Introduction to Cryptology

13.2-Generic
Discrete-Logarithm

Algorithms

Federico Pintore

Mathematical Institute, University of Oxford (UK)

OXFORD

Why Discrete Logarithm?

Consider the prime p = 941 and the group Z,.

oo , "

7004
oot
5001
1001

soof T
2001,. *

=
00T o

A B S : : L | | e
o 30 &0 o0 120 150 180 210 240 270

Figure Graph of f(x) = 627" (mod 941) forx=1,2,3,...

2/19
| K

Discrete logarithms

Computing discrete logarithms in G = (Zy, +) is easy.

Recent advancements for G = (F,,) (more generally, for fields
of small characteristic).

Computing discrete logarithms in G = Z, is believed to be
hard, and even harder in (well-chosen) groups of elliptic curves.

3/19

Generic algorithms

Generic algorithms do not exploit any special properties of the
group elements, and apply to arbitrary groups.

They include

= exhaustive search,

= BSGS,
= Pollard’s Rho.

There exist better algorithms for multiplicative groups of finite
fields. Still no better algorithms for (well-chosen) elliptic curves.

4/19

Exhaustive search

Input: group G and g,h e Gs.t. g =h
Output: x

k<1

W g

ifh =h (%)
return k

else
k< k+1;
W<+ HWg
go to (%)

5/19

Exhaustive search

Input: group G and g,h e Gs.t. g =h
Output: x

k<1

W g

ifh =h (%)
return k

else
k< k+1;
W<+ HWg
go to (%)

The worst-case complexity is |G].

5/19

Pohlig-Hellman Algorithm

It shows that the Dlog problem in a cyclic group G is as hard as
the Dlog problem in the largest subgroup of prime order in G.

Assume |G| = N = pg, and let g be a generator of G.

Observe that g’ generates a subgroup of order g, and h = g*
implies ¥ = (g”)".

Solving the Dlog problem with input ({g”}, #”, g") determines x
(mod ¢). Analogously, it is possible to determine x (mod p).

Chinese Reminder Theorem: given a € {0,...,pq — 1}, [a],q is
uniquely determined by [a], and [a],.

6/19
B

Pohlig-Hellman Algorithm

Assume |G| = p®, and let g be a generator of G.

The discrete logarithm x can be written as

xo+xp+-+x1p!

with 0 < x; < p.

Observe thalt g‘”ei1 g{%nerates a subgroup of order p, and h = g*
implies /" = (g")~

Solving the Dlog problem with input (<g1"e_1
determines x (mod p), i.e. xp.

Consider hy = h-g ™. Then hy = gx°+x1p+'"+x”—1pkl_x0 —

= (gl’)ler"""xe*”’e_Q, and x; can be obtained form h; and g”.
719
B

Pohlig-Hellman Algorithm

)4
More in general, suppose G = (g) is of order N = H pit.
i=1

Observe that g" 3 generates a subgroup of order p{’, and
h = g* implies hV/Pi" = (gV/Pi)",

Solving the Dlog problem with input (<gN/pfi>, hN/Pfi,gN/pfi)
determines x (mod p{’).

Chinese Reminder Theorem: given a € {0,...,N — 1}, [a]n is
uniquely determined by the congruence classes [a]pil ey [a]pze.

8/19

Baby-Step/Giant-Step (BSGS)

Thanks to the Pohlig-Hellman algorithm, we can restrict
ourselves to cyclic groups G = (g) of prime order p.

9/19

Baby-Step/Giant-Step (BSGS)

Thanks to the Pohlig-Hellman algorithm, we can restrict
ourselves to cyclic groups G = (g) of prime order p.

The Baby-Step/Giant-Step algorithm works as follows:

= Let N =[/|G]].

= There exist 0 <i,j < N’ such that x = jN’ +i. Therefore:
h— ng’-i-i o hg—jN’ — g

» Compute Lg := {g'|i=0,...,N' —1}.
= Compute Lg := {hg'|j=0,...,N —1}.

9/19

Baby-Step/Giant-Step (BSGS)

Thanks to the Pohlig-Hellman algorithm, we can restrict
ourselves to cyclic groups G = (g) of prime order p.

The Baby-Step/Giant-Step algorithm works as follows:

= Let N = [/|G]].

= There exist 0 <i,j < N’ such that x = jN’ +i. Therefore:
h=gV+ o pg N = 4.

» Compute Lg := {g'|i=0,...,N' —1}.

* Compute L; := {hgV'|j=0,... N —1}.

The algorithm requires time and memory O (\G\l/ 2).

