problem relative to G.

Transcripts can be simulated.

If (com, (α, c1), rsp1) and (com, (α, c2), rsp2) are two valid
transcripts, then

gα·rsp1−1 ·hc1·rsp1−1
= gα·rsp2−1 ·hc2·rsp−1

2 ⇒ h = g
α(rsp−1

2 −rsp−1
1)

c1·rsp−1
1 −c2·rsp−1

2 .

DSA/ECDSA

16/20

The Digital Signature Algorithm DSA/ECDSA (KeyGen′, Sign,
Verify) is defined as follows.

(PK,SK)← KeyGen′(n): it runs the key-generation
algorithm of IDSA on input a security parameter n,
obtaining (G, q, g, h) and x. Two functions, H : {0, 1}∗ → Zq

and F : G→ Zq, are also specified.
Then PK is set to (G, q, g, h,H,F), SK is set to (x,H,F).

σ ← Sign(SK,m ∈ {0, 1}∗): on input a secret key (x,H,F)
and a message m, it chooses a uniform k ∈ Z∗

q and sets
com := gk, c := F(com) and α := H(m). If c = 0 or
α = −x · c (mod q), it starts again by choosing a fresh k.
Otherwise, it returns (com, (c, α), rsp := k−1 · (α+ x · c)
(mod q)).

1/0← Verify(PK,m, σ): for the public key (G, g, q, h,H,F)
it checks whether gH(m)·rsp−1 · hF(com)·rsp−1

= F(com).

Security of DSA/ECDSA

17/20

DSA/ECDSA can be proven secure assuming the hardness of
the discrete logarithm problem relative to G and modelling H
and F as random oracles.

No known proofs when F is specified as in the standard (F is a
simple function, not intended to act as a random one).

Knowledge of k implies knowledge of the secret key.

Re-use of the same k leads to the private key as well. Hackers
exploited this against Sony PS3 in 2010.

Security of DSA/ECDSA

17/20

DSA/ECDSA can be proven secure assuming the hardness of
the discrete logarithm problem relative to G and modelling H
and F as random oracles.

No known proofs when F is specified as in the standard (F is a
simple function, not intended to act as a random one).

Knowledge of k implies knowledge of the secret key.

Re-use of the same k leads to the private key as well. Hackers
exploited this against Sony PS3 in 2010.

Further Reading I

18/20

Carlisle Adams and Steve Lloyd.
Understanding PKI: concepts, standards, and deployment
considerations.
Addison-Wesley Professional, 2003.

Dan Boneh, Ben Lynn, and Hovav Shacham.
Short signatures from the Weil pairing.
Journal of cryptology, 17(4):297–319, 2004.

Tim Dierks.
The transport layer security (TLS) protocol version 1.2.
2008.
Carl Ellison and Bruce Schneier.
Ten risks of PKI: What you’re not being told about public
key infrastructure.
Comput Secur J, 16(1):1–7, 2000.

Further Reading II

19/20

Amos Fiat and Adi Shamir.
How to prove yourself: Practical solutions to identification
and signature problems.
In Advances in Cryptology—CRYPTO’86, pages 186–194.
Springer, 1987.

Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, and Vitaly Shmatikov.
The most dangerous code in the world: validating SSL
certificates in non-browser software.
In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 38–49. ACM, 2012.

Further Reading III

20/20

Hugo Krawczyk.
Cryptographic extraction and key derivation: The HKDF
scheme.
In Annual Cryptology Conference, pages 631–648. Springer,
2010.
Hugo Krawczyk, Kenneth G Paterson, and Hoeteck Wee.
On the security of the TLS protocol: A systematic analysis.
In Advances in Cryptology–CRYPTO 2013, pages 429–448.
Springer, 2013.

Leslie Lamport.
Constructing digital signatures from a one-way function.
Technical report, Technical Report CSL-98, SRI
International Palo Alto, 1979.

