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Quantum computers

 Quantum computers exploit
quantum phenomena such as
superposition and entanglement

 They operate under different
rules than classical computers
(e.g. (qu)bits)

 Big players include Google, IBM,
Honeywell, Microsoft, etc.

 Applications include genomic
sequencing, finance, drug
development, etc.

 What about cryptography?



Impact on public-key cryptography
Shor’s period‐finding algorithm [Sho94]

Given a finite abelian groupG and f : G→ X, output r so that f(x+r) = f(x).
The complexity of this quantum algorithm is polynomial: O((log |G|)3).

Application to discrete logarithm:
1 Problem: Let g, h ∈ G, where G
is a finite abelian group of order
p. Find r such that h = gr.

2 Let f(x, y) = gx · h−y.
3 Periods of f are multiple of (r,1).

Application to factoring:
1 Problem: Factor N = p · q.
2 Sample 1 < a < N, let fa(x) = xa.
3 The period r of f verifies:

ar = 1 mod N.
4 If r is even, then (ar/2 ± 1) are
factors of N since:
(ar/2 + 1)(ar/2 − 1) = 0 mod N.

5 If some steps fail, goto 2 .
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Impact on symmetric cryptography

Search problems:
 Given a function f : X→ {0,1}, we want to find x ∈ X such that f(x) = 1.

Grover’s quantum algorithm [Gro96] do that in Θ(
√
|X|) calls to f

(instead of O(|X|) classically).
 Less dramatic impact than Shor, but much larger scope (exhaustive key

search, (second) preimage, subroutines in cryptanalytic algorithms, etc.).

Collision problems:
 Given f : W→ X, we want to find w1, ̸= w2 such that f(w1) = f(w2).

A series of works propose quantum algorithms solving this in time
between O(|X|2/5) [CNS17] and Θ(|X|1/3) [BHT98, Amb04, Zha15],
instead of O(

√
|X|) classically.

 Impacts mainly hash functions.



State of affairs

Problem Classical
Hardness

Quantum
Hardness

Public‐key crypto.

{
Factoring eÕ((logN)

1/3) poly(logN)
Discrete Logarithm eÕ((log p)

1/3) poly(log p)

Symmetric crypto.

{
Exhaustive search O(|X|) Θ(|X|1/2)
Collision O(|X|1/2) Θ(|X|1/3)

Symmetric & keyless primitives:
 Impacted:

 Sym. Encryption (e.g. AES)
 Hash Functions (e.g. SHA‐3)
 MACs (e.g. HMAC)
 etc.

 Mitigation: Double the sizes

Public‐key primitives:
 Impacted:

 RSA encryption & signatures
 (EC)DH, (EC)DSA
 El Gamal
 etc.

 Mitigation: New assumptions!
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Post‐quantum cryptography:
 Exploded in the last

10‐20 years
 Multiple families of

assumptions
 Very heterogeneous field
 Apples‐to‐apples

comparison is hard
 Lots of work to do

Post‐quantum
Cryptography

Lattices

Codes

One‐way
functions

Isogenies

Multivariate
Equations

...



Lattice-based cryptography

 Inception in 1996 [Ajt96, HPS98]
 The underlying hard problem is typically to solve a linear system sA = t

under geometric constraints (s short for some metric)
 Cryptanalysis is done primarily via lattice reduction
 Historically, strong connection to theoretical CS
 Balanced performances (communication cost, computational cost, etc.)
 Perhaps the most dynamic field at the moment



Code-based cryptography

 Inception in 1978 [McE78]
 Archetypal problem is to solve a linear system under sparsity constraints:

Syndrome Decoding problem

Given a matrix H ∈ Fk×n
2 and a syndrome s ∈ Fk

2, find e ∈ Fn
2 of

Hamming weight w such that H× e = s.

 Cryptanalysis is rather mature, but new variants are regularly broken.
 Some schemes (McElieve, Wave) have large keys.



Multivariate cryptography

 Inception in 1988 [MI88, Pat96]
 Archetypal problem:

Multivariate quadratics problem (MQ)

Given y ∈ Fm and a multivariate quadratic map F : Fn → Fm, find x
such that F(x) = y.

