
Introduction to Cryptology

5.3 - Message Authentication
Codes (MACs)

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020



Message Integrity
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Secrecy of messages is only one part of security.

Cryptographic schemes allow parties to
securely communicate over unsecured channels.

What if messages were modified in transit (integrity)?

What about authenticity?



Secrecy does not guarantee integrity
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Consider the One Time Pad encryption scheme.

Given a ciphertext, a new valid ciphertext can be produced
by just flipping a single bit!

Perfect secrecy is not contradicted, but it does not imply
message integrity.

Different cryptographic tools must be used
to achieve secrecy and integrity.
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Message Authentication Code is a cryptographic tool to ensure
message integrity and authenticity.

Parties need to share a secret key beforehand.

Symmetric-key setting!
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Definition
A MAC is a tuple of three PPT algorithms

S = (KeyGen,Mac,Verify) :

k← KeyGen(n): takes the security parameter n and
outputs a key k ∈ {0, 1}∗ s.t. |k| ≥ n.

t← Mac(k,m): the tagging algorithm takes a key k and a
message m ∈ {0, 1}∗, and outputs a tag t.

0/1← Verify(k,m, t): a deterministic algorithm that outputs
0 if the tag is invalid, and 1 if it is valid.

It is required that Verify(k,m,Mac(k,m)) = 1 for every security
parameter n, key k← KeyGen(n) and message m ∈ {0, 1}∗.
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Notation: Mack(m) = Mac(k,m), Verifyk(m, t) = Verify(k,m, t).

If, for every n and k, Mac(k, ·) is only defined for m ∈ {0, 1}`(n),
the scheme is a fixed-length MAC for messages of length `(n).

Mac may be randomised or deterministic.

Canonical Verification (when Mac is deterministic): it
recomputes the tag and checks for equality.



MACs - Definition of security
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Intuition: an adversary should not be able to efficiently produce
a valid tag on a new message that was not authenticated before.

The threat model considers an adversary A that can see
message-tag pairs – A is given access to a tagging oracle.



MACs - Definition of security

8/16

Message Authentication Experiment Macunforg
A,S (n)

Challenger Ch Adversary A

k← KeyGen(n)

Q = {queried m} Queries to Mack

Outputs a forgery (m, t)

A wins the game, i.e. Macunforg
A,S (n) = 1, if:

Verifyk(m, t) = 1;
m /∈ Q.
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Definition
A MAC S = (KeyGen,Mac,Verify) is secure if, for every PPT
adversary A, there exists a negligible function negl(n) s.t.

Pr(Macunforg
A,S (n) = 1) ≤ negl(n) .



MACs and Replay Attacks
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When S is secure, an adversary cannot change the message (the
tag is no longer valid) and cannot produce a new tag.

However, the adversary can forward a valid pair message-tag.

The receiver cannot detect this replay attack.

Common techniques to prevent replay attacks:
Time-stamps: append the current time to the message
before authenticating it.
Counters: users maintain synchronised state.
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Strong Message Authentication Experiment Macs−unforg
A,S (n)

Challenger Ch Adversary A

k← KeyGen(n)

Q = {(mi,Mack(mi))} Queries to Mack

Outputs a forge (m, t)

A wins the game, i.e. Macs−unforg
A,S (n) = 1, if:

Verifyk(m, t) = 1;
(m, t) /∈ Q.
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Definition
A MAC S = (KeyGen,Mac,Verify) is strongly secure if, for every
PPT adversary A, there exists a negligible function negl(n) s.t.

Pr(Macs−unforg
A,S (n) = 1) ≤ negl(n) .

If the Mac in S is deterministic - and therefore the verification
is canonical - then S is secure if and only if it is strongly secure.
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MACs - Side Channel Attacks
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Alternative threat model: A is also given access to Verifyk(·).

If the verification is canonical, it makes not difference;

a strongly secure MAC is secure also in this case.

In a real system, A may be able to obtain the time necessary to
reject a pair message-tag.

if Mac is deterministic and the verification does not use
time-independent string comparison, then A can exploit
the time differences to deduce new bytes of the tag!
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This is a realistic attack!

Xbox 360 had a difference of
2.2 milliseconds in comparing
j or j + 1 bytes.

Attackers exploited it.

Conclusion: canonical verification should compare all the bytes!
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