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In the CBC mode, the number of bits of a message should be a
multiple of the block length. Otherwise, the message is padded.

The PKCS#5 padding is a famous and standardised method.

If |m| = L, t is the block length (both in bytes) and
L = rt + d, then b = t − d bytes need to be padded.

Therefore 1 ≤ b ≤ t.

Padding of (multiple copies of) the integer b, represented
as a 8-bit string.

Examples: if b = 1, 00000001 is appended to the end of the
message; if b = 2, 00000010||00000010 is appended.

The padded message is called encoded data.
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When decrypting, the correctness of the padding of the
decrypted message is verified:

the value b of the last byte is read, and it is checked if it is
the value of the last b bytes;

if the padding is correct, the last b bytes are dropped to
get the original plaintext.

Otherwise, “padding error” is output.



A Padding Oracle Attack

3/20

When decrypting, the correctness of the padding of the
decrypted message is verified:

the value b of the last byte is read, and it is checked if it is
the value of the last b bytes;

if the padding is correct, the last b bytes are dropped to
get the original plaintext.

Otherwise, “padding error” is output.



A Padding Oracle Attack

4/20

Some deployed protocols return a notification when a ciphertext
does not decrypt correctly.

It can be seen as a limited decryption oracle for adversaries,
and exploited to recover the entire plaintext from a ciphertext.
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Consider a 3-block ciphertext (IV, c1, c2) which corresponds to
the message (m1,m2) (unknown to the attacker).

m2 = F−1
k (c2)⊕ c1 and it should end with 0xb · · · 0xb︸ ︷︷ ︸

b times

.

Key idea: given c′1 = c1 ⊕∆, the decryption of (IV, c′1, c2)
returns (m′

1,m′
2) where m′

2 = m2 ⊕∆.
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Step 1: learn b (number of padded bytes).

c1 c2 

m1 m2&pad 

IV 

F-1
k F-1

k 
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Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

.

Let B be the value of the last byte of the unpadded message:

if a decryption failure is notified, then 0xn ⊕ B 6= b + 1;

when the decryption is valid, it can be deduced that

0xn ⊕ B = b + 1 ⇔ B = 0xn ⊕ b + 1.
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Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation (below, b = 4)

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

c1 c2 

m1 m2&pad 

IV 

F-1
k F-1

k 

c 

? 
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No padding error , so 
this byte is now 5! 
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No padding error , so this byte is now 5! 
Simple computation will lead to finding the byte   ? 
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