Introductionto Cryptology

6.1 -Howto construct MACs

Federico Pintore

Mathematical Institute, University of Oxford (UK)

OXFORD

A Fixed-length MAC from a PRF

Let F be a length-preserving pseudorandom function F. Define
a fixed-length MAC

S = (KeyGen, Mac, Verify)
for messages of length n, as follows:

= k+ KeyGen(n): it takes the security parameter n and
outputs a uniformly random key k € {0,1}".

= < Mac(k,m): given a key k and a message m, the tag
t := Fi(m) is returned.

= 1/0 < Verify(k,m,1): it is the canonical verification.

If |m| # |k|, then Mac outputs L and Verify outputs 0.

2/30

A fixed-Length MAC from a PRF

Theorem
The fixed-length MAC S for messages of length n is secure.

3/30

A fixed-Length MAC from a PRF

Theorem
The fixed-length MAC S for messages of length n is secure.

Proof

An adversary A against S is exploited as a subroutine to
construct a distinguisher D for F:

3/30

A fixed-Length MAC from a PRF

Theorem
The fixed-length MAC S for messages of length n is secure.

Proof

An adversary A against S is exploited as a subroutine to
construct a distinguisher D for F:

= given a query m; € {0,1}" from A, D updates the set Q,
queries its oracle (Fj or a truly random function f) and
returns the answer f;

= to check the validity of A’s forgery (m,t), D queries its
oracle as well;

= if the forgery is valid, D outputs 1, otherwise it outputs 0.

3/30

A fixed-Length MAC from a PRF

) "SR SR
FkOI‘f D ./4
~ ~— ~—

A fixed-Length MAC from a PRF

Distinguish between

Fy and f
)) SR
Fk OI‘f D ./4
~ ~— ~

5/30

A fixed-Length MAC from a PRF

Distinguish between

Fy and f
) "SR R
Q= {m,...,mu}
Fk OI‘f D ./4
~ ~— ~—

Remark: messages are sent separately!

6/30

A fixed-Length MAC from a PRF

Distinguish between

Fy and f

)) T\
Q= {m,..., mp} Q= {m,...,mu}

Fk or f D ./4

.~ ~_ / -~/

7/30

A fixed-Length MAC from a PRF

Distinguish between

Fy and f
)) T\
Q= {m,..., mp} Q= {m,...,mu}
Fk Or f {f| f’,} D A
.~ ~_ / -~/

8/30

A fixed-Length MAC from a PRF

Distinguish between

Fy and f

) "SR Y
Q= {my,...,m} Q={my,...,mu}

Fk or f {ti,.... th} D [t ...t} A

9/30

A fixed-Length MAC from a PRF

Distinguish between

Fk and f
SR SR —
Q= {m,..., mp} Q= {m,...,mu}
Fk or f {ti,.... th} D [t ...t} A
(m, 1)

10/30

A fixed-Length MAC from a PRF

Distinguish between

Fk and f
T e N\ / N
Q= {m,..., mp} Q= {m,...,mu}
Fk or f {ti,.... th} D [t ...t} A
m (m, 1)

11/30

A fixed-Length MAC from a PRF

Distinguish between

Fk and f
T e N\ / N
Q= {mi,..., mp | Q= {my,...,mp}
Fk or f {ti,.... th} D [t ...t} A
m (m, 1)
¢
.~ ./ ./

12/30

A fixed-Length MAC from a PRF

Distinguish between

Fk and f
T e N\ / N
Q= {m,..., mp} Q={m,..., my}
Fk or f {ti,.... th} D [t ...t} A
m (m, 1)
¢
test if
t=t,m¢aQ

13/30

A fixed-Length MAC from a PRF

Distinguish between

Fy and f

) "SR Y
Q= {my,...,m} Q={my,...,mu}

Fk or f {ti,.... th} D [t ...t} A
m (m, 1)

t/
~ ~— ~—

test if
t=t,m¢aQ

Yes>1/No=0

14/30

A fixed-Length MAC from a PRF

Let S’ be a variation of S, where Fy is replaced by a truly
random function f : {0,1}" — {0,1}".

= D has access to Fj: in this case, A is in the message
authentication experiment for S, and

Pr(DFk() (I’l) —]_) = Pr(MaCj‘iOrg(n) =].)

