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Quantum computers

 Quantum computers exploit
quantum phenomena such as
superposition and entanglement

 They operate under different
rules than classical computers
(e.g. (qu)bits)

 Big players include Google, IBM,
Honeywell, Microsoft, etc.

 Applications include genomic
sequencing, finance, drug
development, etc.

 What about cryptography?



Impact on public-key cryptography
Shor’s period‐finding algorithm [Sho94]

Given a finite abelian groupG and f : G→ X, output r so that f(x+r) = f(x).
The complexity of this quantum algorithm is polynomial: O((log |G|)3).

Application to discrete logarithm:
1 Problem: Let g, h ∈ G, where G
is a finite abelian group of order
p. Find r such that h = gr.

2 Let f(x, y) = gx · h−y.
3 Periods of f are multiple of (r,1).

Application to factoring:
1 Problem: Factor N = p · q.
2 Sample 1 < a < N, let fa(x) = xa.
3 The period r of f verifies:

ar = 1 mod N.
4 If r is even, then (ar/2 ± 1) are
factors of N since:
(ar/2 + 1)(ar/2 − 1) = 0 mod N.

5 If some steps fail, goto 2 .
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Impact on symmetric cryptography

Search problems:
 Given a function f : X→ {0,1}, we want to find x ∈ X such that f(x) = 1.

Grover’s quantum algorithm [Gro96] do that in Θ(
√
|X|) calls to f

(instead of O(|X|) classically).
 Less dramatic impact than Shor, but much larger scope (exhaustive key

search, (second) preimage, subroutines in cryptanalytic algorithms, etc.).

Collision problems:
 Given f : W→ X, we want to find w1, ̸= w2 such that f(w1) = f(w2).

A series of works propose quantum algorithms solving this in time
between O(|X|2/5) [CNS17] and Θ(|X|1/3) [BHT98, Amb04, Zha15],
instead of O(

√
|X|) classically.

 Impacts mainly hash functions.



State of affairs

Problem Classical
Hardness

Quantum
Hardness

Public‐key crypto.

{
Factoring eÕ((logN)

1/3) poly(logN)
Discrete Logarithm eÕ((log p)

1/3) poly(log p)

Symmetric crypto.

{
Exhaustive search O(|X|) Θ(|X|1/2)
Collision O(|X|1/2) Θ(|X|1/3)

Symmetric & keyless primitives:
 Impacted:

 Sym. Encryption (e.g. AES)
 Hash Functions (e.g. SHA‐3)
 MACs (e.g. HMAC)
 etc.

 Mitigation: Double the sizes

Public‐key primitives:
 Impacted:

 RSA encryption & signatures
 (EC)DH, (EC)DSA
 El Gamal
 etc.

 Mitigation: New assumptions!
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Post‐quantum cryptography:
 Exploded in the last

10‐20 years
 Multiple families of

assumptions
 Very heterogeneous field
 Apples‐to‐apples

comparison is hard
 Lots of work to do

Post‐quantum
Cryptography

Lattices

Codes

One‐way
functions

Isogenies

Multivariate
Equations

...



Lattice-based cryptography

 Inception in 1996 [Ajt96, HPS98]
 The underlying hard problem is typically to solve a linear system sA = t

under geometric constraints (s short for some metric)
 Cryptanalysis is done primarily via lattice reduction
 Historically, strong connection to theoretical CS
 Balanced performances (communication cost, computational cost, etc.)
 Perhaps the most dynamic field at the moment



Code-based cryptography

 Inception in 1978 [McE78]
 Archetypal problem is to solve a linear system under sparsity constraints:

Syndrome Decoding problem

Given a matrix H ∈ Fk×n
2 and a syndrome s ∈ Fk

2, find e ∈ Fn
2 of

Hamming weight w such that H× e = s.

 Cryptanalysis is rather mature, but new variants are regularly broken.
 Some schemes (McElieve, Wave) have large keys.



Multivariate cryptography

 Inception in 1988 [MI88, Pat96]
 Archetypal problem:

Multivariate quadratics problem (MQ)

Given y ∈ Fm and a multivariate quadratic map F : Fn → Fm, find x
such that F(x) = y.

