
Introduction to Cryptology

5.2 - A Padding Oracle Attack

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

A padding Oracle Attack

2/20

In the CBC mode, the number of bits of a message should be a
multiple of the block length. Otherwise, the message is padded.

The PKCS#5 padding is a famous and standardised method.

If |m| = L, t is the block length (both in bytes) and
L = rt + d, then b = t − d bytes need to be padded.

Therefore 1 ≤ b ≤ t.

Padding of (multiple copies of) the integer b, represented
as a 8-bit string.

Examples: if b = 1, 00000001 is appended to the end of the
message; if b = 2, 00000010||00000010 is appended.

The padded message is called encoded data.

A padding Oracle Attack

2/20

In the CBC mode, the number of bits of a message should be a
multiple of the block length. Otherwise, the message is padded.

The PKCS#5 padding is a famous and standardised method.

If |m| = L, t is the block length (both in bytes) and
L = rt + d, then b = t − d bytes need to be padded.

Therefore 1 ≤ b ≤ t.

Padding of (multiple copies of) the integer b, represented
as a 8-bit string.

Examples: if b = 1, 00000001 is appended to the end of the
message; if b = 2, 00000010||00000010 is appended.

The padded message is called encoded data.

A padding Oracle Attack

2/20

In the CBC mode, the number of bits of a message should be a
multiple of the block length. Otherwise, the message is padded.

The PKCS#5 padding is a famous and standardised method.

If |m| = L, t is the block length (both in bytes) and
L = rt + d, then b = t − d bytes need to be padded.

Therefore 1 ≤ b ≤ t.

Padding of (multiple copies of) the integer b, represented
as a 8-bit string.

Examples: if b = 1, 00000001 is appended to the end of the
message; if b = 2, 00000010||00000010 is appended.

The padded message is called encoded data.

A padding Oracle Attack

2/20

In the CBC mode, the number of bits of a message should be a
multiple of the block length. Otherwise, the message is padded.

The PKCS#5 padding is a famous and standardised method.

If |m| = L, t is the block length (both in bytes) and
L = rt + d, then b = t − d bytes need to be padded.

Therefore 1 ≤ b ≤ t.

Padding of (multiple copies of) the integer b, represented
as a 8-bit string.

Examples: if b = 1, 00000001 is appended to the end of the
message; if b = 2, 00000010||00000010 is appended.

The padded message is called encoded data.

A padding Oracle Attack

2/20

In the CBC mode, the number of bits of a message should be a
multiple of the block length. Otherwise, the message is padded.

The PKCS#5 padding is a famous and standardised method.

If |m| = L, t is the block length (both in bytes) and
L = rt + d, then b = t − d bytes need to be padded.

Therefore 1 ≤ b ≤ t.

Padding of (multiple copies of) the integer b, represented
as a 8-bit string.

Examples: if b = 1, 00000001 is appended to the end of the
message; if b = 2, 00000010||00000010 is appended.

The padded message is called encoded data.

A padding Oracle Attack

2/20

In the CBC mode, the number of bits of a message should be a
multiple of the block length. Otherwise, the message is padded.

The PKCS#5 padding is a famous and standardised method.

If |m| = L, t is the block length (both in bytes) and
L = rt + d, then b = t − d bytes need to be padded.

Therefore 1 ≤ b ≤ t.

Padding of (multiple copies of) the integer b, represented
as a 8-bit string.

Examples: if b = 1, 00000001 is appended to the end of the
message; if b = 2, 00000010||00000010 is appended.

The padded message is called encoded data.

A padding Oracle Attack

2/20

In the CBC mode, the number of bits of a message should be a
multiple of the block length. Otherwise, the message is padded.

The PKCS#5 padding is a famous and standardised method.

If |m| = L, t is the block length (both in bytes) and
L = rt + d, then b = t − d bytes need to be padded.

Therefore 1 ≤ b ≤ t.

Padding of (multiple copies of) the integer b, represented
as a 8-bit string.

Examples: if b = 1, 00000001 is appended to the end of the
message; if b = 2, 00000010||00000010 is appended.

The padded message is called encoded data.

A Padding Oracle Attack

3/20

When decrypting, the correctness of the padding of the
decrypted message is verified:

the value b of the last byte is read, and it is checked if it is
the value of the last b bytes;

if the padding is correct, the last b bytes are dropped to
get the original plaintext.

Otherwise, “padding error” is output.

A Padding Oracle Attack

3/20

When decrypting, the correctness of the padding of the
decrypted message is verified:

the value b of the last byte is read, and it is checked if it is
the value of the last b bytes;

if the padding is correct, the last b bytes are dropped to
get the original plaintext.

