# Introduction to Cryptology 6.1 - How to construct MACs

#### Federico Pintore

Mathematical Institute, University of Oxford (UK)



Michaelmas term 2020

Let F be a length-preserving pseudorandom function F. Define a fixed-length MAC

S = (KeyGen, Mac, Verify)

for messages of length n, as follows:

- ▶  $k \leftarrow \text{KeyGen}(n)$ : it takes the security parameter *n* and outputs a uniformly random key  $k \in \{0, 1\}^n$ .
- $t \leftarrow \operatorname{Mac}(k, m)$ : given a key k and a message m, the tag  $t := F_k(m)$  is returned.
- ▶  $1/0 \leftarrow \text{Verify}(k, m, t)$ : it is the canonical verification.

If  $|m| \neq |k|$ , then Mac outputs  $\perp$  and Verify outputs 0.

Theorem

The fixed-length MAC S for messages of length n is secure.

#### Theorem

The fixed-length MAC S for messages of length n is secure.

 $\mathbf{Proof}$ 

An adversary  $\mathcal{A}$  against S is exploited as a subroutine to construct a distinguisher D for F:

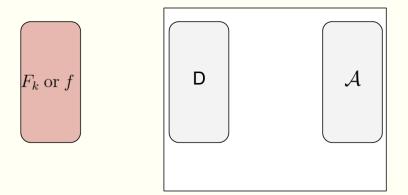
#### Theorem

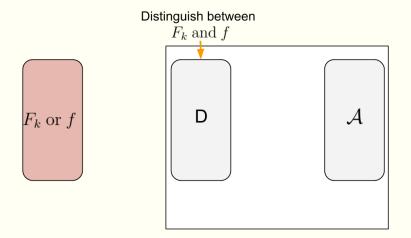
The fixed-length MAC S for messages of length n is secure.

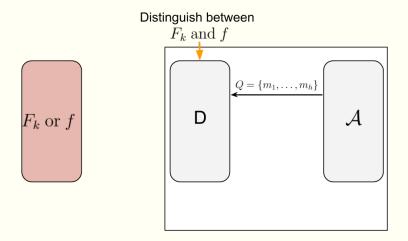
#### $\mathbf{Proof}$

An adversary  $\mathcal{A}$  against S is exploited as a subroutine to construct a distinguisher D for F:

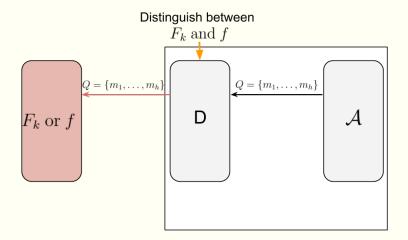
- given a query  $m_i \in \{0, 1\}^n$  from  $\mathcal{A}$ , D updates the set Q, queries its oracle  $(F_k \text{ or a truly random function } f)$  and returns the answer t;
- to check the validity of  $\mathcal{A}$ 's forgery (m, t), D queries its oracle as well;
- if the forgery is valid, D outputs 1, otherwise it outputs 0.

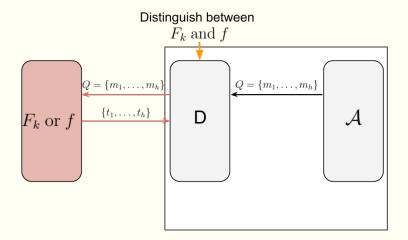


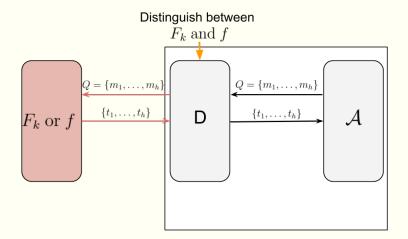


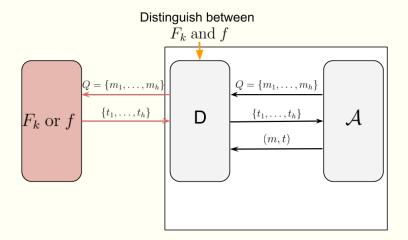


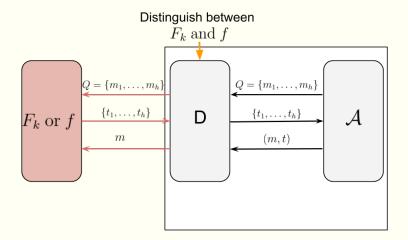
Remark: messages are sent separately!

