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Integer factorization

Problem: Given the product N of two n-bit primes, compute
(one of) its factors.

Trial Divison: try every prime number up to v/N. Worst-case
complexity is O(v/N - polylog(N)).
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Integer factorization

Problem: Given the product N of two n-bit primes, compute
(one of) its factors.

Trial Divison: try every prime number up to v/N. Worst-case
complexity is O(v/N - polylog(N)).

Anything better?
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Pollard’s Rho Algorithm

It is a general purpose algorithm.

It aims at obtaining a pair (x,y) s.t. x =y (mod p) but x #y
(mod N), since ged(x —y,N) = p.
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Pollard’s Rho Algorithm

It is a general purpose algorithm.
It aims at obtaining a pair (x,y) s.t. x =y (mod p) but x #y
(mod N), since ged(x —y,N) = p.
= Define some “pseudorandom” iteration function f such
that, if x = x (mod p), then f(x) = f(x') (mod p).

* A standard choice would be f(x) = x> + 1 (mod N).

= Approximately /p congruence classes are obtained
computing iteratively f.
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Pollard’s Rho Algorithm

Input: integer N (a product of two n-bit primes)

x <« Zy

X i=x

fori=2,---2"2 do
x = f(x)
X =f(f(x))
p:=ged(x —x',N)
if p g {1,N}

return p
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Pollard’s p — 1 and the EC factorisation method

Pollard’s p — 1 is an effective method if p — 1 is smooth, e.i. it
has only “small” prime factors.

The Elliptic-curve factorisation method generalises it when
neither p — 1 nor g — 1 are smooth.

The order of the group #E(Z,), where E is an elliptic curve, can
be smooth even when p — 1 is not.
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Quadratic Sieve Algorithm

It runs in time sub-exponential in || N || (2°UVD).
It is a good choice for numbers up to about 300 bits.

It aims at finding a,b s.t. a®> = b*> (mod N) but a # +b
(mod N), since ged(a — b, N) gives a non trivial factor of N.

Example: 8051 = 902 — 7% = (90 — 7)(90 + 7) = 83 x 97.
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Quadratic Sieve Algorithm

-

-

Fix some bound B € N, and let F = {p1,...,px} be the set

of primes less than or equal to B.

Among x; = { —‘ { N—‘ +1,..., select those integers
2

xi s.b. gi :=x; (mod N) is B-smooth’ , and factor them.

Find a subset S of {g;}; such that the product of its
elements is a square, i.e.

1= H pe% st Y ep=0 (mod2) Wee{l,... K}

JES JES

S can be found using linear algebra.

'An integer is B-smooth if all its prime factors are less than or equal to B.
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Quadratic Sieve Algorithm

In order to find S, define the matrix of exponents (modulo 2) as
follows:

e1q1 (mod2) e (mod2) ... e (mod2)

em1 (mod2) ep2 (mod2) ... enx (mod 2)

If m = k+ 1, then there exists a nonempty subset S of rows that
sum to the zero vector modulo 2.
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Quadratic Sieve Algorithm

Example (Katz-Lindell book)
Take N = 377753 and B = 30.

» Testing x; = {\/Iﬂ , Xg = {\/Iﬂ +1,..., we obtain:

6202 = 17223 (mod N)

6212 =2%.17-29 (mod N)
6452 =27-13-23 (mod N)
6552 = 23.13-17-29 (mod N)

= (620621 -645-655)2 = (27 - 13-17%-23-29)% (mod N)
= 127194% = 45335 (mod N).

* Since 127194 # 445335 (mod N), ged(127194 — 45335, N)
gives a non trivial factor of N, i.e 751.
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