Introduction to Cryptology

1.2 - Cryptography Today and Tomorrow

Federico Pintore

Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

The advent of new information technologies has led to advanced cryptographic techniques.

- some techniques have been already deployed
- some are the basis of technologies that have not yet reached the general public or are still under construction

Multi-Party Computation

<u>Context</u>: *n* parties P_1, \ldots, P_n , each having a secret input s_i .

Objective: evaluate a public function f on input (s_1, \dots, s_n) while keeping each secret input hidden from the other parties.

Technique: Multi-Party Computation.

Multi-Party Computation: an application

 $https://www.youtube.com/watch?v=bAp_aZgX3B0$

Secret Sharing

<u>Context</u>: a dealer distributes a secret *s* amongst *n* parties P_1, \ldots, P_n , giving to each party a share s_i .

Objective: at least t shares must be combined to reconstruct s (less shares should not provide any information about s).

Technique: Secret Sharing scheme.

Shamir Secret Sharing (1979)

Lagrange Interpolating Polynomial

Given *n* points $(x_1, y_1), \ldots, (x_n, y_n), P(x) = \sum_{j=1}^n y_j P_j(x)$ with

$$P_j(x) = \prod_{\substack{k=1 \ k \neq j}}^n (x - x_k) / (x_j - x_k),$$

is the unique polynomial of degree $\leq (n-1)$ that passes through all the *n* points.

- ▶ <u>Shares</u>: let $Q(x) \in \mathbb{F}_p[x]$ be a random polynomial of degree t-1 s.t. Q(0) = s. Then $s_i := Q(i)$.
- Reconstruct the secret: using Lagrange interpolation, any t participants can together compute Q(0).

Bitcoin - the first decentralised digital coin

Get started with Bitcoin

Bitcoin uses peer-to-peer technology to operate with no central authority or banks; managing transactions and the issuing of bitcoins is carried out collectively by the network. **Bitcoin is open-source**; **its design is public, nobody owns or controls Bitcoin and everyone can take part.** Through many of its unique properties, Bitcoin allows exciting uses that could not be covered by any previous payment system.

- Fast peer-to-peer transactions
- Worldwide payments
- Low processing fees

https://bitcoin.org/en/

Altcoins

CoinMarketCap

Cryptocurrencies

Exchanges

Headlines

ie global cr	rypto market cap is \$342.8	1 B, a ~ 0.20% increase	over the last	day. <u>Read more</u>	Release s Create b	software fast. rand fanatics	faster.	Speed chang Learn more >	x Trice	thing. entis
2 Watchlist	Cryptocurrencies	Derivatives DeFi	Storage	Yield Farming				Show rows	100~ 3	; Filter
# ^	Name	Price	24h	7d	Market Cap 👩	Volume 💿	Circulating Supply 📵		Last 7 Days	
☆ 1	(B) Bitcoin BTC	\$10,750.31	 ▲ 0.75% 	 ● 0.5% 	\$198,977,568,535	\$48,022,566,288 4,467,088 BTC	0 18,509,012 BTC	m	~~~	:
습 2	Ethereum ETH	\$353.98	 ● 0.47% 	▲ 0.08%	\$39,959,951,357	\$11,716,671,243 33,099,831 ETH	112,887,664 ETH	m	~~~	:
☆ 3	Tether USDT	\$1.00	+ 0.08%	+ 0.03%	\$15,613,373,262	\$34,029,606,810 34,002,487,293 USDT	15,600,921,182 USDT	Mhn	M	:
	XRP XRP	\$0.257084	* 3.13%	 €.15% 	\$11,610,523,418	\$2,198,652,359 8,552,278,843 XRP	0 45,162,407,484 XRP	non	~~	:
☆ 5	Sinance Coin BNB	\$28.75	▼ 1.12%	• 5.5%	\$4,151,813,894	\$409,592,591 14,246,269 BNB	0 144,406,560 BNB	m	~~	:
	🚯 Bitcoin Cash BCH	\$221.68	+ 0.3%	▼ 1.69%	\$4,109,204,079	\$1,145,949,590 5,169,431 BCH	0 18,536,806 BCH	my		:

Products Tools Learn Yield Farming

https://coinmarketcap.com/(06/10/2020)

E-voting

• • • T Estonia Electi	m: What U.S. Ca × +					
\leftrightarrow \rightarrow C \hat{m} time.co	m/5541876/estonia-elections-electronic-voting/		4			
= TIME	What the U.S. Can Learn About Electronic Voting From This Tiny Eastern European Nation					
	BY BILLY PERRIGO 🔰 MARCH I, 2019	When Home Isn't Where the Heart Is	6			
	On Sunday, when citizens of the tiny Baltic nation of Estonia go out to vote for their next parliament, many of their compatriots will have already voted — from the comfort of their own homes.	WORLD The Suwalki Gap: The Most Vulnerable Stretch of Land in Furone				
	That's because Estonia is the world leader in electronic voting. Since 2005, Estonians have been able to cast their ballots from a computer with an Internet connection anywhere in the world. The government says 30% of Estonia's population of 1.3 million people use the system, and that its simplicity helps save the country a total of 11,000 working days each election year.	sports Meet The Estonian Triplets Who Are Competing Against				

Zero-Knowledge Proofs

<u>Context</u>: two parties, P and V, interact over a channel.

