
Introduction to Cryptology

13.2 - Generic
Discrete-Logarithm
Algorithms

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

Why Discrete Logarithm?

2/19

Consider the prime p = 941 and the group Z∗
p.

Figure Graph of f (x) = 627x (mod 941) for x = 1, 2, 3, . . .

Discrete logarithms

3/19

Computing discrete logarithms in G = (Zq,+) is easy.

Recent advancements for G = (F∗
2n , ·) (more generally, for fields

of small characteristic).

Computing discrete logarithms in G = Z∗
p is believed to be

hard, and even harder in (well-chosen) groups of elliptic curves.

Generic algorithms

4/19

Generic algorithms do not exploit any special properties of the
group elements, and apply to arbitrary groups.

They include

exhaustive search,

BSGS,

Pollard’s Rho.

There exist better algorithms for multiplicative groups of finite
fields. Still no better algorithms for (well-chosen) elliptic curves.

Exhaustive search

5/19

Input: group G and g, h ∈ G s.t. gx = h

Output: x

k← 1

h′ ← g

if h′ = h (?)

return k

else
k← k + 1;

h′ ← h′g

go to (?)

The worst-case complexity is |G|.

Exhaustive search

5/19

Input: group G and g, h ∈ G s.t. gx = h

Output: x

k← 1

h′ ← g

if h′ = h (?)

return k

else
k← k + 1;

h′ ← h′g

go to (?)

The worst-case complexity is |G|.

Pohlig-Hellman Algorithm

6/19

It shows that the Dlog problem in a cyclic group G is as hard as
the Dlog problem in the largest subgroup of prime order in G.

Assume |G| = N = pq, and let g be a generator of G.

Observe that gp generates a subgroup of order q, and h = gx

implies hp = (gp)x.

Solving the Dlog problem with input (〈gp〉, hp, gp) determines x
(mod q). Analogously, it is possible to determine x (mod p).

Chinese Reminder Theorem: given a ∈ {0, . . . , pq− 1}, [a]pq is
uniquely determined by [a]p and [a]q.

Pohlig-Hellman Algorithm

7/19

Assume |G| = pe, and let g be a generator of G.

The discrete logarithm x can be written as

x0 + x1p + · · ·+ xe−1pe−1

with 0 ≤ xi < p.

Observe that gpe−1 generates a subgroup of order p, and h = gx

implies hpe−1
= (gpe−1

)x.

Solving the Dlog problem with input (〈gpe−1〉, hpe−1
, gpe−1

)
determines x (mod p), i.e. x0.

Consider h1 = h · g−x0 . Then h1 = gx0+x1p+···+xe−1pe−1−x0 =
= (gp)x1+···+xe−1pe−2 , and x1 can be obtained form h1 and gp.

Pohlig-Hellman Algorithm

8/19

More in general, suppose G = 〈g〉 is of order N =
∏̀
i=1

pei
i .

Observe that gN/pei
i generates a subgroup of order pei

i , and
h = gx implies hN/pei

i = (gN/pei
i)x.

Solving the Dlog problem with input (〈gN/pei
i 〉, hN/pei

i , gN/pei
i)

determines x (mod pei
i).

Chinese Reminder Theorem: given a ∈ {0, . . . ,N − 1}, [a]N is
uniquely determined by the congruence classes [a]pe1

1
, . . . , [a]pe`

`
.

Baby-Step/Giant-Step (BSGS)

9/19

Thanks to the Pohlig-Hellman algorithm, we can restrict
ourselves to cyclic groups G = 〈g〉 of prime order p.

The Baby-Step/Giant-Step algorithm works as follows:

Let N′ = d
√
|G|e.

There exist 0 ≤ i, j < N′ such that x = jN′ + i. Therefore:

h = gjN′+i ⇔ hg−jN′
= gi.

Compute LB := {gi|i = 0, . . . ,N′ − 1}.

Compute LG := {hg−jN′ |j = 0, . . . ,N′ − 1}.

The algorithm requires time and memory O
(
|G|1/2

)
.

Baby-Step/Giant-Step (BSGS)

9/19

Thanks to the Pohlig-Hellman algorithm, we can restrict
ourselves to cyclic groups G = 〈g〉 of prime order p.

The Baby-Step/Giant-Step algorithm works as follows:

Let N′ = d
√
|G|e.

There exist 0 ≤ i, j < N′ such that x = jN′ + i. Therefore:

h = gjN′+i ⇔ hg−jN′
= gi.

Compute LB := {gi|i = 0, . . . ,N′ − 1}.

Compute LG := {hg−jN′ |j = 0, . . . ,N′ − 1}.

The algorithm requires time and memory O
(
|G|1/2

)
.

Baby-Step/Giant-Step (BSGS)

9/19

Thanks to the Pohlig-Hellman algorithm, we can restrict
ourselves to cyclic groups G = 〈g〉 of prime order p.

