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A Fixed-length MAC from a PRF

Let F be a length-preserving pseudorandom function F. Define
a fixed-length MAC

S = (KeyGen, Mac, Verify)
for messages of length n, as follows:

= k+ KeyGen(n): it takes the security parameter n and
outputs a uniformly random key k € {0,1}".

= < Mac(k,m): given a key k and a message m, the tag
t := Fi(m) is returned.

= 1/0 < Verify(k,m,1): it is the canonical verification.

If |m| # |k|, then Mac outputs L and Verify outputs 0.
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A fixed-Length MAC from a PRF

Theorem
The fixed-length MAC S for messages of length n is secure.
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A fixed-Length MAC from a PRF

Theorem
The fixed-length MAC S for messages of length n is secure.

Proof

An adversary A against S is exploited as a subroutine to
construct a distinguisher D for F:

= given a query m; € {0,1}" from A, D updates the set Q,
queries its oracle (Fj or a truly random function f) and
returns the answer f;

= to check the validity of A’s forgery (m,t), D queries its
oracle as well;

= if the forgery is valid, D outputs 1, otherwise it outputs 0.
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF
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Remark: messages are sent separately!
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF

Let S’ be a variation of S, where Fy is replaced by a truly
random function f : {0,1}" — {0,1}".

= D has access to Fj: in this case, A is in the message
authentication experiment for S, and

Pr(DFk() (I’l) — ]_) = Pr(MaCj‘iOrg(n) = ].)

= D has access to f: in this case, A is in the message
authentication experiment for §’, and

Pr(D/0(n) = 1) = Pr(Mac'ys"®(n) = 1).
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF
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A fixed-Length MAC from a PRF

Since F is a PRF, it holds:
| Pr(D0(n) = 1) = Pr(DP0(n) = 1)| =
- \Pr(Macfg,)rg(n) =1)— Pr(Mac%éorg(n) =1)| < negl(n).
For any message m ¢ Q, the value t = f(m) is uniformly
distributed in {0,1}" from the point of view of A. So:

Pr(Maco™8(n) = 1) < 27,

Putting all together we conclude:

Pr(Macjrfgorg(n) =1) < 27"+ negl(n).

20/30



From a fixed-length MAC to a general MAC

Pseudorandom functions used in practice
(block ciphers) only take short fixed-length inputs.

How to build a MAC for arbitrary-length messages?

21/30



From a fixed-length MAC to a general MAC

Natural approach: process each block of the message separately.
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From a fixed-length MAC to a general MAC

Natural approach: process each block of the message separately.

Block re-ordering attack: if (#1,#2) is a valid tag on (my,ms)
where mj # ma, then (fo,11) is a valid tag on (mga,my).

Solution: authenticate a block index with each block.
Truncation attack: the attacker removes blocks from the end of

the message and the corresponding blocks from the tag.

Solution: authenticate the message length with each block.
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From a fixed-length MAC to a general MAC

Mix-and-match attack: given the valid tags (1,1, 13) and
(#},t5,15) on the distinct messages (my,ma, m3) and (my, mh, mj),
output (t1,#,t3) on the message (my,mb, ms).
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From a fixed-length MAC to a general MAC

Mix-and-match attack: given the valid tags (1,1, 13) and
(#},t5,15) on the distinct messages (my,ma, m3) and (my, mh, mj),
output (t1,#,t3) on the message (my,mb, ms).

Solution: authenticate a random message identifier along with
each block.

Lessons learnt!
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From a fixed-length MAC to a general MAC

Let S1 = (KeyGen;, Macy, Verify,) be a fixed-length MAC for
messages of length n. Define a MAC S for arbitrary-length
messages as follows:

= k< KeyGen(n): given the security parameter n, it runs
KeyGen, (n) and returns its output.

= 1+ Mac(k,m): given a key k and a message m with
lm| = £ < 2"/*, the algorithm
» parses m into d blocks of length n/4, i.e. my,---  my;
» if the last block is not of size n/4, it is padded with Os;
= uniformly chooses r € {0,1}"/4;
"

fori=1,---,d, computes t; = Macy (k, r||¢||i||m;),
where i and ¢ are encoded as strings of length n/4;
= output 1= (r,f1, - ,1tq).

= 1/0 « Verify(k,m, (r,t1,--- ,t4)): it parses m into d’ blocks
and returns 1 iff &’ = d AND Verify, (k, r||¢||i||m;, ;) = 1 Vi s



From a fixed-length MAC to a general MAC

Theorem
If S| is a secure fixed-length MAC for messages of length n,
then S as defined above is a secure MAC.
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From a fixed-length MAC to a general MAC

Theorem

If S| is a secure fixed-length MAC for messages of length n,
then S as defined above is a secure MAC.

Unfortunately, S is rather inefficient.

More efficient constructions:
= CBC-MAC

= MACs from hash functions (will be covered soon!)

25/30



Basic CBC-MAC for fixed-length messages

Let F be a length-preserving pseudorandom function. The basic
fixed-length CBC-MAC for messages of length £(n) - n is defined
as follows:

= k+ KeyGen(n): given the security parameter n, it returns

a uniform k € {0,1}".

= 1t < Mac(k,m): it takes a key k and a message m and
* parses m as my,--- My, where |m;| = n;
» initialises #o < 0" and, for i = 1,--- ,¢(n), it computes

ti < Fi(tio & my)
» outputs the tag ).

= 1/0 < Verify(k, m,1): it is the canonical verification with
the extra check that |m| is n - £(n).
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CBC-MAC

The previous construction is secure, but for fixed-length
messages.

It is possible to modify the construction in order to handle
arbitrary-length messages.

Example: the key generation chooses two uniformly independent
keys, k1, ks € {0,1}". The tagging algorithm obtains #; using
the CBC-MAC on k; and m, and outputs the tag r = Fi,(f1).
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CBC-MAC and CBC-mode encryption

m, m, my
| | §
\% > XOR £ - XOR “XOR
|
|
|

v [ [~ Cs3

= The CBC-mode encryption takes a random IV, whereas
CBC-MAC takes a fixed string (i.e. 0"). They are only
secure under these conditions.

= The CBC-mode encryption outputs all the intermediate
values c¢;, as they form the ciphertext; CBC-MAC only
outputs the final tag t4,.
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Further Reading
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