= D has access to f: in this case, A is in the message
authentication experiment for §’, and

Pr(D/0(n) = 1) = Pr(Mac'ys"®(n) = 1).

15/30

A fixed-Length MAC from a PRF

Distinguish between

Fy and f

) "SR Y
Q= {my,...,m} Q={my,...,mu}

Fk {ti,.. . ta} D {t,....tn} ./4
m (m,t)

t/
~ ~— ~—

test if
t=t,m¢aQ

Yes>1/No=0

16/30

A fixed-Length MAC from a PRF
s h

Challenger in)
Ia lmforg() Q={m,...,m}
[ti,....t} A
ti = Fi(m;) (m,1)
K /ﬁ -
test if
t=Fi(m), m¢Q

Yes>1/No=0

17/30

A fixed-Length MAC from a PRF

Distinguish between

Fy and f

) "SR Y
Q= {my,...,m} Q={my,...,mu}

f {ti,.. . ta} D {t,....tn} ./4
m (m,t)

t/
~ ~— ~—

test if
t=t,m¢aQ

Yes>1/No=0

18/30

A fixed-Length MAC from a PRF
s h

Challenger in)
M unforg() Q={m,...,m}
{th,... b} A
ti = f(mi) (m, 1)
K /ﬁ N
test |f
t=f(m), m¢Q

Yes>1/No=0

19/30

A fixed-Length MAC from a PRF

Since F is a PRF, it holds:
| Pr(D0(n) = 1) = Pr(DP0(n) = 1)| =
- \Pr(Macfg,)rg(n) =1)— Pr(Mac%éorg(n) =1)| < negl(n).
For any message m ¢ Q, the value t = f(m) is uniformly
distributed in {0,1}" from the point of view of A. So:

Pr(Maco™8(n) = 1) < 27,

Putting all together we conclude:

Pr(Macjrfgorg(n) =1) < 27"+ negl(n).

20/30

From a fixed-length MAC to a general MAC

Pseudorandom functions used in practice
(block ciphers) only take short fixed-length inputs.

How to build a MAC for arbitrary-length messages?

21/30

From a fixed-length MAC to a general MAC

Natural approach: process each block of the message separately.

22/30

From a fixed-length MAC to a general MAC

Natural approach: process each block of the message separately.

Block re-ordering attack: if (#1,#2) is a valid tag on (my,ms)
where mj # ma, then (fo,11) is a valid tag on (mga,my).

22/30

From a fixed-length MAC to a general MAC

Natural approach: process each block of the message separately.
Block re-ordering attack: if (#1,#2) is a valid tag on (my,ms)
where mj # ma, then (fo,11) is a valid tag on (mga,my).

Solution: authenticate a block index with each block.

22/30

From a fixed-length MAC to a general MAC

Natural approach: process each block of the message separately.

Block re-ordering attack: if (#1,#2) is a valid tag on (my,ms)
where mj # ma, then (fo,11) is a valid tag on (mga,my).

Solution: authenticate a block index with each block.

Truncation attack: the attacker removes blocks from the end of
the message and the corresponding blocks from the tag.

22/30

From a fixed-length MAC to a general MAC

Natural approach: process each block of the message separately.

Block re-ordering attack: if (#1,#2) is a valid tag on (my,ms)
where mj # ma, then (fo,11) is a valid tag on (mga,my).

Solution: authenticate a block index with each block.
Truncation attack: the attacker removes blocks from the end of

the message and the corresponding blocks from the tag.

Solution: authenticate the message length with each block.

22/30

From a fixed-length MAC to a general MAC

Mix-and-match attack: given the valid tags (1,1, 13) and
(#},t5,15) on the distinct messages (my,ma, m3) and (my, mh, mj),
output (t1,#,t3) on the message (my,mb, ms).

23/30

From a fixed-length MAC to a general MAC

Mix-and-match attack: given the valid tags (1,1, 13) and
(#},t5,15) on the distinct messages (my,ma, m3) and (my, mh, mj),
output (t1,#,t3) on the message (my,mb, ms).

Solution: authenticate a random message identifier along with
each block.

23/30

From a fixed-length MAC to a general MAC

Mix-and-match attack: given the valid tags (1,1, 13) and
(#},t5,15) on the distinct messages (my,ma, m3) and (my, mh, mj),
output (t1,#,t3) on the message (my,mb, ms).

