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Historical Encryption Schemes
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Classical Cryptography mainly pursued secrecy.

Several symmetric − key encryption schemes were designed:

no clear definitions of security,

no proofs of security.

We review some of them, in order to learn some lessons.
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Symmetric-key Encryption Schemes
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Encryption scheme: (M, C, K, {Ee|e ∈ K},{Dd|d ∈ K})

A secret key (e = d) is shared beforehand
by the communicating parties.

The sender encrypts a message, i.e. hides it, using Ee and
obtains the ciphertext.

The receiver decrypts the ciphertext, i.e. unhides it, using Dd.
They recover the original plaintext.
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Caesar Cipher
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M = C = {English words}
K = {1, . . . , 26}
Ee shifts each letter of e positions to the right
De shifts each letter of e positions to the left

Example
Plaintext: UNSAFE
Key: e = 3

Ciphertext: XQVDIH
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Cryptanalysis of Caesar Cipher
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Brute Force (try every possible key): |K| is only 26.

Sufficient key-space principle: a secure symmetric-key
encryption scheme must have a key space large enough

to make a brute force attack infeasible (|K| ≥ 270).

Is it a sufficient condition?
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Substitution Cipher (mono-alphabetic)
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M = C = {English words}
K = {permutations p of the English alphabet}
Ep applies p to each letter of the plaintext
Dp applies p−1 to each letter of the ciphertext

Example
Plaintext: UNSAFE
Key: p is the permutation sending A in T, . . . , E in N, F in L,
. . . , N in R, . . . , S in O, . . . , U in H, . . .
Ciphertext: HROTLN
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Cryptanalysis of the Substitution Cipher
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The brute force attack is not feasible, as |K| = 26! ≈ 288.

Frequency analysis can be performed:

Frequency of English
letters

Frequency of pairs (or more) of letters, e.g. digrams,
trigrams, etc.
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Vigenère Cipher (1553)
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M = C = {English words}
K = {(p1, . . . , pt)|t ∈ N}, where pi is a circular permutation
of the English alphabet
E(p1,...,pt) splits the plaintext into subsets of t letters and
then applies (p1, . . . , pt)

D(p1,...,pt) splits the ciphertext into subsets of t letters and
then applies (p−1

1 , . . . , p−1
t )

Example
Plaintext: TOBEORNOTTOBE
Key: (p1, . . . , p6), represented by CRYPTO (p1 shifts each
letter 3 positions to the right, ...)
Ciphertext: VFZTHFPFRIHPG
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Cryptanalysis of the Vigenère Cipher
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When the value of t is known, break the ciphertext into blocks.
Then each block is as it was encrypted by the Caesar cipher.

When t is not known, use Kasiski method (Kasiski 1863) or the
index of coincidence method to recover t.

Important: when t is equal to number of letters of the plaintext
(and the key is used only once), the above attacks do not work!
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Lessons learned
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Having a formal proof of security is essential.

Clear security definitions help with the design of cryptographic
schemes, and they are required for security proofs.

History has shown that maintaining the design of a scheme
secret is very difficult. Making the design public has several
advantages (public scrutiny, standardisation, ...)
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