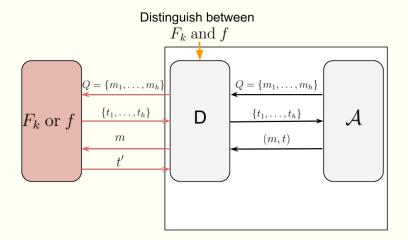


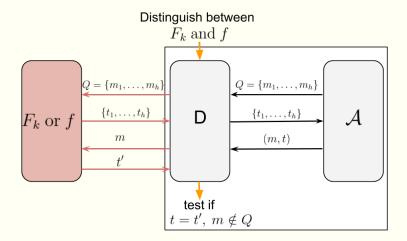


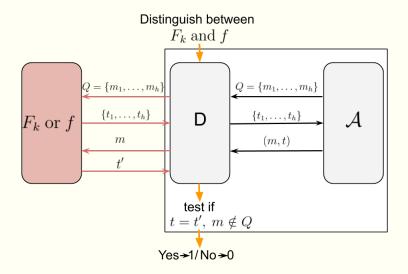












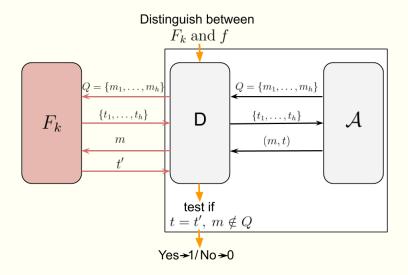
Let S' be a variation of S, where  $F_k$  is replaced by a truly random function  $f : \{0, 1\}^n \to \{0, 1\}^n$ .

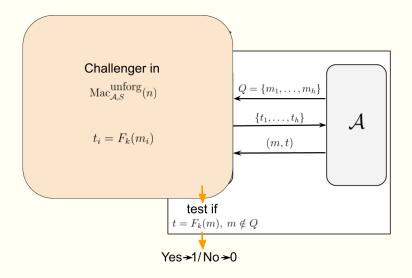
D has access to  $F_k$ : in this case,  $\mathcal{A}$  is in the message authentication experiment for S, and

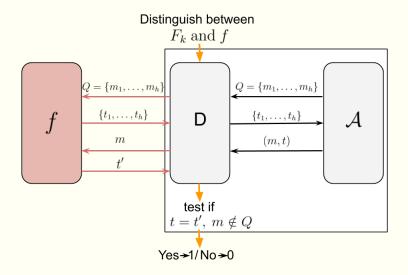
$$\Pr(\mathbf{D}^{F_k()}(n)=1) = \Pr(\operatorname{Mac}_{\mathcal{A},S}^{\operatorname{unforg}}(n)=1).$$

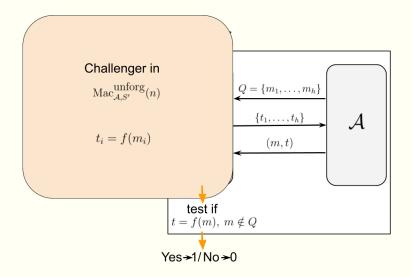
**D** has access to f: in this case,  $\mathcal{A}$  is in the message authentication experiment for S', and

$$\Pr(\mathbf{D}^{f()}(n) = 1) = \Pr(\operatorname{Mac}_{\mathcal{A},S'}^{\operatorname{unforg}}(n) = 1).$$









Since F is a PRF, it holds:

$$|\Pr(D^{f()}(n) = 1) - \Pr(D^{F_k()}(n) = 1)| =$$

 $= |\operatorname{Pr}(\operatorname{Mac}_{\mathcal{A},S'}^{\operatorname{unforg}}(n) = 1) - \operatorname{Pr}(\operatorname{Mac}_{\mathcal{A},S}^{\operatorname{unforg}}(n) = 1)| \le \operatorname{negl}(n).$ 