 Cryptanalysis is done via algebraic techniques such as Gröbner bases
 Typically large keys but small signatures/ciphertexts
 Rocky security history



Isogeny-based cryptography

 Inception in 1996‐2006 [Cou06, RS06]
 Archetypal problems are often generalizations of elliptic‐curve problems:

Computational Supersingular Isogeny (CSSI) problem [DJP14]

Given two elliptic curves E, E′ and the value of an isogeny φ : E → E′

on the torsion subgroup E[ℓe], find φ.

 Very compact, but somewhat slow.
 Very dynamic and recent field, efficiency and cryptanalysis may evolve.



Hash-based cryptography

 Inception in 1978 [Lam79, Mer90]
 We only know how to build signature schemes
 The gold standard of security: relies only on collision/(second‐)preimage

resistance of generic hash functions.
 Use generic data structures (trees, tables, etc.) to improve efficiency.
 Large signatures, slow signing.
 Not to be confused with signatures that prove in ZK the knowledge of x

such that F(x) = y for a one‐way function F (e.g. Picnic [ZCD+19])



The NIST
Standardization

Process



Standardizing PQC

Why standardise now if quantum computers are not practical yet?
 T1: Duration of standardization process
 T2: Time to deploy standards
 T3: Duration a given data must remain confidential
 T4: Time before quantum computers become practical

For authentication (e.g. signatures):

T1 + T2 > T4

For confidentiality (e.g. encryption and key exchange):

T1 + T2 > T4 ‐ T3



The NIST Standardization Process
Objective:
 Standardize PQC through an open process

Scope:
 Signatures
 Key exchange / Key Encapsulation Mechanisms (KEM) /

Public Key Encryption (PKE)

Criteria:
 Security
 Performances

 Communication cost
 Computational efficiency
 Portability on embedded devices

 Suitability to real‐world usecases



NIST Standardization Timeline
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Computation Cost of Level 1 KEMs
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Bandwidth cost of Level 1 Signatures
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Computation Cost of Level 1 Signatures
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Additional literature
Quantum computing:
 Lecture notes by Ron de Wolf:

https://homepages.cwi.nl/~rdewolf/qcnotes.pdf
 Series of workshops by the Simons institute:

https://simons.berkeley.edu/programs/quantum2020
Code‐based cryptography:
 MOOC by INRIA: https://www.canal-u.tv/producteurs/inria/

cours_en_ligne/code_based_cryptography
Isogeny‐based cryptography:
 Introduction by Luca de Feo: https://arxiv.org/pdf/1711.04062.pdf

The NIST standardization process:
 Everything is available online: specification of the candidates, reference

implementations, slides, reports by NIST, mailing list, etc.
https://csrc.nist.gov/projects/post-quantum-cryptography/

Lattices: see end of next talk

https://homepages.cwi.nl/~rdewolf/qcnotes.pdf
https://simons.berkeley.edu/programs/quantum2020
https://www.canal-u.tv/producteurs/inria/cours_en_ligne/code_based_cryptography
https://www.canal-u.tv/producteurs/inria/cours_en_ligne/code_based_cryptography
https://arxiv.org/pdf/1711.04062.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/


Lattice‐Based
Cryptography



Lattice
Schemes

Signatures

Key
Agreement

Fiat‐Shamir

Hash
& Sign

Noisy DH

Encryption

Dilithium [LDK+19]

qTESLA [BAA+19]

Falcon [PFH+19]

[MP12, CGM19]

[DXL12, Pei14]

NTRU [ZCH+19],
FrodoKEM [NAB+19],
Kyber [SAB+19], etc.



Main problems: SIS and LWE

SIS stands for Short Integer Solution, and LWE for Learning With Errors.
SIS only comes in a search variant, LWE has a search and a decision variant.
The base ring may vary: Zq, Zq[x]/(xn + 1), etc.

(Inhomogeneous) SIS

A

s t=

KnownFind short s?

LWE

A
s

e
+

= t

Known

Find short (e, s)?



Security

How is any of that related to lattices?
 Solving s · A = 0 mod q is

equivalent to finding a short
vector of the lattice
L = {s|s · A = 0 mod q}

 Computing a (large) basis of L is
trivial, but obtaining a short basis
requires lattice
reduction [LLL82, SE94]

 Similarly, (inhomogeneous) SIS and
LWE can be expressed as lattice
problems.



LWE as an analog to DLOG

At a very, very abstract level, one can build schemes based on LWE by
adapting schemes based on the discrete logarithm:
 DLOG: Given (g, gx), find x.
 LWE: Given (A,AS+ E), find S.

Example with El Gamal in the next slide.



