
Introduction to Cryptology

6.1 - How to construct MACs

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

A Fixed-length MAC from a PRF

2/30

Let F be a length-preserving pseudorandom function F. Define
a fixed-length MAC

S = (KeyGen,Mac,Verify)

for messages of length n, as follows:

k← KeyGen(n): it takes the security parameter n and
outputs a uniformly random key k ∈ {0, 1}n.

t← Mac(k,m): given a key k and a message m, the tag
t := Fk(m) is returned.

1/0← Verify(k,m, t): it is the canonical verification.

If |m| 6= |k|, then Mac outputs ⊥ and Verify outputs 0.

A fixed-Length MAC from a PRF

3/30

Theorem
The fixed-length MAC S for messages of length n is secure.

Proof

An adversary A against S is exploited as a subroutine to
construct a distinguisher D for F:

given a query mi ∈ {0, 1}n from A, D updates the set Q,
queries its oracle (Fk or a truly random function f) and
returns the answer t;

to check the validity of A’s forgery (m, t), D queries its
oracle as well;

if the forgery is valid, D outputs 1, otherwise it outputs 0.

A fixed-Length MAC from a PRF

3/30

Theorem
The fixed-length MAC S for messages of length n is secure.

Proof

An adversary A against S is exploited as a subroutine to
construct a distinguisher D for F:

given a query mi ∈ {0, 1}n from A, D updates the set Q,
queries its oracle (Fk or a truly random function f) and
returns the answer t;

to check the validity of A’s forgery (m, t), D queries its
oracle as well;

if the forgery is valid, D outputs 1, otherwise it outputs 0.

A fixed-Length MAC from a PRF

3/30

Theorem
The fixed-length MAC S for messages of length n is secure.

Proof

An adversary A against S is exploited as a subroutine to
construct a distinguisher D for F:

given a query mi ∈ {0, 1}n from A, D updates the set Q,
queries its oracle (Fk or a truly random function f) and
returns the answer t;

to check the validity of A’s forgery (m, t), D queries its
oracle as well;

if the forgery is valid, D outputs 1, otherwise it outputs 0.

A fixed-Length MAC from a PRF

4/30

A fixed-Length MAC from a PRF

5/30

A fixed-Length MAC from a PRF

6/30

Remark: messages are sent separately!

A fixed-Length MAC from a PRF

7/30

A fixed-Length MAC from a PRF

8/30

A fixed-Length MAC from a PRF

9/30

A fixed-Length MAC from a PRF

10/30

A fixed-Length MAC from a PRF

11/30

A fixed-Length MAC from a PRF

12/30

A fixed-Length MAC from a PRF

13/30

A fixed-Length MAC from a PRF

14/30

A fixed-Length MAC from a PRF

15/30

Let S′ be a variation of S, where Fk is replaced by a truly
random function f : {0, 1}n → {0, 1}n.

D has access to Fk: in this case, A is in the message
authentication experiment for S, and

Pr(DFk()(n) = 1) = Pr(Macunforg
A,S (n) = 1).

D has access to f : in this case, A is in the message
authentication experiment for S′, and

Pr(Df ()(n) = 1) = Pr(Macunforg
A,S′ (n) = 1).

A fixed-Length MAC from a PRF

16/30

A fixed-Length MAC from a PRF

17/30

A fixed-Length MAC from a PRF

18/30

A fixed-Length MAC from a PRF

19/30

A fixed-Length MAC from a PRF

20/30

Since F is a PRF, it holds:

|Pr(Df ()(n) = 1)− Pr(DFk()(n) = 1)| =

= |Pr(Macunforg
A,S′ (n) = 1)− Pr(Macunforg

A,S (n) = 1)| ≤ negl(n).

For any message m 6∈ Q, the value t = f (m) is uniformly
distributed in {0, 1}n from the point of view of A. So:

Pr(Macunforg
A,S′ (n) = 1) ≤ 2−n.

Putting all together we conclude:

Pr(Macunforg
A,S (n) = 1) ≤ 2−n + negl(n) .

�

From a fixed-length MAC to a general MAC

21/30

Pseudorandom functions used in practice
(block ciphers) only take short fixed-length inputs.

How to build a MAC for arbitrary-length messages?

From a fixed-length MAC to a general MAC

22/30

Natural approach: process each block of the message separately.

Block re-ordering attack: if (t1, t2) is a valid tag on (m1,m2)
where m1 6= m2, then (t2, t1) is a valid tag on (m2,m1).

Solution: authenticate a block index with each block.

Truncation attack: the attacker removes blocks from the end of
the message and the corresponding blocks from the tag.

Solution: authenticate the message length with each block.

From a fixed-length MAC to a general MAC

22/30

Natural approach: process each block of the message separately.

Block re-ordering attack: if (t1, t2) is a valid tag on (m1,m2)
where m1 6= m2, then (t2, t1) is a valid tag on (m2,m1).

Solution: authenticate a block index with each block.

Truncation attack: the attacker removes blocks from the end of
the message and the corresponding blocks from the tag.

Solution: authenticate the message length with each block.

From a fixed-length MAC to a general MAC

22/30

Natural approach: process each block of the message separately.

Block re-ordering attack: if (t1, t2) is a valid tag on (m1,m2)
where m1 6= m2, then (t2, t1) is a valid tag on (m2,m1).

Solution: authenticate a block index with each block.

Truncation attack: the attacker removes blocks from the end of
the message and the corresponding blocks from the tag.

Solution: authenticate the message length with each block.

From a fixed-length MAC to a general MAC

22/30

Natural approach: process each block of the message separately.

Block re-ordering attack: if (t1, t2) is a valid tag on (m1,m2)
where m1 6= m2, then (t2, t1) is a valid tag on (m2,m1).