Solution: authenticate a random message identifier along with
each block.

Lessons learnt!

23/30

From a fixed-length MAC to a general MAC

Let S1 = (KeyGen;, Macy, Verify,) be a fixed-length MAC for
messages of length n. Define a MAC S for arbitrary-length
messages as follows:

= k< KeyGen(n): given the security parameter n, it runs
KeyGen, (n) and returns its output.

= 1+ Mac(k,m): given a key k and a message m with
lm| = £ < 2"/*, the algorithm
» parses m into d blocks of length n/4, i.e. my,--- my;
» if the last block is not of size n/4, it is padded with Os;
= uniformly chooses r € {0,1}"/4;
"

fori=1,---,d, computes t; = Macy (k, r||¢||i||m;),
where i and ¢ are encoded as strings of length n/4;
= output 1= (r,f1, - ,1tq).

= 1/0 « Verify(k,m, (r,t1,--- ,t4)): it parses m into d’ blocks
and returns 1 iff &’ = d AND Verify, (k, r||¢||i||m;, ;) = 1 Vi s

From a fixed-length MAC to a general MAC

Theorem
If S| is a secure fixed-length MAC for messages of length n,
then S as defined above is a secure MAC.

25/30

From a fixed-length MAC to a general MAC

Theorem
If S| is a secure fixed-length MAC for messages of length n,
then S as defined above is a secure MAC.

Unfortunately, S is rather inefficient.

25/30

From a fixed-length MAC to a general MAC

Theorem

If S| is a secure fixed-length MAC for messages of length n,
then S as defined above is a secure MAC.

Unfortunately, S is rather inefficient.

More efficient constructions:
= CBC-MAC

= MACs from hash functions (will be covered soon!)

25/30

Basic CBC-MAC for fixed-length messages

Let F be a length-preserving pseudorandom function. The basic
fixed-length CBC-MAC for messages of length £(n) - n is defined
as follows:

= k+ KeyGen(n): given the security parameter n, it returns

a uniform k € {0,1}".

= 1t < Mac(k,m): it takes a key k and a message m and
* parses m as my,--- My, where |m;| = n;
» initialises #o < 0" and, for i = 1,--- ,¢(n), it computes

ti < Fi(tio & my)
» outputs the tag).

= 1/0 < Verify(k, m,1): it is the canonical verification with
the extra check that |m| is n - £(n).

26/30
O

CBC-MAC

The previous construction is secure, but for fixed-length
messages.

It is possible to modify the construction in order to handle
arbitrary-length messages.

Example: the key generation chooses two uniformly independent
keys, k1, ks € {0,1}". The tagging algorithm obtains #; using
the CBC-MAC on k; and m, and outputs the tag r = Fi,(f1).

27/30

CBC-MAC and CBC-mode encryption

m, m, my
| | §
\% > XOR £ - XOR “XOR
|
|
|

v [[~ Cs3

= The CBC-mode encryption takes a random IV, whereas
CBC-MAC takes a fixed string (i.e. 0"). They are only
secure under these conditions.

= The CBC-mode encryption outputs all the intermediate
values c¢;, as they form the ciphertext; CBC-MAC only
outputs the final tag t4,.

28/30

Further Reading

[@ N.J. Al Fardan and K.G. Paterson.
Lucky thirteen: Breaking the TLS and DTLS record
protocols.
In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 526-540, May 2013.

[§ J Lawrence Carter and Mark N Wegman.
Universal classes of hash functions.
In Proceedings of the ninth annual ACM symposium on
Theory of computing, pages 106-112. ACM, 1977.

[§ Jean Paul Degabriele and Kenneth G Paterson.
On the (in) security of IPsec in MAC-then-Encrypt
configurations.
In Proceedings of the 17th ACM conference on Computer
and communications security, pages 493-504. ACM, 2010.

29/30

Further Reading

[§ Ted Krovetz and Phillip Rogaway.
The software performance of authenticated-encryption
modes.
In Fast Software Encryption, pages 306-327. Springer, 2011.

[@ Douglas R. Stinson.
Universal hashing and authentication codes.
Designs, Codes and Cryptography, 4(3):369-380, 1994.

30/30

