
Introduction to Cryptology

1.2 - Cryptography Today
and Tomorrow

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020



Cryptography Today and Tomorrow

2/18

The advent of new information technologies has led
to advanced cryptographic techniques.

some techniques have been already deployed

some are the basis of technologies that have not yet
reached the general public or are still under construction



Multi-Party Computation
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Context: n parties P1, . . . ,Pn, each having a secret input si.

Objective: evaluate a public function f on input (s1, · · · , sn)
while keeping each secret input hidden from the other parties.

Technique: Multi-Party Computation.



Multi-Party Computation: an application
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https://www.youtube.com/watch?v=bAp_aZgX3B0

https://www.youtube.com/watch?v=bAp_aZgX3B0


Secret Sharing
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Context: a dealer distributes a secret s amongst n parties
P1, . . . ,Pn, giving to each party a share si.

Objective: at least t shares must be combined to reconstruct s
(less shares should not provide any information about s).

Technique: Secret Sharing scheme.



Shamir Secret Sharing (1979)

6/18

Lagrange Interpolating Polynomial
Given n points (x1, y1), . . . , (xn, yn), P(x) =

∑n

j=1
yjPj(x) with

Pj(x) =
n∏

k=1
k 6=j

(x − xk)/(xj − xk),

is the unique polynomial of degree ≤ (n − 1) that passes
through all the n points.

Shares: let Q(x) ∈ Fp[x] be a random polynomial of degree
t − 1 s.t. Q(0) = s. Then si := Q(i).

Reconstruct the secret: using Lagrange interpolation, any t
participants can together compute Q(0).



Bitcoin - the first decentralised digital coin
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https://bitcoin.org/en/

https://bitcoin.org/en/


Altcoins
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https://coinmarketcap.com/(06/10/2020)

https://coinmarketcap.com/


E-voting
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Zero-Knowledge Proofs
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Context: two parties, P and V, interact over a channel.

Objective: P proves to V that some mathematical statement is
true, without revealing anything else.

Statements can be about
facts (e.g. the number N is square-free),
knowledge (e.g. I know the factorisation of N).

Technique: Zero-Knowledge Proof.
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Zero-Knowledge Proofs - A Definition of Security
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Completeness: If a given mathematical statement is true, P
always convinces V.

Soundness: P cannot convince V if the mathematical
statement is false.

Zero-Knowledge: The proof does not reveal any extra
information beyond the validity of the statement.



Zero-Knowledge Proofs - A Definition of Security

11/18

Completeness: If a given mathematical statement is true, P
always convinces V.

Soundness: P cannot convince V if the mathematical
statement is false.

Zero-Knowledge: The proof does not reveal any extra
information beyond the validity of the statement.



Zero-Knowledge Proofs - A Definition of Security

11/18

Completeness: If a given mathematical statement is true, P
always convinces V.

Soundness: P cannot convince V if the mathematical
statement is false.

Zero-Knowledge: The proof does not reveal any extra
information beyond the validity of the statement.



Zero-Knowledge Proofs - Gentle introductions
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An informal blog post:

http://blog.cryptographyengineering.com/2014/11/
zero-knowledge-proofs-illustrated-primer.html

An online demo:

http://web.mit.edu/~ezyang/Public/graph/svg.html

http://blog.cryptographyengineering.com/2014/11/zero-knowledge-proofs-illustrated-primer.html
http://blog.cryptographyengineering.com/2014/11/zero-knowledge-proofs-illustrated-primer.html
http://web.mit.edu/~ezyang/Public/graph/svg.html


Fully Homomorphic Encryption
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Context: users storing data in a cloud system.

Objective: allow the cloud system to perform computation on
encrypted data (no encryption keys given).

Technique: Fully Homomorphic Encryption.



Fully Homomorphic Encryption
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Some encryption schemes are naturally partially
homomorphic, e.g. Ee(m1)× Ee(m2) = Ee(m1 × m2).

Fully homomorphic encryption allows for arbitrary
computation on ciphertexts.

In theory, this was proven possible in 2009. In practice, it
is still far away from being practical!
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Post-Quantum Cryptography
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What would happen to supposed-to-be hard mathematical
problems if quantum computers existed?

Integer factorisation and discrete logarithm problem can be
solved efficiently with Shor’s quantum algorithm.

New hard problems have been proposed and used to construct
quantum − resistant cryptosystems.



Post-Quantum Cryptography

15/18

What would happen to supposed-to-be hard mathematical
problems if quantum computers existed?

Integer factorisation and discrete logarithm problem can be
solved efficiently with Shor’s quantum algorithm.

New hard problems have been proposed and used to construct
quantum − resistant cryptosystems.



Post-Quantum Cryptography

15/18

What would happen to supposed-to-be hard mathematical
problems if quantum computers existed?

Integer factorisation and discrete logarithm problem can be
solved efficiently with Shor’s quantum algorithm.

New hard problems have been proposed and used to construct
quantum − resistant cryptosystems.



Post-Quantum Cryptography
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Different problems have led to different families of
cryptographic schemes:

Lattice-based Cryptography (e.g. fully homomorphic
encryption)

Code-based Cryptography (e.g. McEliece cryptosystem)

Hash-based Cryptography (e.g. SPHINCS+ signature)

Multivariate Cryptography (e.g. Rainbow signature)

Isogeny-based Cryptography (e.g. SIKE)
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