 Cryptanalysis is done via algebraic techniques such as Gröbner bases
 Typically large keys but small signatures/ciphertexts
 Rocky security history



Isogeny-based cryptography

 Inception in 1996‐2006 [Cou06, RS06]
 Archetypal problems are often generalizations of elliptic‐curve problems:

Computational Supersingular Isogeny (CSSI) problem [DJP14]

Given two elliptic curves E, E′ and the value of an isogeny φ : E → E′

on the torsion subgroup E[ℓe], find φ.

 Very compact, but somewhat slow.
 Very dynamic and recent field, efficiency and cryptanalysis may evolve.



Hash-based cryptography

 Inception in 1978 [Lam79, Mer90]
 We only know how to build signature schemes
 The gold standard of security: relies only on collision/(second‐)preimage

resistance of generic hash functions.
 Use generic data structures (trees, tables, etc.) to improve efficiency.
 Large signatures, slow signing.
 Not to be confused with signatures that prove in ZK the knowledge of x

such that F(x) = y for a one‐way function F (e.g. Picnic [ZCD+19])



The NIST
Standardization

Process



Standardizing PQC

Why standardise now if quantum computers are not practical yet?
 T1: Duration of standardization process
 T2: Time to deploy standards
 T3: Duration a given data must remain confidential
 T4: Time before quantum computers become practical

For authentication (e.g. signatures):

T1 + T2 > T4

For confidentiality (e.g. encryption and key exchange):

T1 + T2 > T4 ‐ T3



The NIST Standardization Process
Objective:
 Standardize PQC through an open process

Scope:
 Signatures
 Key exchange / Key Encapsulation Mechanisms (KEM) /

Public Key Encryption (PKE)

Criteria:
 Security
 Performances

 Communication cost
 Computational efficiency
 Portability on embedded devices

 Suitability to real‐world usecases



NIST Standardization Timeline
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Bandwidth cost of Level 1 KEMs
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Computation Cost of Level 1 KEMs
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Bandwidth cost of Level 1 Signatures
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Computation Cost of Level 1 Signatures
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Additional literature
Quantum computing:
 Lecture notes by Ron de Wolf:

https://homepages.cwi.nl/~rdewolf/qcnotes.pdf
 Series of workshops by the Simons institute:

https://simons.berkeley.edu/programs/quantum2020
Code‐based cryptography:
 MOOC by INRIA: https://www.canal-u.tv/producteurs/inria/

cours_en_ligne/code_based_cryptography
Isogeny‐based cryptography:
 Introduction by Luca de Feo: https://arxiv.org/pdf/1711.04062.pdf

The NIST standardization process:
 Everything is available online: specification of the candidates, reference

implementations, slides, reports by NIST, mailing list, etc.
https://csrc.nist.gov/projects/post-quantum-cryptography/

Lattices: see end of next talk

https://homepages.cwi.nl/~rdewolf/qcnotes.pdf
https://simons.berkeley.edu/programs/quantum2020
https://www.canal-u.tv/producteurs/inria/cours_en_ligne/code_based_cryptography
https://www.canal-u.tv/producteurs/inria/cours_en_ligne/code_based_cryptography
https://arxiv.org/pdf/1711.04062.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/
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Lattice
Schemes

Signatures

Key
Agreement

Fiat‐Shamir

Hash
& Sign

Noisy DH

Encryption

Dilithium [LDK+19]

qTESLA [BAA+19]

Falcon [PFH+19]

[MP12, CGM19]

[DXL12, Pei14]

NTRU [ZCH+19],
FrodoKEM [NAB+19],
Kyber [SAB+19], etc.



Main problems: SIS and LWE

SIS stands for Short Integer Solution, and LWE for Learning With Errors.
SIS only comes in a search variant, LWE has a search and a decision variant.
The base ring may vary: Zq, Zq[x]/(xn + 1), etc.

(Inhomogeneous) SIS

A

s t=

KnownFind short s?

LWE

A
s

e
+

= t

Known

Find short (e, s)?



Security

How is any of that related to lattices?
 Solving s · A = 0 mod q is

equivalent to finding a short
vector of the lattice
L = {s|s · A = 0 mod q}

 Computing a (large) basis of L is
trivial, but obtaining a short basis
requires lattice
reduction [LLL82, SE94]

 Similarly, (inhomogeneous) SIS and
LWE can be expressed as lattice
problems.



LWE as an analog to DLOG

At a very, very abstract level, one can build schemes based on LWE by
adapting schemes based on the discrete logarithm:
 DLOG: Given (g, gx), find x.
 LWE: Given (A,AS+ E), find S.

Example with El Gamal in the next slide.