For any message  $m \notin Q$ , the value t = f(m) is uniformly distributed in  $\{0, 1\}^n$  from the point of view of  $\mathcal{A}$ . So:

$$\Pr(\operatorname{Mac}_{\mathcal{A},S'}^{\operatorname{unforg}}(n)=1) \le 2^{-n}.$$

Putting all together we conclude:

$$\Pr(\operatorname{Mac}_{\mathcal{A},S}^{\operatorname{unforg}}(n)=1) \le 2^{-n} + \operatorname{negl}(n) \,.$$

Pseudorandom functions used in practice (block ciphers) only take short fixed-length inputs.

How to build a MAC for arbitrary-length messages?

Natural approach: process each block of the message separately.

Natural approach: process each block of the message separately.

Block re-ordering attack: if  $(t_1, t_2)$  is a valid tag on  $(m_1, m_2)$  where  $m_1 \neq m_2$ , then  $(t_2, t_1)$  is a valid tag on  $(m_2, m_1)$ .

Natural approach: process each block of the message separately.

Block re-ordering attack: if  $(t_1, t_2)$  is a valid tag on  $(m_1, m_2)$  where  $m_1 \neq m_2$ , then  $(t_2, t_1)$  is a valid tag on  $(m_2, m_1)$ .

Solution: authenticate a block index with each block.

Natural approach: process each block of the message separately.

Block re-ordering attack: if  $(t_1, t_2)$  is a valid tag on  $(m_1, m_2)$  where  $m_1 \neq m_2$ , then  $(t_2, t_1)$  is a valid tag on  $(m_2, m_1)$ .

Solution: authenticate a block index with each block.

Truncation attack: the attacker removes blocks from the end of the message and the corresponding blocks from the tag.

Natural approach: process each block of the message separately.

Block re-ordering attack: if  $(t_1, t_2)$  is a valid tag on  $(m_1, m_2)$  where  $m_1 \neq m_2$ , then  $(t_2, t_1)$  is a valid tag on  $(m_2, m_1)$ .

Solution: authenticate a block index with each block.

Truncation attack: the attacker removes blocks from the end of the message and the corresponding blocks from the tag.

Solution: authenticate the message length with each block.

Mix-and-match attack: given the valid tags  $(t_1, t_2, t_3)$  and  $(t'_1, t'_2, t'_3)$  on the distinct messages  $(m_1, m_2, m_3)$  and  $(m'_1, m'_2, m'_3)$ , output  $(t_1, t'_2, t_3)$  on the message  $(m_1, m'_2, m_3)$ .

Mix-and-match attack: given the valid tags  $(t_1, t_2, t_3)$  and  $(t'_1, t'_2, t'_3)$  on the distinct messages  $(m_1, m_2, m_3)$  and  $(m'_1, m'_2, m'_3)$ , output  $(t_1, t'_2, t_3)$  on the message  $(m_1, m'_2, m_3)$ .

Solution: authenticate a random message identifier along with each block.

Mix-and-match attack: given the valid tags  $(t_1, t_2, t_3)$  and  $(t'_1, t'_2, t'_3)$  on the distinct messages  $(m_1, m_2, m_3)$  and  $(m'_1, m'_2, m'_3)$ , output  $(t_1, t'_2, t_3)$  on the message  $(m_1, m'_2, m_3)$ .

Solution: authenticate a random message identifier along with each block.

Lessons learnt!

Let  $S_1 = (\text{KeyGen}_1, \text{Mac}_1, \text{Verify}_1)$  be a fixed-length MAC for messages of length n. Define a MAC S for arbitrary-length messages as follows:

- k ← KeyGen(n): given the security parameter n, it runs KeyGen<sub>1</sub>(n) and returns its output.
- $t \leftarrow \text{Mac}(k, m)$ : given a key k and a message m with  $|m| = \ell < 2^{n/4}$ , the algorithm
  - ▶ parses *m* into *d* blocks of length n/4, i.e.  $m_1, \dots, m_d$ ;
  - if the last block is not of size n/4, it is padded with 0s;
  - uniformly chooses  $r \in \{0, 1\}^{n/4}$ ;
  - ▶ for  $i = 1, \dots, d$ , computes  $t_i = Mac_1(k, r||\ell||i||m_i)$ , where i and  $\ell$  are encoded as strings of length n/4;

• output 
$$t = (r, t_1, \cdots, t_d)$$
.

