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One Time Pad (Vernam 1917 or ~ 35 years eatrlier)

Fix an integer n > 0, and let M =C = K = {0, 1}".
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One Time Pad (Vernam 1917 or ~ 35 years eatrlier)

Fix an integer n > 0, and let M =C = K = {0, 1}".
= KeyGen(n) : it returns a uniformly random bit string k of
length n, i.e. k € K.
= Enc(k,m) : it outputs the ciphertext ¢ = k & m.

= Dec(k,c) : it recovers the message computing m = k & c.

Used between the White
House and the Kremlin
during the Cold War.
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Security of OTP

Theorem
The one time pad (OTP) encryption scheme is perfectly secret.
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Security of OTP

Theorem
The one time pad (OTP) encryption scheme is perfectly secret.

Proof.

Pr(C=cM =m)=Pr(M & K = c|M = m)
=Prim® K =c)

1
:Pr(K:m@c):§

since keys are chosen uniformly at random.
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Security of OTP

Theorem
The one time pad (OTP) encryption scheme is perfectly secret.

Proof.

Pr(C=cM =m)=Pr(M & K = c|M = m)
=Prim® K =c)

1
:Pr(K:m@c):§

since keys are chosen uniformly at random.
Therefore, for any mg, my, we have

1
Pr(C=c|M =my) = o = Pr(C =c|M = my).
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OTP is perfectly secret, but is it practical?

When a key k is used to encrypt more than one message, the
ciphertexts leak information:

cr:=m Dk,co:=moDk = c¢1Dcyg=m Dms.
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OTP is perfectly secret, but is it practical?

When a key k is used to encrypt more than one message, the
ciphertexts leak information:

cr:=m Dk,co:=moDk = c¢1Dcyg=m Dms.

To securely exchange a message m € {0,1}" we have to
securely exchange k € {0, 1}", which can be used only once.

You might as well directly exchange m!
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Is the impracticality of OTP an exception?

Theorem
If an encryption scheme is perfectly secret, then |K| > | M]|.
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5/9



Is the impracticality of OTP an exception?

Theorem
If an encryption scheme is perfectly secret, then |K| > | M]|.

Proof.
We show that if || < | M| we do not have perfect secrecy.

Let Pryg be the uniform distribution over M. For ¢ € C define:
M(c) :={m | m = Dec(k,c) for some k € K}

Since |[M(c)| < |K| and we are assuming |K| < | M|, there exists
m € M s.t. m" & M(c). Therefore:

Pr(M=m'|C=¢c)=0#£Pr(M=m') = i

2}1
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From Perfect to Computational Secrecy

= Perfect secrecy: no leakage of information about the
plaintext even when A has unlimited computational power.
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considered secure even if it leaks some information with a
probability which is very small when A has limited power.
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From Perfect to Computational Secrecy

= Perfect secrecy: no leakage of information about the
plaintext even when A has unlimited computational power.

= Computational secrecy: an encryption scheme can be
considered secure even if it leaks some information with a
probability which is very small when A has limited power.

Real-world application: happy with a scheme that leaks
information with probability at most 279 over 200 years using
the fastest supercomputers!
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