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Let F be a length-preserving pseudorandom function F. Define
a fixed-length MAC

S = (KeyGen,Mac,Verify)

for messages of length n, as follows:

k← KeyGen(n): it takes the security parameter n and
outputs a uniformly random key k ∈ {0, 1}n.

t← Mac(k,m): given a key k and a message m, the tag
t := Fk(m) is returned.

1/0← Verify(k,m, t): it is the canonical verification.

If |m| 6= |k|, then Mac outputs ⊥ and Verify outputs 0.
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Theorem
The fixed-length MAC S for messages of length n is secure.

Proof

An adversary A against S is exploited as a subroutine to
construct a distinguisher D for F:

given a query mi ∈ {0, 1}n from A, D updates the set Q,
queries its oracle (Fk or a truly random function f ) and
returns the answer t;

to check the validity of A’s forgery (m, t), D queries its
oracle as well;

if the forgery is valid, D outputs 1, otherwise it outputs 0.
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Remark: messages are sent separately!
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Let S′ be a variation of S, where Fk is replaced by a truly
random function f : {0, 1}n → {0, 1}n.

D has access to Fk: in this case, A is in the message
authentication experiment for S, and

Pr(DFk()(n) = 1) = Pr(Macunforg
A,S (n) = 1).

D has access to f : in this case, A is in the message
authentication experiment for S′, and

Pr(Df ()(n) = 1) = Pr(Macunforg
A,S′ (n) = 1).
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Since F is a PRF, it holds:

|Pr(Df ()(n) = 1)− Pr(DFk()(n) = 1)| =

= |Pr(Macunforg
A,S′ (n) = 1)− Pr(Macunforg

A,S (n) = 1)| ≤ negl(n).

For any message m 6∈ Q, the value t = f (m) is uniformly
distributed in {0, 1}n from the point of view of A. So:

Pr(Macunforg
A,S′ (n) = 1) ≤ 2−n.

Putting all together we conclude:

Pr(Macunforg
A,S (n) = 1) ≤ 2−n + negl(n) .

�
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Pseudorandom functions used in practice
(block ciphers) only take short fixed-length inputs.

How to build a MAC for arbitrary-length messages?
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Natural approach: process each block of the message separately.

Block re-ordering attack: if (t1, t2) is a valid tag on (m1,m2)
where m1 6= m2, then (t2, t1) is a valid tag on (m2,m1).

Solution: authenticate a block index with each block.

Truncation attack: the attacker removes blocks from the end of
the message and the corresponding blocks from the tag.

Solution: authenticate the message length with each block.
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Mix-and-match attack: given the valid tags (t1, t2, t3) and
(t′1, t′2, t′3) on the distinct messages (m1,m2,m3) and (m′

1,m′
2,m′

3),
output (t1, t′2, t3) on the message (m1,m′

2,m3).

Solution: authenticate a random message identifier along with
each block.

Lessons learnt!
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Let S1 = (KeyGen1,Mac1,Verify1) be a fixed-length MAC for
messages of length n. Define a MAC S for arbitrary-length
messages as follows:

k← KeyGen(n): given the security parameter n, it runs
KeyGen1(n) and returns its output.

t← Mac(k,m): given a key k and a message m with
|m| = ` < 2n/4, the algorithm

parses m into d blocks of length n/4, i.e. m1, · · · ,md;
if the last block is not of size n/4, it is padded with 0s;
uniformly chooses r ∈ {0, 1}n/4;
for i = 1, · · · , d, computes ti = Mac1(k, r||`||i||mi),
where i and ` are encoded as strings of length n/4;
output t = (r, t1, · · · , td).

1/0← Verify(k,m, (r, t1, · · · , td)): it parses m into d′ blocks
and returns 1 iff d′ = d AND Verify1(k, r||`||i||mi, ti) = 1 ∀i
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Theorem
If S1 is a secure fixed-length MAC for messages of length n,
then S as defined above is a secure MAC.

Unfortunately, S is rather inefficient.

More efficient constructions:

CBC-MAC

MACs from hash functions (will be covered soon!)
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Let F be a length-preserving pseudorandom function. The basic
fixed-length CBC-MAC for messages of length `(n) · n is defined
as follows:

k← KeyGen(n): given the security parameter n, it returns
a uniform k ∈ {0, 1}n.

t← Mac(k,m): it takes a key k and a message m and
parses m as m1, · · · ,m`(n), where |mi| = n;
initialises t0 ← 0n and, for i = 1, · · · , `(n), it computes

ti ← Fk(ti−1 ⊕ mi)

outputs the tag t`(n).

1/0← Verify(k,m, t): it is the canonical verification with
the extra check that |m| is n · `(n).
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The previous construction is secure, but for fixed-length
messages.

It is possible to modify the construction in order to handle
arbitrary-length messages.

Example: the key generation chooses two uniformly independent
keys, k1, k2 ∈ {0, 1}n. The tagging algorithm obtains t1 using
the CBC-MAC on k1 and m, and outputs the tag t = Fk2(t1).
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The CBC-mode encryption takes a random IV, whereas
CBC-MAC takes a fixed string (i.e. 0n). They are only
secure under these conditions.

The CBC-mode encryption outputs all the intermediate
values ci, as they form the ciphertext; CBC-MAC only
outputs the final tag t`n.
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