▶  $1/0 \leftarrow \text{Verify}(k, m, (r, t_1, \cdots, t_d))$ : it parses m into d' blocks and returns 1 iff d' = d AND  $\text{Verify}_1(k, r||\ell||i||m_i, t_i) = 1 \forall i$ 

#### Theorem

If  $S_1$  is a secure fixed-length MAC for messages of length n, then S as defined above is a secure MAC.

#### Theorem

If  $S_1$  is a secure fixed-length MAC for messages of length n, then S as defined above is a secure MAC.

Unfortunately, S is rather inefficient.

#### Theorem

If  $S_1$  is a secure fixed-length MAC for messages of length n, then S as defined above is a secure MAC.

Unfortunately, S is rather inefficient.

More efficient constructions:

- CBC-MAC
- MACs from hash functions (will be covered soon!)

#### **Basic CBC-MAC for fixed-length messages**

Let F be a length-preserving pseudorandom function. The basic fixed-length CBC-MAC for messages of length  $\ell(n)\cdot n$  is defined as follows:

- ▶  $k \leftarrow \text{KeyGen}(n)$ : given the security parameter *n*, it returns a uniform  $k \in \{0, 1\}^n$ .
- ▶  $t \leftarrow \operatorname{Mac}(k, m)$ : it takes a key k and a message m and
  - ▶ parses *m* as  $m_1, \dots, m_{\ell(n)}$ , where  $|m_i| = n$ ;
  - initialises  $t_0 \leftarrow 0^n$  and, for  $i = 1, \dots, \ell(n)$ , it computes

$$t_i \leftarrow F_k(t_{i-1} \oplus m_i)$$

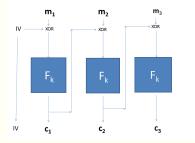
- outputs the tag  $t_{\ell(n)}$ .
- ▶  $1/0 \leftarrow \text{Verify}(k, m, t)$ : it is the canonical verification with the extra check that |m| is  $n \cdot \ell(n)$ .

The previous construction is secure, but for fixed-length messages.

It is possible to modify the construction in order to handle arbitrary-length messages.

Example: the key generation chooses two uniformly independent keys,  $k_1, k_2 \in \{0, 1\}^n$ . The tagging algorithm obtains  $t_1$  using the CBC-MAC on  $k_1$  and m, and outputs the tag  $t = F_{k_2}(t_1)$ .

#### **CBC-MAC and CBC-mode encryption**



- ➡ The CBC-mode encryption takes a random IV, whereas CBC-MAC takes a fixed string (i.e. 0<sup>n</sup>). They are only secure under these conditions.
- The CBC-mode encryption outputs all the intermediate values  $c_i$ , as they form the ciphertext; CBC-MAC only outputs the final tag  $t_{\ell n}$ .

# **Further Reading**

 N.J. Al Fardan and K.G. Paterson.
Lucky thirteen: Breaking the TLS and DTLS record protocols.
In Security and Privacy (SP), 2013 IEEE Symposium on,

pages 526–540, May 2013.

- J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In Proceedings of the ninth annual ACM symposium on Theory of computing, pages 106–112. ACM, 1977.
- Jean Paul Degabriele and Kenneth G Paterson. On the (in) security of IPsec in MAC-then-Encrypt configurations.
  - In Proceedings of the 17th ACM conference on Computer and communications security, pages 493–504. ACM, 2010.

# Further Reading

Ted Krovetz and Phillip Rogaway.
The software performance of authenticated-encryption modes.
In Fast Software Encryption, pages 306–327. Springer, 2011.

Douglas R. Stinson.Universal hashing and authentication codes.Designs, Codes and Cryptography, 4(3):369–380, 1994.