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LQ(α; c) = exp((c + o(1))(log Q)α(log log Q)1−α)

α = 0 ⇒ LQ(α; c) = (log Q)(c+o(1)) (polynomial in ‖ Q ‖).

α = 1 ⇒ LQ(α; c) = Q(c+o(1)) (exponential ‖ Q ‖).
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p
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Problem: given g, h ∈ Z∗
p, find x such that h = gx.

Fix some bound B ∈ N, and let F = {p1, . . . , pk} be the set
of primes less than or equal to B.
Relation search

Compute gi := gai for random ai ∈ {1, . . . , p − 1}.
If gi is B-smooth, then

gai (mod p) =
k∏

j=1

pei,j
j . (1)

Linear algebra Once ` ≥ k linearly independent equations
of the form (1) are found, solve for logg pi, i = 1, . . . , k,
modulo p − 1.
Search for t such that gt · h (mod p) is B-smooth. Once
found, solve for logg h mod (p − 1).
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We assume that the cost of generating relations dominates the
overall complexity of the algorithm.

If B is large, it is more likely that the gi are B-smooth, but more
relations are necessary. The two costs need to be balanced.

The prime number theorem says that

k = |{primes pi ≤ B}| ≈ B
loge B

.
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Define Ψ(N,B) = |{B-smooth positive integers ≤ N}|, with
N = p − 1.

The probability that a positive integer m ≤ N is B-smooth
is approximately equal to 1

N
·Ψ(N,B).

Canfield-Erdos-Pomerance Theorem:

Let u =
loge N
loge B

. Then 1

N
·Ψ(N,N1/u) = u−u+o(u) ≈ u−u.

The expected number of random exponentiations necessary
to find a B-smooth gi is ≈ uu.
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The expected running time of the algorithm is

≈ (k + 1)︸ ︷︷ ︸
nb of relations

· uu︸︷︷︸
expected nb of trials

· k︸︷︷︸
nb of trial divisions

· M(loge N)︸ ︷︷ ︸
time for a trial division

≈ B2 · uu
(

drop the logarithmic factors, where k ≈ B
loge B

)
= N2/u · uu (u = loge N/ loge B ⇒ N = Bu)

Goal: minimize f (u) = N2/u · uu
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An approximate minimum is reached for u s.t. u2 log u ≈ 2 loge N.

For u = 2

√
loge N

loge loge N
, it holds:

u2 loge u = 4
loge N

loge loge N

(
loge 2 +

1

2
loge loge N − 1

2
loge loge loge N

)

and therefore u2 loge u = 2 loge N + o(loge N).
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The value of u makes B equal to:

B = N1/u

= exp
(
1

u
loge N

)
= exp

(
1

2

√
loge N loge loge N

)
= LN(1/2, 1/2)

Note that uu = LN(1/2, 1).

Therefore B2uu = LN(1/2, 2).

The cost of the linear algebra step is bounded by Õ(B3) (which
is O(B3 loge N)), i.e. LN(1/2, 3/2).
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