Otherwise, “padding error” is output.

A Padding Oracle Attack

4/20

Some deployed protocols return a notification when a ciphertext
does not decrypt correctly.

It can be seen as a limited decryption oracle for adversaries,
and exploited to recover the entire plaintext from a ciphertext.

A Padding Oracle Attack - Example

5/20

Consider a 3-block ciphertext (IV, c1, c2) which corresponds to
the message (m1,m2) (unknown to the attacker).

m2 = F−1
k (c2)⊕ c1 and it should end with 0xb · · · 0xb︸ ︷︷ ︸

b times

.

Key idea: given c′1 = c1 ⊕∆, the decryption of (IV, c′1, c2)
returns (m′

1,m′
2) where m′

2 = m2 ⊕∆.

A Padding Oracle Attack - Example

5/20

Consider a 3-block ciphertext (IV, c1, c2) which corresponds to
the message (m1,m2) (unknown to the attacker).

m2 = F−1
k (c2)⊕ c1 and it should end with 0xb · · · 0xb︸ ︷︷ ︸

b times

.

Key idea: given c′1 = c1 ⊕∆, the decryption of (IV, c′1, c2)
returns (m′

1,m′
2) where m′

2 = m2 ⊕∆.

A Padding Oracle Attack

6/20

Step 1: learn b (number of padded bytes).

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

A Padding Oracle Attack

7/20

Step 1: learn b (number of padded bytes).

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

A Padding Oracle Attack

8/20

Step 1: learn b (number of padded bytes).

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

A Padding Oracle Attack

9/20

Step 1: learn b (number of padded bytes).

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

A Padding Oracle Attack

10/20

Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

.

Let B be the value of the last byte of the unpadded message:

if a decryption failure is notified, then 0xn ⊕ B 6= b + 1;

when the decryption is valid, it can be deduced that

0xn ⊕ B = b + 1 ⇔ B = 0xn ⊕ b + 1.

A Padding Oracle Attack

10/20

Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

.

Let B be the value of the last byte of the unpadded message:

if a decryption failure is notified, then 0xn ⊕ B 6= b + 1;

when the decryption is valid, it can be deduced that

0xn ⊕ B = b + 1 ⇔ B = 0xn ⊕ b + 1.

A Padding Oracle Attack

11/20

Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation (below, b = 4)

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

c

?

A Padding Oracle Attack

12/20

Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation (below, b = 4)

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

c

? 5

A Padding Oracle Attack

13/20

Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation (below, b = 4)

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

c

? 5 5 5 5

A Padding Oracle Attack

14/20

Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation (below, b = 4)

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

1

? 5 5 5 5

…

A Padding Oracle Attack

15/20

Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation (below, b = 4)

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

2

? 5 5 5 5

…

A Padding Oracle Attack

16/20

Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation (below, b = 4)

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

n

? 5 5 5 5

…

5

No padding error , so
this byte is now 5!

A Padding Oracle Attack

17/20

Step 2: recover the plaintext byte by byte.

The adversary modifies c1 with the perturbation (below, b = 4)

∆n = 0x0 · · · 0x00xn 0xb + 1 + b · · · 0xb + 1 + b︸ ︷︷ ︸
b times

c1 c2

m1 m2&pad

IV

F-1
k F-1

k

n

? 5 5 5 5

…

5

No padding error , so this byte is now 5!
Simple computation will lead to finding the byte ?

Further Reading I

18/20

Don Coppersmith.
The data encryption standard (DES) and its strength
against attacks.
IBM journal of research and development, 38(3):243–250,
1994.
Itai Dinur, Orr Dunkelman, Masha Gutman, and Adi
Shamir.
Improved top-down techniques in differential cryptanalysis.
Cryptology ePrint Archive, Report 2015/268, 2015.
http://eprint.iacr.org/.

http://eprint.iacr.org/

Further Reading II

19/20

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi
Shamir.
Efficient dissection of composite problems, with
applications to cryptanalysis, knapsacks, and combinatorial
search problems.
Cryptology ePrint Archive, Report 2012/217, 2012.
http://eprint.iacr.org/.

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi
Shamir.
New attacks on feistel structures with improved memory
complexities.
In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, volume 9215 of
Lecture Notes in Computer Science, pages 433–454.
Springer Berlin Heidelberg, 2015.

http://eprint.iacr.org/

Further Reading III

20/20

Lov K Grover.
A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, pages 212–219. ACM,
1996.
Howard M Heys.
A tutorial on linear and differential cryptanalysis.
Cryptologia, 26(3):189–221, 2002.