Objective: P proves to V that some mathematical statement is true, without revealing anything else.

Zero-Knowledge Proofs

Context: two parties, P and V, interact over a channel.

Objective: P proves to V that some mathematical statement is true, without revealing anything else.

Statements can be about

- facts (e.g. the number N is square-free),
- *knowledge* (e.g. I know the factorisation of N).

Zero-Knowledge Proofs

Context: two parties, P and V, interact over a channel.

Objective: P proves to V that some mathematical statement is true, without revealing anything else.

Statements can be about

- facts (e.g. the number N is square-free),
- *knowledge* (e.g. I know the factorisation of N).

Technique: Zero-Knowledge Proof.

Zero-Knowledge Proofs - A Definition of Security

 <u>Completeness</u>: If a given mathematical statement is true, P always convinces V.

Zero-Knowledge Proofs - A Definition of Security

- <u>Completeness</u>: If a given mathematical statement is true, P always convinces V.
- <u>Soundness</u>: P cannot convince V if the mathematical statement is false.

Zero-Knowledge Proofs - A Definition of Security

- <u>Completeness</u>: If a given mathematical statement is true, P always convinces V.
- <u>Soundness</u>: P cannot convince V if the mathematical statement is false.
- Zero-Knowledge: The proof does not reveal any extra information beyond the validity of the statement.

An informal blog post:

 $\label{eq:http://blog.cryptographyengineering.com/2014/11/zero-knowledge-proofs-illustrated-primer.html$

An online demo:

 $http://web.mit.edu/{\sim}ezyang/Public/graph/svg.html$

<u>Context</u>: users storing data in a cloud system.

Objective: allow the cloud system to perform computation on encrypted data (no encryption keys given).

Technique: Fully Homomorphic Encryption.

Some encryption schemes are naturally partially homomorphic, e.g. $E_e(m_1) \times E_e(m_2) = E_e(m_1 \times m_2)$.

- Some encryption schemes are naturally partially homomorphic, e.g. $E_e(m_1) \times E_e(m_2) = E_e(m_1 \times m_2)$.
- Fully homomorphic encryption allows for arbitrary computation on ciphertexts.

- Some encryption schemes are naturally partially homomorphic, e.g. $E_e(m_1) \times E_e(m_2) = E_e(m_1 \times m_2)$.
- Fully homomorphic encryption allows for arbitrary computation on ciphertexts.
- In theory, this was proven possible in 2009. In practice, it is still far away from being practical!

What would happen to supposed-to-be hard mathematical problems if quantum computers existed?

What would happen to supposed-to-be hard mathematical problems if quantum computers existed?

Integer factorisation and discrete logarithm problem can be solved *efficiently* with Shor's quantum algorithm.

What would happen to supposed-to-be hard mathematical problems if quantum computers existed?

Integer factorisation and discrete logarithm problem can be solved *efficiently* with Shor's quantum algorithm.

New hard problems have been proposed and used to construct *quantum – resistant* cryptosystems.

Different problems have led to different families of cryptographic schemes:

Lattice-based Cryptography (e.g. fully homomorphic encryption)

- Lattice-based Cryptography (e.g. fully homomorphic encryption)
- Code-based Cryptography (e.g. McEliece cryptosystem)

- Lattice-based Cryptography (e.g. fully homomorphic encryption)
- Code-based Cryptography (e.g. McEliece cryptosystem)
- Hash-based Cryptography (e.g. SPHINCS⁺ signature)

- Lattice-based Cryptography (e.g. fully homomorphic encryption)
- Code-based Cryptography (e.g. McEliece cryptosystem)
- Hash-based Cryptography (e.g. SPHINCS⁺ signature)
- Multivariate Cryptography (e.g. Rainbow signature)

- Lattice-based Cryptography (e.g. fully homomorphic encryption)
- Code-based Cryptography (e.g. McEliece cryptosystem)
- Hash-based Cryptography (e.g. SPHINCS⁺ signature)
- Multivariate Cryptography (e.g. Rainbow signature)
- Isogeny-based Cryptography (e.g. SIKE)

Further Reading

- Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël Quisquater, Louis Guillou, Marie Guillou, Gaïd Guillou, Anna Guillou, Gwenolé Guillou, and Soazig Guillou.
 - How to explain zero-knowledge protocols to your children. In Advances in Cryptology—CRYPTO'89 Proceedings, pages 628–631. Springer, 1990.

Alice Silverberg.

Mathematics and cryptography: A marriage of convenience?

In Annual International Conference on the Theory and Applications of Cryptographic Techniques - EUROCRYPT 2020, pages 3–9. Springer, Cham., 2020. Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
 The first collision for full sha-1.
 In Annual International Cryptology Conference - CRYPTO 2017, pages 570–596. Springer, Cham., 2017.