Keygen(g ∈ G)

1 Sample x← Z|G|

2 h← gx

3 sk := x,pk := h

Enc(M,pk)

1 Sample r← Z|G|

2 u← gr

3 v← hr · M
4 ct := (u, v)

Dec(M,sk)

1 M← v · u−x

Keygen(A ∈ Rm×m
q )

1 Sample short S,E
2 B← AS+ E
3 sk := (S,E),pk := B

Enc(M,pk)

1 Sample short R,E′,E′′

2 U← RA+ E′

3 V← RB+ E′′ + Encode(M)
4 ct := (U,V)

Dec(M,sk)

1 M← Decode(V−US)



That was easy, wasn’t it?

Not so fast. Many new elements to factor in:
 More parameters: dimensions, ring Rq, sampling distributions, etc.
 Decryption failures can be

exploited [HGS99, DGJ+19, DVV19, GJY19, DRV20]
 Tricks like bit dropping and error‐correcting codes [ADPS16, Ham19]

may improve efficiency but complexify the security analysis!
 Transforms to achieve active security (e.g. IND‐CCA) need to be studied

against quantum attackers as well [HHK17].

Signatures also come out with their fair share of challenges!



Falcon



 One of the 3 finalists for NIST standardization (signature track).
 Falcon is a lattice‐based signature of type hash‐then‐sign.
 At a very very high level, think RSA signatures but with lattices.



NTRU lattices

NTRU

Let Rq = Zq[x]/(xn + 1). Given h ∈ Rq, find short f, g ∈ Rq such that

g · f−1 = h (1)

 The NTRU problem can be seen as a special case of SIS. Indeed, given

A =

[
1
h

]
, we seek a short s =

[
g −f

]
such that s · A = 0 mod q.

 Given f, g, one can compute a short matrix B =

[
g −f
G −F

]
such that

B · A = 0 mod q. See [PFH+19].



GPV signatures [GPV08]
Falcon instantiates this blueprint with NTRU lattices (see previous slide).

Keygen(1λ)

1 Gen. matrices A,B s.t.:
 B · A = 0
 B has small coefficients

2 pk := A,sk := B

Sign(M,sk = B)

1 Compute c such that
c · A = H(M)

2 v← vector in L(B), close to c
3 sig := s = (c− v)

Verify(M,pk = A,sig = s)

Check (s short) & (s · A = H(M))

c

v

s



How to compute efficiently a close vector (the second algorithm assumes we
precomputed the Gram‐Schmidt orthogonalization B = L · B̃).

RoundOff(B, c)

1 t← c · B−1

2 For j ∈ {n, . . . ,1}:
1 zj ←

⌈
tj
⌋

3 Return v := z · B

⇓

NearestPlane(B, L, c)

1 t← c · B−1

2 For j ∈ {n, . . . ,1}:
1 zj ←

⌈
tj +

∑
i>j(t1 − zi)Li,j

⌋
3 Return v := z · B

⇓



 Problem: When used for signing, the algorithms RoundOff and
NearestPlane leak the shape of the private key B, leading to
attacks [NR06, DN12].

 Solution [GPV08]: Replace rounding with (Gaussian) randomized
rounding.

+ =
c



Falcon applies a few optimizations not described in this talk:
 Exploiting the algebraic structure of Z[x]/(xn + 1) to speed up the key

generation [PP19] and signing [DP16] procedures.
 Use the Rényi divergence to optimize parameter

selection [Pre17, HPRR20].



Additional literature

Lattices:
 A few courses:

 https://homepages.cwi.nl/~dadush/teaching/lattices-2018/
 https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/index.html
 https://cseweb.ucsd.edu/classes/fa17/cse206A-a/
 https://web.eecs.umich.edu/~cpeikert/lic15/index.html
 https://people.csail.mit.edu/vinodv/6876-Fall2015/index.html

 Series of workshops by the Simons institute:
https://simons.berkeley.edu/programs/lattices2020

Falcon:
 Official website: https://falcon-sign.info/

https://homepages.cwi.nl/~dadush/teaching/lattices-2018/
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/index.html
https://cseweb.ucsd.edu/classes/fa17/cse206A-a/
https://web.eecs.umich.edu/~cpeikert/lic15/index.html
https://people.csail.mit.edu/vinodv/6876-Fall2015/index.html
https://simons.berkeley.edu/programs/lattices2020
https://falcon-sign.info/
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