Solution: authenticate a block index with each block.

Truncation attack: the attacker removes blocks from the end of
the message and the corresponding blocks from the tag.

Solution: authenticate the message length with each block.

From a fixed-length MAC to a general MAC

22/30

Natural approach: process each block of the message separately.

Block re-ordering attack: if (t1, t2) is a valid tag on (m1,m2)
where m1 6= m2, then (t2, t1) is a valid tag on (m2,m1).

Solution: authenticate a block index with each block.

Truncation attack: the attacker removes blocks from the end of
the message and the corresponding blocks from the tag.

Solution: authenticate the message length with each block.

From a fixed-length MAC to a general MAC

23/30

Mix-and-match attack: given the valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the distinct messages (m1,m2,m3) and (m′

1,m′
2,m′

3),
output (t1, t′2, t3) on the message (m1,m′

2,m3).

Solution: authenticate a random message identifier along with
each block.

Lessons learnt!

From a fixed-length MAC to a general MAC

23/30

Mix-and-match attack: given the valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the distinct messages (m1,m2,m3) and (m′

1,m′
2,m′

3),
output (t1, t′2, t3) on the message (m1,m′

2,m3).

Solution: authenticate a random message identifier along with
each block.

Lessons learnt!

From a fixed-length MAC to a general MAC

23/30

Mix-and-match attack: given the valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the distinct messages (m1,m2,m3) and (m′

1,m′
2,m′

3),
output (t1, t′2, t3) on the message (m1,m′

2,m3).

Solution: authenticate a random message identifier along with
each block.

Lessons learnt!

From a fixed-length MAC to a general MAC

24/30

Let S1 = (KeyGen1,Mac1,Verify1) be a fixed-length MAC for
messages of length n. Define a MAC S for arbitrary-length
messages as follows:

k← KeyGen(n): given the security parameter n, it runs
KeyGen1(n) and returns its output.

t← Mac(k,m): given a key k and a message m with
|m| = ` < 2n/4, the algorithm

parses m into d blocks of length n/4, i.e. m1, · · · ,md;
if the last block is not of size n/4, it is padded with 0s;
uniformly chooses r ∈ {0, 1}n/4;
for i = 1, · · · , d, computes ti = Mac1(k, r||`||i||mi),
where i and ` are encoded as strings of length n/4;
output t = (r, t1, · · · , td).

1/0← Verify(k,m, (r, t1, · · · , td)): it parses m into d′ blocks
and returns 1 iff d′ = d AND Verify1(k, r||`||i||mi, ti) = 1 ∀i

From a fixed-length MAC to a general MAC

25/30

Theorem
If S1 is a secure fixed-length MAC for messages of length n,
then S as defined above is a secure MAC.

Unfortunately, S is rather inefficient.

More efficient constructions:

CBC-MAC

MACs from hash functions (will be covered soon!)

From a fixed-length MAC to a general MAC

25/30

Theorem
If S1 is a secure fixed-length MAC for messages of length n,
then S as defined above is a secure MAC.

Unfortunately, S is rather inefficient.

More efficient constructions:

CBC-MAC

MACs from hash functions (will be covered soon!)

From a fixed-length MAC to a general MAC

25/30

Theorem
If S1 is a secure fixed-length MAC for messages of length n,
then S as defined above is a secure MAC.

Unfortunately, S is rather inefficient.

More efficient constructions:

CBC-MAC

MACs from hash functions (will be covered soon!)

Basic CBC-MAC for fixed-length messages

26/30

Let F be a length-preserving pseudorandom function. The basic
fixed-length CBC-MAC for messages of length `(n) · n is defined
as follows:

k← KeyGen(n): given the security parameter n, it returns
a uniform k ∈ {0, 1}n.

t← Mac(k,m): it takes a key k and a message m and
parses m as m1, · · · ,m`(n), where |mi| = n;
initialises t0 ← 0n and, for i = 1, · · · , `(n), it computes

ti ← Fk(ti−1 ⊕ mi)

outputs the tag t`(n).

1/0← Verify(k,m, t): it is the canonical verification with
the extra check that |m| is n · `(n).

CBC-MAC

27/30

The previous construction is secure, but for fixed-length
messages.

It is possible to modify the construction in order to handle
arbitrary-length messages.

Example: the key generation chooses two uniformly independent
keys, k1, k2 ∈ {0, 1}n. The tagging algorithm obtains t1 using
the CBC-MAC on k1 and m, and outputs the tag t = Fk2(t1).

CBC-MAC and CBC-mode encryption

28/30

The CBC-mode encryption takes a random IV, whereas
CBC-MAC takes a fixed string (i.e. 0n). They are only
secure under these conditions.

The CBC-mode encryption outputs all the intermediate
values ci, as they form the ciphertext; CBC-MAC only
outputs the final tag t`n.

Further Reading I

29/30

N.J. Al Fardan and K.G. Paterson.
Lucky thirteen: Breaking the TLS and DTLS record
protocols.
In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 526–540, May 2013.

J Lawrence Carter and Mark N Wegman.
Universal classes of hash functions.
In Proceedings of the ninth annual ACM symposium on
Theory of computing, pages 106–112. ACM, 1977.

Jean Paul Degabriele and Kenneth G Paterson.
On the (in) security of IPsec in MAC-then-Encrypt
configurations.
In Proceedings of the 17th ACM conference on Computer
and communications security, pages 493–504. ACM, 2010.

Further Reading II

30/30

Ted Krovetz and Phillip Rogaway.
The software performance of authenticated-encryption
modes.
In Fast Software Encryption, pages 306–327. Springer, 2011.

Douglas R. Stinson.
Universal hashing and authentication codes.
Designs, Codes and Cryptography, 4(3):369–380, 1994.