The Baby-Step/Giant-Step algorithm works as follows:

Let N′ = d
√
|G|e.

There exist 0 ≤ i, j < N′ such that x = jN′ + i. Therefore:

h = gjN′+i ⇔ hg−jN′
= gi.

Compute LB := {gi|i = 0, . . . ,N′ − 1}.

Compute LG := {hg−jN′ |j = 0, . . . ,N′ − 1}.

The algorithm requires time and memory O
(
|G|1/2

)
.

Pollard’s Algorithms

10/19

John Pollard is a famous name in the field of factoring/Dlog
algorithms.

He is known for:

the (p− 1) method,

the Rho algorithm,

the Number Field Sieve.

Pollard’s Rho Algorithm

11/19

The idea used in the Rho algorithm is to find a collision for a
random map f .

Similarly to the better birthday attack for hash functions, the
Floyd’s cycle finding algorithm is used, i.e. given (xi, x2i),

(xi+1, x2i+2) = (f (xi), f (f (x2i)))

are computed.

The algorithm stops when x` = x2`.

Pollard’s Rho Algorithm

12/19

Define the subsets G1,G2,G3 of about the same size and such
that G = G1 ∪ G2 ∪ G3 and Gi ∩ Gj = ∅.

On input g, h = gx, define a random map f : G→ G such that

xi+1 = f (xi) :=


hxi xi ∈ G1

x2i xi ∈ G2

gxi xi ∈ G3

Pollard’s Rho Algorithm

13/19

Set x0 to 1 and apply f recursively to get {xi, x2i}i

At each iteration, the algorithm stores (xi, ai, bi) and
(x2i−2, a2i−2, b2i−2), where (xi, ai, bi) is denoted by
f (xi−1, ai−1, bi−1), s.t. xi = gaihbi , and:

(ai, bi) =


(ai−1, bi−1 + 1 (mod p)) xi−1 ∈ G1

(2ai−1 (mod p), 2bi−1 (mod p)) xi−1 ∈ G2

(ai−1 + 1 (mod p), bi−1) xi−1 ∈ G3.

The algorithm stops when a collision is found, i.e. x` = x2`.
Therefore

x =
a2` − a`
b` − b2`

(mod p).

If f is “random enough”, a collision is expected to be found in
time O

(√
|G|

)
, while only two triples are stored at each step.

Pollard’s Rho Algorithm

14/19

Input: group G and g, h ∈ G s.t. gx = h

Output: x

N ← d
√
|G|e

a1 = 0; b1 = 0; x1 = 1

(x2, a2, b2) = f (x1, a1, b1)

for k ∈ {2, . . . ,N}
(x1, a1, b1) = f (x1, a1, b1)

(x2, a2, b2) = f (f (x2, a2, b2))

if x1 = x2
break

if b1 = b2 (mod p)

return ⊥
else

return (a2 − a1)/(b1 − b2) (mod p)

Pollard’s Rho Algorithm: Example

15/19

Example (Smart’s book)

Consider G = 〈g〉, with g = 64 ∈ Z∗
607. G has order p = 101.

Given h = 122 = 64x, the problem is to determine x.

〈g〉 can be splitted into three sets G1,G2,G3 as follows:

G1 = {x ∈ F∗
607 : 0 ≤ x ≤ 201}

G2 = {x ∈ F∗
607 : 202 ≤ x ≤ 403}

G3 = {x ∈ F∗
607 : 404 ≤ x ≤ 606}

Pollard’s Rho: example

16/19

Example (Smart’s book)

A collision is found when i = 14, which implies g0h12 = g64h6, so
12x = 64 + 6x (mod 101), and therefore x = 78.

More from Pollard

17/19

Pollard’s Lambda Method: it is similar to the Rho Algorithm
(it uses deterministic random walk), but it is tailored to the
cases where it is known that the Dlog lies in a particular
interval.

Parallel Pollard’s Rho Algorithm: it is designed to use
computing resources of different sites across the internet.

Further Reading I

18/19

Andrew Granville.
Smooth numbers: computational number theory and
beyond.
Algorithmic number theory: lattices, number fields, curves
and cryptography, 44:267–323, 2008.

Antoine Joux, Andrew Odlyzko, and Cécile Pierrot.
The past, evolving present, and future of the discrete
logarithm.
In Open Problems in Mathematics and Computational
Science, pages 5–36. Springer, 2014.

Carl Pomerance.
Smooth numbers and the quadratic sieve.
Algorithmic Number Theory, Cambridge, MSRI
publication, 44:69–82, 2008.

Further Reading II

19/19

Carl Pomerance.
A tale of two sieves.
Biscuits of Number Theory, 85, 2008.

Victor Shoup.
Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology—EUROCRYPT’97, pages
256–266. Springer, 1997.

