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Security guarantee: when is an encryption secure?

= impossible to recover the key
= impossible to recover the entire plaintext

= impossible to recover any information on the plaintext
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Security Definitions

We want to formulate a definition of security for
(symmetric-key) encryption schemes.
Threat model: what are the abilities of an adversary A?

= Ciphertext-only attack: A knows some ciphertexts
c1 = Ex(my),...,c, = Ex(m,) generated using a key k.

m

Known-plaintext attack: A learns a number of pairs
(mj, c; = Ex(m;)) generated using a key k.

= Chosen-plaintext attack (CPA): same as above, but A
chooses the plaintexts m;.

"

Chosen-ciphertext attack (CCA): A gets the decryption,
via Dy, of ciphertexts of their choice.
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Perfect Secrecy (informal)

Security guarantee: impossible to recover any information on
the plaintext m

Threat model:

= Ciphertext-only attack, where A knows a single ciphertext
Cc = Ek(m)

= A knows the probability distribution over M.
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Discrete Probability

Let  be a finite set of outcomes, known as sample space.

The event space € is a subset of P(Q)" s.t.
- Qeé
» if X € &, then X € £ (X denotes the complementary in )
= if X1,Xo €&, then Xy UXy €&

Usually, £ = P(Q).

'Power set of €.
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Discrete Probability

A probability distribution for £ is a map Pr: & — [0, 1], s.t.
= Pr() =1

= if X1,...,X, are pairwise disjoint events, then

t
Pr(Ui_ X)) = »_ Pr(X;)
i=1
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Discrete Probability

Let Q be finite and X, Y in &.

= If {w} € & for all w € X, we have Pr(X ZPr
weX

= Union Formula: Pr(XUY)=Pr(X)+ Pr(¥Y) — Pr(XNY).

= Union Bound: Pr(XUY) < Pr(X) + Pr(Y).
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Discrete Probability

= Conditional Probability: Pr(X|Y) :=Pr(XNY)/Pr(Y)
(provided Pr(Y) > 0).

= X and Y are said independent if Pr(X NY) = Pr(X) - Pr(Y).

= Bayes’ Theorem: Pr(X|Y) =
Pr(X) - Pr(Y) > 0)

(provided
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Syntax of Symmetric-key Encryption Schemes

A symmetric-key encryption scheme consists of three algorithms
(KeyGen, Enc, Dec):

= k <+ KeyGen(n): a randomised algorithm that takes the
security parameter n and outputs a key k2.

= ¢ <« Enc(k,m): an algorithm (often randomised) that, on
input a key k and a message m € {0, 1}, outputs a
ciphertext ¢°.

u

m < Dec(k,c): a deterministic algorithm that, given a key
k and a ciphertext ¢, returns a message m.

such that Dec(k, Enc(k,m)) =m ¥V m € {0,1}*,k € K.

2KeyGen determines the key space K.

The message space M is {0, 1}*. Enc determins the ciphertext space C.
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Given an encryption scheme E, a probability distribution

Pricxpm for P(K x M) can be deduced from
= (K, P(K), Prg)
- (M7 P(M)7 PrM)'

It is defined as:

Pricxm(X) = Y Pric(k)Pra(m)
(k,m)eX

= Pr(K =k):=Pricxpm({k} x M) = Pr(k)
= Pr(M =m) :=Pricxm(K x {m}) = Pra(m)
= P

r(C = c¢) = Pricxm(X) with X = {(k,m) | Enc(k,m) = c}

Perfect secrecy
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Perfect Secrecy (Shannon 1949)

It formalises the idea that the ciphertext should reveal no
information about the plaintext.
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It formalises the idea that the ciphertext should reveal no
information about the plaintext.

Perfect Secrecy (or Information-theoretic Security)
An encryption scheme E is perfectly secret if, for every
probability distribution Pras over M, we have

Pr(M =m|C =c¢) = Pr(M = m) (1)

for every m € M and every ¢ € C s.t. Pr(C=c¢) > 0.
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Perfect Secrecy (Shannon 1949)

It formalises the idea that the ciphertext should reveal no
information about the plaintext.

Perfect Secrecy (or Information-theoretic Security)
An encryption scheme E is perfectly secret if, for every
probability distribution Pras over M, we have

Pr(M =m|C = ¢) = Pr(M = m) (1)
for every m € M and every ¢ € C s.t. Pr(C=c¢) > 0.
Thanks to Bayes’ theorem, (1) is equivalent to

Pr(C = c¢|M =m) = Pr(C = ¢) (2)
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Perfect Indistinguishability

Perfect Indistinguishability Experiment PriVKI;f%feCt_md

Challenger Ch Adversary A
mo,m,|mo|=|m|
b<s{0,1}
c=Enc(k,mp)
—_—
Outputs their guess b’
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Perfect Indistinguishability

Perfect Indistinguishability Experiment Priva’f%feCt_md

Challenger Ch Adversary A
mo,my,|mo|=|m |
b<s{0,1}
c=Enc(k,mp)
o
Outputs their guess b’
Definition

An encryption scheme E is perfectly indistinguishable if, for
every adversary A, the following holds:

Pr(PrivK> et ™4 = 1) = 1/2,

where PrivK{’&feCt_md = 1if ¥’ = b, and 0 otherwise.
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Perfect Secrecy

Theorem (Perfect Secrecy)

An encryption scheme (KeyGen, Enc, Dec) has perfect secrecy
iff, for every probability distribution Pr . over M, we have

Pr(C = ¢|M = mgy) = Pr(C = c|M = my),

for every mp,my € M s.t. |mg| = |m1| and every ¢ € C s.t.
Pr(C=c) > 0.
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Proof.
(=)Pr(C=c|M =mp) =Pr(C=c)=Pr(C=c|M=m)

(«=) For any message my, it holds
Pr(C=c¢)= ZPr(C =c|M =m) - Pr(M = m)
= iPr(C =c|M =mp) - Pr(M = m)
= P”;(C = c|M =mg) - Y Pr(M =m)

m

= Pr(C = c|M = my)
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