Keygen(g ∈ G)

1 Sample x← Z|G|

2 h← gx

3 sk := x,pk := h

Enc(M,pk)

1 Sample r← Z|G|

2 u← gr

3 v← hr · M
4 ct := (u, v)

Dec(M,sk)

1 M← v · u−x

Keygen(A ∈ Rm×m
q )

1 Sample short S,E
2 B← AS+ E
3 sk := (S,E),pk := B

Enc(M,pk)

1 Sample short R,E′,E′′

2 U← RA+ E′

3 V← RB+ E′′ + Encode(M)
4 ct := (U,V)

Dec(M,sk)

1 M← Decode(V−US)



That was easy, wasn’t it?

Not so fast. Many new elements to factor in:
 More parameters: dimensions, ring Rq, sampling distributions, etc.
 Decryption failures can be

exploited [HGS99, DGJ+19, DVV19, GJY19, DRV20]
 Tricks like bit dropping and error‐correcting codes [ADPS16, Ham19]

may improve efficiency but complexify the security analysis!
 Transforms to achieve active security (e.g. IND‐CCA) need to be studied

against quantum attackers as well [HHK17].

Signatures also come out with their fair share of challenges!



Falcon



 One of the 3 finalists for NIST standardization (signature track).
 Falcon is a lattice‐based signature of type hash‐then‐sign.
 At a very very high level, think RSA signatures but with lattices.



NTRU lattices

NTRU

Let Rq = Zq[x]/(xn + 1). Given h ∈ Rq, find short f, g ∈ Rq such that

g · f−1 = h (1)

 The NTRU problem can be seen as a special case of SIS. Indeed, given

A =

[
1
h

]
, we seek a short s =

[
g −f

]
such that s · A = 0 mod q.

 Given f, g, one can compute a short matrix B =

[
g −f
G −F

]
such that

B · A = 0 mod q. See [PFH+19].



GPV signatures [GPV08]
Falcon instantiates this blueprint with NTRU lattices (see previous slide).

Keygen(1λ)

1 Gen. matrices A,B s.t.:
 B · A = 0
 B has small coefficients

2 pk := A,sk := B

Sign(M,sk = B)

1 Compute c such that
c · A = H(M)

2 v← vector in L(B), close to c
3 sig := s = (c− v)

Verify(M,pk = A,sig = s)

Check (s short) & (s · A = H(M))

c

v

s



How to compute efficiently a close vector (the second algorithm assumes we
precomputed the Gram‐Schmidt orthogonalization B = L · B̃).

RoundOff(B, c)

1 t← c · B−1

2 For j ∈ {n, . . . ,1}:
1 zj ←

⌈
tj
⌋

3 Return v := z · B

⇓

NearestPlane(B, L, c)

1 t← c · B−1

2 For j ∈ {n, . . . ,1}:
1 zj ←

⌈
tj +

∑
i>j(t1 − zi)Li,j

⌋
3 Return v := z · B

⇓



 Problem: When used for signing, the algorithms RoundOff and
NearestPlane leak the shape of the private key B, leading to
attacks [NR06, DN12].

 Solution [GPV08]: Replace rounding with (Gaussian) randomized
rounding.

+ =
c



Falcon applies a few optimizations not described in this talk:
 Exploiting the algebraic structure of Z[x]/(xn + 1) to speed up the key

generation [PP19] and signing [DP16] procedures.
 Use the Rényi divergence to optimize parameter

selection [Pre17, HPRR20].



Additional literature

Lattices:
 A few courses:

 https://homepages.cwi.nl/~dadush/teaching/lattices-2018/
 https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/index.html
 https://cseweb.ucsd.edu/classes/fa17/cse206A-a/
 https://web.eecs.umich.edu/~cpeikert/lic15/index.html
 https://people.csail.mit.edu/vinodv/6876-Fall2015/index.html

 Series of workshops by the Simons institute:
https://simons.berkeley.edu/programs/lattices2020

Falcon:
 Official website: https://falcon-sign.info/

https://homepages.cwi.nl/~dadush/teaching/lattices-2018/
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/index.html
https://cseweb.ucsd.edu/classes/fa17/cse206A-a/
https://web.eecs.umich.edu/~cpeikert/lic15/index.html
https://people.csail.mit.edu/vinodv/6876-Fall2015/index.html
https://simons.berkeley.edu/programs/lattices2020
https://falcon-sign.info/
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