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We want to formulate a definition of security for
(symmetric-key) encryption schemes.

Security guarantee: when is an encryption secure?

impossible to recover the key

impossible to recover the entire plaintext

impossible to recover any information on the plaintext
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We want to formulate a definition of security for
(symmetric-key) encryption schemes.

Threat model: what are the abilities of an adversary A?

Ciphertext-only attack: A knows some ciphertexts
c1 = Ek(m1), . . . , cr = Ek(mr) generated using a key k.

Known-plaintext attack: A learns a number of pairs
(mi, ci = Ek(mi)) generated using a key k.

Chosen-plaintext attack (CPA): same as above, but A
chooses the plaintexts mi.

Chosen-ciphertext attack (CCA): A gets the decryption,
via Dk, of ciphertexts of their choice.
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Security guarantee: impossible to recover any information on
the plaintext m

Threat model:

Ciphertext-only attack, where A knows a single ciphertext
c = Ek(m).

A knows the probability distribution over M.
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Let Ω be a finite set of outcomes, known as sample space.

The event space E is a subset of P(Ω)1 s.t.
Ω ∈ E
if X ∈ E , then X̄ ∈ E (X̄ denotes the complementary in Ω)
if X1,X2 ∈ E , then X1 ∪ X2 ∈ E

Usually, E = P(Ω).

1Power set of Ω.
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A probability distribution for E is a map Pr : E → [0, 1], s.t.

Pr(Ω) = 1

if X1, . . . ,Xt are pairwise disjoint events, then

Pr(∪t
i=1Xi) =

t∑
i=1

Pr(Xi)
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Let Ω be finite and X,Y in E .

If {w} ∈ E for all w ∈ X, we have Pr(X) =
∑
w∈X

Pr(w).

Union Formula: Pr(X ∪ Y) = Pr(X) + Pr(Y)− Pr(X ∩ Y).

Union Bound: Pr(X ∪ Y) ≤ Pr(X) + Pr(Y).
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Conditional Probability: Pr(X|Y) := Pr(X ∩ Y)/Pr(Y)
(provided Pr(Y) > 0).

X and Y are said independent if Pr(X ∩ Y) = Pr(X) · Pr(Y).

Bayes’ Theorem: Pr(X|Y) = Pr(X) · Pr(Y|X)
Pr(Y)

(provided

Pr(X) · Pr(Y) > 0)
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A symmetric-key encryption scheme consists of three algorithms
(KeyGen,Enc,Dec):

k← KeyGen(n): a randomised algorithm that takes the
security parameter n and outputs a key k2.
c← Enc(k,m): an algorithm (often randomised) that, on
input a key k and a message m ∈ {0, 1}∗, outputs a
ciphertext c3.
m← Dec(k, c): a deterministic algorithm that, given a key
k and a ciphertext c, returns a message m.

such that Dec(k,Enc(k,m)) = m ∀ m ∈ {0, 1}∗, k ∈ K.

2KeyGen determines the key space K.

3The message space M is {0, 1}∗. Enc determins the ciphertext space C.
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Given an encryption scheme E, a probability distribution
PrK×M for P(K ×M) can be deduced from

(K, P(K), PrK)
(M, P(M), PrM).

It is defined as:

PrK×M(X) =
∑

(k,m)∈X

PrK(k)PrM(m)

Pr(K = k) := PrK×M({k} ×M) = PrK(k)
Pr(M = m) := PrK×M(K × {m}) = PrM(m)

Pr(C = c) := PrK×M(X) with X = {(k,m) | Enc(k,m) = c}
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It formalises the idea that the ciphertext should reveal no
information about the plaintext.

Perfect Secrecy (or Information-theoretic Security)
An encryption scheme E is perfectly secret if, for every
probability distribution PrM over M, we have

Pr(M = m|C = c) = Pr(M = m) (1)

for every m ∈M and every c ∈ C s.t. Pr(C = c) > 0.

Thanks to Bayes’ theorem, (1) is equivalent to

Pr(C = c|M = m) = Pr(C = c) (2)



Perfect Secrecy (Shannon 1949)

Perfect secrecy 13/19

It formalises the idea that the ciphertext should reveal no
information about the plaintext.

Perfect Secrecy (or Information-theoretic Security)
An encryption scheme E is perfectly secret if, for every
probability distribution PrM over M, we have

Pr(M = m|C = c) = Pr(M = m) (1)

for every m ∈M and every c ∈ C s.t. Pr(C = c) > 0.

Thanks to Bayes’ theorem, (1) is equivalent to

Pr(C = c|M = m) = Pr(C = c) (2)



Perfect Secrecy (Shannon 1949)

Perfect secrecy 13/19

It formalises the idea that the ciphertext should reveal no
information about the plaintext.

Perfect Secrecy (or Information-theoretic Security)
An encryption scheme E is perfectly secret if, for every
probability distribution PrM over M, we have

Pr(M = m|C = c) = Pr(M = m) (1)

for every m ∈M and every c ∈ C s.t. Pr(C = c) > 0.

Thanks to Bayes’ theorem, (1) is equivalent to

Pr(C = c|M = m) = Pr(C = c) (2)



Perfect Indistinguishability

Perfect secrecy 14/19

Perfect Indistinguishability Experiment PrivKperfect−ind
A,E

Challenger Ch Adversary A
m0,m1,|m0|=|m1|←−−−−−−−−−−

b←$ {0, 1}
c=Enc(k,mb)−−−−−−−→

Outputs their guess b′

Definition
An encryption scheme E is perfectly indistinguishable if, for
every adversary A, the following holds:

Pr(PrivKperfect−ind
A,E = 1) = 1/2,

where PrivKperfect−ind
A,E = 1 if b′ = b, and 0 otherwise.
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Theorem (Perfect Secrecy)
An encryption scheme (KeyGen,Enc,Dec) has perfect secrecy
iff, for every probability distribution PrM overM, we have

Pr(C = c|M = m0) = Pr(C = c|M = m1),

for every m0,m1 ∈M s.t. |m0| = |m1| and every c ∈ C s.t.
Pr(C = c) > 0.
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Proof.
(⇒)Pr(C = c|M = m0) = Pr(C = c) = Pr(C = c|M = m1)

(⇐) For any message m0, it holds

Pr(C = c) =
∑

m

Pr(C = c|M = m) · Pr(M = m)

=
∑

m

Pr(C = c|M = m0) · Pr(M = m)

= Pr(C = c|M = m0) ·
∑

m

Pr(M = m)

= Pr(C = c|M = m0)
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