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One Time Pad (Vernam 1917 or ∼ 35 years earlier)

2/9

Fix an integer n > 0, and let M = C = K = {0, 1}n.

KeyGen(n) : it returns a uniformly random bit string k of
length n, i.e. k ∈ K.

Enc(k,m) : it outputs the ciphertext c = k ⊕ m.

Dec(k, c) : it recovers the message computing m = k ⊕ c.

Used between the White
House and the Kremlin
during the Cold War.
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Security of OTP

3/9

Theorem
The one time pad (OTP) encryption scheme is perfectly secret.

Proof.

Pr(C = c|M = m) = Pr(M ⊕ K = c|M = m)

= Pr(m ⊕ K = c)

= Pr(K = m ⊕ c) =
1

2n

since keys are chosen uniformly at random.
Therefore, for any m0,m1, we have

Pr(C = c|M = m0) =
1

2n = Pr(C = c|M = m1).
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OTP is perfectly secret, but is it practical?
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When a key k is used to encrypt more than one message, the
ciphertexts leak information:

c1 := m1 ⊕ k, c2 := m2 ⊕ k ⇒ c1 ⊕ c2 = m1 ⊕ m2.

To securely exchange a message m ∈ {0, 1}n we have to
securely exchange k ∈ {0, 1}n, which can be used only once.

You might as well directly exchange m!
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Is the impracticality of OTP an exception?
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Theorem
If an encryption scheme is perfectly secret, then |K| ≥ |M|.

Proof.
We show that if |K| < |M| we do not have perfect secrecy.

Let PrM be the uniform distribution over M. For c ∈ C define:

M(c) := {m | m = Dec(k, c) for some k ∈ K}

Since |M(c)| ≤ |K| and we are assuming |K| < |M|, there exists
m′ ∈ M s.t. m′ 6∈ M(c). Therefore:

Pr(M = m′|C = c) = 0 6= Pr(M = m′) =
1

2n .
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From Perfect to Computational Secrecy
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Perfect secrecy: no leakage of information about the
plaintext even when A has unlimited computational power.

Computational secrecy: an encryption scheme can be
considered secure even if it leaks some information with a
probability which is very small when A has limited power.

Real-world application: happy with a scheme that leaks
information with probability at most 2−60 over 200 years using
the fastest supercomputers!



From Perfect to Computational Secrecy

6/9

Perfect secrecy: no leakage of information about the
plaintext even when A has unlimited computational power.

Computational secrecy: an encryption scheme can be
considered secure even if it leaks some information with a
probability which is very small when A has limited power.

Real-world application: happy with a scheme that leaks
information with probability at most 2−60 over 200 years using
the fastest supercomputers!



From Perfect to Computational Secrecy

6/9

Perfect secrecy: no leakage of information about the
plaintext even when A has unlimited computational power.

Computational secrecy: an encryption scheme can be
considered secure even if it leaks some information with a
probability which is very small when A has limited power.

Real-world application: happy with a scheme that leaks
information with probability at most 2−60 over 200 years using
the fastest supercomputers!



Further Reading I

7/9

Nadhem J AlFardan, Daniel J Bernstein, Kenneth G
Paterson, Bertram Poettering, and Jacob CN Schuldt.
On the security of RC4 in TLS.
In 22nd USENIX Security Symposium (USENIX Security
13), pages 305–320, 2013.

Boaz Barak and Shai Halevi.
A model and architecture for pseudo-random generation
with applications to/dev/random.
In Proceedings of the 12th ACM conference on Computer
and communications security, pages 203–212. ACM, 2005.

Daniel J Bernstein.
The Salsa20 Family of Stream Ciphers.
In New stream cipher designs, pages 84–97. Springer, 2008.



Further Reading II

8/9

Lenore Blum, Manuel Blum, and Mike Shub.
A simple unpredictable pseudo-random number generator.
SIAM Journal on computing, 15(2):364–383, 1986.

Christian Cachin.
Entropy measures and unconditional security in
cryptography.
PhD thesis, ETH Zurich, 1997.

Scott Fluhrer, Itsik Mantin, and Adi Shamir.
Weaknesses in the key scheduling algorithm of RC4.
In Selected areas in cryptography, pages 1–24. Springer,
2001.



Further Reading III

9/9

Christina Garman, Kenneth G Paterson, and Thyla
Van der Merwe.
Attacks only get better: Password recovery attacks against
RC4 in TLS.
In 24th USENIX Security Symposium (USENIX Security
15), pages 113–128, 2015.

Itsik Mantin and Adi Shamir.
A practical attack on broadcast RC4.
In Fast Software Encryption, pages 152–164. Springer, 2002.


