Introduction to Cryptology

13.1 - Factorisation Algorithms

Federico Pintore

Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

Integer factorization

Problem: Given the product N of two n-bit primes, compute (one of) its factors.

<u>Trial Divison</u>: try every prime number up to \sqrt{N} . Worst-case complexity is $O(\sqrt{N} \cdot \text{polylog}(N))$.

Problem: Given the product N of two n-bit primes, compute (one of) its factors.

<u>Trial Divison</u>: try every prime number up to \sqrt{N} . Worst-case complexity is $O(\sqrt{N} \cdot \text{polylog}(N))$.

Anything better?

Pollard's Rho Algorithm

It is a general purpose algorithm.

It aims at obtaining a pair (x, y) s.t. $x = y \pmod{p}$ but $x \neq y \pmod{N}$, since gcd(x - y, N) = p.

Pollard's Rho Algorithm

It is a general purpose algorithm.

It aims at obtaining a pair (x, y) s.t. $x = y \pmod{p}$ but $x \neq y \pmod{N}$, since gcd(x - y, N) = p.

- Define some "pseudorandom" iteration function f such that, if $x = x' \pmod{p}$, then $f(x) = f(x') \pmod{p}$.
- A standard choice would be $f(x) = x^2 + 1 \pmod{N}$.
- Approximately \sqrt{p} congruence classes are obtained computing iteratively f.

Pollard's Rho Algorithm

Input: integer N (a product of two n-bit primes)

 $x \leftarrow \mathbb{Z}_N^*$ x' := xfor $i = 2, \dots 2^{n/2}$ do x := f(x) x' := f(f(x')) $p := \gcd(x - x', N)$ if $p \notin \{1, N\}$ return p

Pollard's p-1 is an effective method if p-1 is *smooth*, e.i. it has only "small" prime factors.

The Elliptic-curve factorisation method generalises it when neither p-1 nor q-1 are smooth.

The order of the group $\#E(\mathbb{Z}_p)$, where *E* is an elliptic curve, can be smooth even when p-1 is not.

It runs in time sub-exponential in $||N|| (2^{o(||N||)})$.

It is a good choice for numbers up to about 300 bits.

It aims at finding a, b s.t. $a^2 = b^2 \pmod{N}$ but $a \neq \pm b \pmod{N}$, since gcd(a - b, N) gives a non trivial factor of N.

Example: $8051 = 90^2 - 7^2 = (90 - 7)(90 + 7) = 83 \times 97$.

- Fix some bound $B \in \mathbb{N}$, and let $\mathcal{F} = \{p_1, \ldots, p_k\}$ be the set of primes less than or equal to B.
- Among $x_1 = \left\lceil \sqrt{N} \right\rceil$, $x_2 = \left\lceil \sqrt{N} \right\rceil + 1, \dots$, select those integers x_i s.t. $q_i := x_i^2 \pmod{N}$ is *B*-smooth¹, and factor them.
- Find a subset S of $\{q_i\}_i$ such that the product of its elements is a square, i.e.

$$\prod_{j \in S} q_j = \prod_{\ell=1}^k p_\ell^{\sum_{j \in S} e_{j,\ell}} \quad \text{s.t.} \quad \sum_{j \in S} e_{j,\ell} = 0 \pmod{2} \quad \forall \ell \in \{1, \dots, k\}$$

• S can be found using linear algebra.

¹An integer is *B*-smooth if all its prime factors are less than or equal to *B*.

In order to find S, define the matrix of exponents (modulo 2) as follows:

$$\begin{pmatrix} e_{1,1} \pmod{2} & e_{1,2} \pmod{2} & \dots & e_{1,k} \pmod{2} \\ \vdots & \vdots & \ddots & \vdots \\ e_{m,1} \pmod{2} & e_{m,2} \pmod{2} & \dots & e_{m,k} \pmod{2} \end{pmatrix}$$

If m = k + 1, then there exists a nonempty subset S of rows that sum to the zero vector modulo 2.

Example (Katz-Lindell book) Take N = 377753 and B = 30.

• Testing
$$x_1 = \left\lceil \sqrt{N} \right\rceil$$
, $x_2 = \left\lceil \sqrt{N} \right\rceil + 1, \dots$, we obtain:

$$620^{2} = 17^{2} \cdot 23 \pmod{N}$$

$$621^{2} = 2^{4} \cdot 17 \cdot 29 \pmod{N}$$

$$645^{2} = 2^{7} \cdot 13 \cdot 23 \pmod{N}$$

$$655^{2} = 2^{3} \cdot 13 \cdot 17 \cdot 29 \pmod{N}$$

- $(620 \cdot 621 \cdot 645 \cdot 655)^2 = (2^7 \cdot 13 \cdot 17^2 \cdot 23 \cdot 29)^2 \pmod{N}$ $\Rightarrow 127194^2 = 45335^2 \pmod{N}.$
- Since 127194 ≠ ±45335 (mod N), gcd(127194 45335, N)
 gives a non trivial factor of N, i.e 751.

Further Reading

Andrew Granville.

Smooth numbers: computational number theory and beyond.

Algorithmic number theory: lattices, number fields, curves and cryptography, 44:267–323, 2008.

Antoine Joux, Andrew Odlyzko, and Cécile Pierrot. The past, evolving present, and future of the discrete logarithm.

In Open Problems in Mathematics and Computational Science, pages 5–36. Springer, 2014.

Hendrik W Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics, pages 649–673, 1987.

Further Reading

Carl Pomerance.

Smooth numbers and the quadratic sieve. Algorithmic Number Theory, Cambridge, MSRI publication, 44:69–82, 2008.

Carl Pomerance. A tale of two sieves. Biscuits of Number Theory, 85, 2008.

Victor Shoup.

Lower bounds for discrete logarithms and related problems. In Advances in Cryptology—EUROCRYPT'97, pages 256–266. Springer, 1997.