9/19

Pollard’s Algorithms

John Pollard is a famous name in the field of factoring/Dlog
algorithms.
He is known for:

= the (p — 1) method,
= the Rho algorithm,

= the Number Field Sieve.

1019

Pollard’s Rho Algorithm

The idea used in the Rho algorithm is to find a collision for a
random map f.

Similarly to the better birthday attack for hash functions, the

Floyd’s cycle finding algorithm is used, i.e. given (x;,x9;),

(Xit1, X2i+2) = (f(x:),f (f(x2:)))

are computed.
The algorithm stops when x; = x9y.

1119

Pollard’s Rho Algorithm

Define the subsets G1, G2, G3 of about the same size and such
that G = G1 U Gy U G3 and GiﬂGj:Q).

On input g,h = g%, define a random map f : G — G such that

hx; x; € Gp
Xit1 =f(x) = x} x € Gy

gxi x; € Gs

12/19

Pollard’s Rho Algorithm

= Set xp to 1 and apply f recursively to get {x;,x2;};

= At each iteration, the algorithm stores (x;,a;, b;) and
(XQ,'_Q, asi—2, bQ,‘_Q), where (xi, aj, bi) is denoted by
f(xiz1,ai—1,bi—1), s.t. x; = g“h’, and:

(@i—1,bi—1+1 (mod p)) xi_1 € Gy
(ai,bi) = € (2a;—1 (mod p),2b;_y (mod p)) xi—1 € Gy
(ai-1+1 (mod p),bi—1) xi—1 € Gs.
= The algorithm stops when a collision is found, i.e. x; = x9/.
Therefore
agy — dy
x= mod p).
y— (mod p)

If £ is “random enough”, a collision is expected to be found in
time O (\/ |G|), while only two triples are stored at each step. e
I

Pollard’s Rho Algorithm

Input: group G and g,h € Gst. g =h
Output: x

N+ [VIG]

ap=0; b1 =0; xy =1

(x2,a2,b2) = f(x1,a1,b1)

for ke {2,...,N}
(x1,a1,b1) = f(x1,a1,b1)
(x2,a2,b2) = f(f(x2, a2, b2))
if x1 = x9

break

it by =by (mod p)
return L

else

return (ag — ay)/(by — bz) (mod p)
14119

Pollard’s Rho Algorithm: Example

Example (Smart’s book)

Consider G = (g), with g = 64 € Zg;. G has order p = 101.
Given h = 122 = 64%, the problem is to determine x.

(g) can be splitted into three sets G, G2, G35 as follows:

Gy = {x € Fly, : 404 < x < 606}

15/19

Pollard’s Rho: example

Example (Smart’s book)

iz oa b vy ay by
ol 1 0 01 [T
1122 0 1316 0 2
2 (316 0 2 (172 0 8
3 (308 0 4 (137 0 18
4 (172 0 8| 7T 0 38
5346 0 9 (309 0 T8
6 (137 0 188|352 0 56
71325 0 19167 0 12
8| 7 0 38[498 0 26
9 (247 0 39172 2 52
10309 0 788|137 4 5
11182 0 35| 7 8 12
121352 0 536|309 16 26
13| 76 0 11352 32 53
14167 0 12|167 64 6

A collision is found when i = 14, which implies g°4'? = g%h5, so
12x = 64 + 6x (mod 101), and therefore x = 78.

16/19

More from Pollard

Pollard’s Lambda Method: it is similar to the Rho Algorithm
(it uses deterministic random walk), but it is tailored to the
cases where it is known that the Dlog lies in a particular
interval.

Parallel Pollard’s Rho Algorithm: it is designed to use
computing resources of different sites across the internet.

17119

Further Reading

[Andrew Granville.
Smooth numbers: computational number theory and
beyond.
Algorithmic number theory: lattices, number fields, curves
and cryptography, 44:267-323, 2008.

[§ Antoine Joux, Andrew Odlyzko, and Cécile Pierrot.
The past, evolving present, and future of the discrete
logarithm.

In Open Problems in Mathematics and Computational
Science, pages 5-36. Springer, 2014.

[§ Carl Pomerance.
Smooth numbers and the quadratic sieve.
Algorithmic Number Theory, Cambridge, MSRI
publication, 44:69-82, 2008.

18/19

Further Reading

[@ Carl Pomerance.
A tale of two sieves.
Biscuits of Number Theory, 85, 2008.

[§ Victor Shoup.
Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology—EUROCRYPT’97, pages
256-266. Springer, 1997.

19119

