
Introduction to Cryptology

13.3 - The Index Calculus

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

L notation

2/10

LQ(α; c) = exp((c + o(1))(log Q)α(log log Q)1−α)

α = 0 ⇒ LQ(α; c) = (log Q)(c+o(1)) (polynomial in ‖ Q ‖).

α = 1 ⇒ LQ(α; c) = Q(c+o(1)) (exponential ‖ Q ‖).

Index Calculus for Z∗
p

3/10

Problem: given g, h ∈ Z∗
p, find x such that h = gx.

Fix some bound B ∈ N, and let F = {p1, . . . , pk} be the set
of primes less than or equal to B.
Relation search

Compute gi := gai for random ai ∈ {1, . . . , p − 1}.
If gi is B-smooth, then

gai (mod p) =
k∏

j=1

pei,j
j . (1)

Linear algebra Once ` ≥ k linearly independent equations
of the form (1) are found, solve for logg pi, i = 1, . . . , k,
modulo p − 1.
Search for t such that gt · h (mod p) is B-smooth. Once
found, solve for logg h mod (p − 1).

Complexity Analysis

4/10

We assume that the cost of generating relations dominates the
overall complexity of the algorithm.

If B is large, it is more likely that the gi are B-smooth, but more
relations are necessary. The two costs need to be balanced.

The prime number theorem says that

k = |{primes pi ≤ B}| ≈ B
loge B

.

Complexity Analysis

5/10

Define Ψ(N,B) = |{B-smooth positive integers ≤ N}|, with
N = p − 1.

The probability that a positive integer m ≤ N is B-smooth
is approximately equal to 1

N
·Ψ(N,B).

Canfield-Erdos-Pomerance Theorem:

Let u =
loge N
loge B

. Then 1

N
·Ψ(N,N1/u) = u−u+o(u) ≈ u−u.

The expected number of random exponentiations necessary
to find a B-smooth gi is ≈ uu.

Complexity Analysis

6/10

The expected running time of the algorithm is

≈ (k + 1)︸ ︷︷ ︸
nb of relations

· uu︸︷︷︸
expected nb of trials

· k︸︷︷︸
nb of trial divisions

· M(loge N)︸ ︷︷ ︸
time for a trial division

≈ B2 · uu
(

drop the logarithmic factors, where k ≈ B
loge B

)
= N2/u · uu (u = loge N/ loge B ⇒ N = Bu)

Goal: minimize f (u) = N2/u · uu

Complexity Analysis

7/10

An approximate minimum is reached for u s.t. u2 log u ≈ 2 loge N.

For u = 2

√
loge N

loge loge N
, it holds:

u2 loge u = 4
loge N

loge loge N

(
loge 2 +

1

2
loge loge N − 1

2
loge loge loge N

)

and therefore u2 loge u = 2 loge N + o(loge N).

Complexity Analysis

8/10

The value of u makes B equal to:

B = N1/u

= exp
(
1

u
loge N

)
= exp

(
1

2

√
loge N loge loge N

)
= LN(1/2, 1/2)

Note that uu = LN(1/2, 1).

Therefore B2uu = LN(1/2, 2).

The cost of the linear algebra step is bounded by Õ(B3) (which
is O(B3 loge N)), i.e. LN(1/2, 3/2).

Further Reading I

9/10

Andrew Granville.
Smooth numbers: computational number theory and
beyond.
Algorithmic number theory: lattices, number fields, curves
and cryptography, 44:267–323, 2008.

Antoine Joux, Andrew Odlyzko, and Cécile Pierrot.
The past, evolving present, and future of the discrete
logarithm.
In Open Problems in Mathematics and Computational
Science, pages 5–36. Springer, 2014.

Carl Pomerance.
Smooth numbers and the quadratic sieve.
Algorithmic Number Theory, Cambridge, MSRI
publication, 44:69–82, 2008.

Further Reading II

10/10

Carl Pomerance.
A tale of two sieves.
Biscuits of Number Theory, 85, 2008.

Victor Shoup.
Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology—EUROCRYPT’97, pages
256–266. Springer, 1997.

