# Introduction to Cryptology 2.2 - One Time Pad (OTP)

Federico Pintore

Mathematical Institute, University of Oxford (UK)



## One Time Pad (Vernam 1917 or $\sim$ 35 years earlier)

Fix an integer n > 0, and let  $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$ .

## One Time Pad (Vernam 1917 or $\sim$ 35 years earlier)

Fix an integer n > 0, and let  $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$ .

- KeyGen(n): it returns a uniformly random bit string k of length n, i.e.  $k \in \mathcal{K}$ .
- Enc(k, m): it outputs the ciphertext  $c = k \oplus m$ .
- ▶ Dec(k, c): it recovers the message computing  $m = k \oplus c$ .

## One Time Pad (Vernam 1917 or $\sim$ 35 years earlier)

Fix an integer n > 0, and let  $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$ .

- **▶** KeyGen(n): it returns a uniformly random bit string k of length n, i.e.  $k \in \mathcal{K}$ .
- Enc(k, m): it outputs the ciphertext  $c = k \oplus m$ .
- ▶ Dec(k, c): it recovers the message computing  $m = k \oplus c$ .

Used between the White House and the Kremlin during the Cold War.



# **Security of OTP**

Theorem

The one time pad (OTP) encryption scheme is perfectly secret.

# **Security of OTP**

#### Theorem

The one time pad (OTP) encryption scheme is perfectly secret.

Proof.

$$Pr(C = c | M = m) = Pr(M \oplus K = c | M = m)$$
$$= Pr(m \oplus K = c)$$
$$= Pr(K = m \oplus c) = \frac{1}{2^n}$$

since keys are chosen uniformly at random.

## **Security of OTP**

#### Theorem

The one time pad (OTP) encryption scheme is perfectly secret.

#### Proof.

$$Pr(C = c | M = m) = Pr(M \oplus K = c | M = m)$$
$$= Pr(m \oplus K = c)$$
$$= Pr(K = m \oplus c) = \frac{1}{2^n}$$

since keys are chosen uniformly at random.

Therefore, for any  $m_0, m_1$ , we have

$$\Pr(C = c | M = m_0) = \frac{1}{2^n} = \Pr(C = c | M = m_1).$$

### OTP is perfectly secret, but is it practical?

When a key k is used to encrypt more than one message, the ciphertexts leak information:

$$c_1 := m_1 \oplus k, c_2 := m_2 \oplus k \quad \Rightarrow \quad c_1 \oplus c_2 = m_1 \oplus m_2.$$

## OTP is perfectly secret, but is it practical?

When a key k is used to encrypt more than one message, the ciphertexts leak information:

$$c_1 := m_1 \oplus k, c_2 := m_2 \oplus k \quad \Rightarrow \quad c_1 \oplus c_2 = m_1 \oplus m_2.$$

To securely exchange a message  $m \in \{0, 1\}^n$  we have to securely exchange  $k \in \{0, 1\}^n$ , which can be used only once.

## OTP is perfectly secret, but is it practical?

When a key k is used to encrypt more than one message, the ciphertexts leak information:

$$c_1 := m_1 \oplus k, c_2 := m_2 \oplus k \quad \Rightarrow \quad c_1 \oplus c_2 = m_1 \oplus m_2.$$

To securely exchange a message  $m \in \{0, 1\}^n$  we have to securely exchange  $k \in \{0, 1\}^n$ , which can be used only once.

You might as well directly exchange m!

## Is the impracticality of OTP an exception?

#### Theorem

If an encryption scheme is perfectly secret, then  $|\mathcal{K}| \ge |\mathcal{M}|$ .

## Is the impracticality of OTP an exception?

#### Theorem

If an encryption scheme is perfectly secret, then  $|\mathcal{K}| \ge |\mathcal{M}|$ .

#### Proof.

We show that if  $|\mathcal{K}| < |\mathcal{M}|$  we do not have perfect secrecy.

## Is the impracticality of OTP an exception?

#### Theorem

If an encryption scheme is perfectly secret, then  $|\mathcal{K}| \ge |\mathcal{M}|$ .

#### Proof.

We show that if  $|\mathcal{K}| < |\mathcal{M}|$  we do not have perfect secrecy.

Let  $Pr_{\mathcal{M}}$  be the uniform distribution over  $\mathcal{M}$ . For  $c \in \mathcal{C}$  define:

$$\mathcal{M}(c) := \{ m \mid m = \mathrm{Dec}(k, c) \text{ for some } k \in \mathcal{K} \}$$

Since  $|\mathcal{M}(c)| \leq |\mathcal{K}|$  and we are assuming  $|\mathcal{K}| < |\mathcal{M}|$ , there exists  $m' \in \mathcal{M}$  s.t.  $m' \notin \mathcal{M}(c)$ . Therefore:

$$\Pr(M = m' | C = c) = 0 \neq \Pr(M = m') = \frac{1}{2^n}.$$



## From Perfect to Computational Secrecy

Perfect secrecy: no leakage of information about the plaintext even when  $\mathcal{A}$  has unlimited computational power.

## From Perfect to Computational Secrecy

- Perfect secrecy: no leakage of information about the plaintext even when  $\mathcal{A}$  has unlimited computational power.
- Computational secrecy: an encryption scheme can be considered secure even if it leaks some information with a probability which is very small when A has limited power.

## From Perfect to Computational Secrecy

- Perfect secrecy: no leakage of information about the plaintext even when  $\mathcal{A}$  has unlimited computational power.
- Computational secrecy: an encryption scheme can be considered secure even if it leaks some information with a probability which is very small when A has limited power.

Real-world application: happy with a scheme that leaks information with probability at most  $2^{-60}$  over 200 years using the fastest supercomputers!

# Further Reading I



Nadhem J AlFardan, Daniel J Bernstein, Kenneth G Paterson, Bertram Poettering, and Jacob CN Schuldt. On the security of RC4 in TLS.

In 22nd USENIX Security Symposium (USENIX Security 13), pages 305–320, 2013.



Boaz Barak and Shai Halevi.

A model and architecture for pseudo-random generation with applications to/dev/random.

In Proceedings of the 12th ACM conference on Computer and communications security, pages 203–212. ACM, 2005.



Daniel J Bernstein.

The Salsa20 Family of Stream Ciphers.

In New stream cipher designs, pages 84–97. Springer, 2008.

# Further Reading |

- Lenore Blum, Manuel Blum, and Mike Shub.
  A simple unpredictable pseudo-random number generator.
  SIAM Journal on computing, 15(2):364–383, 1986.
  - Christian Cachin.
    Entropy measures and unconditional security in cryptography.
    PhD thesis, ETH Zurich, 1997.
- Scott Fluhrer, Itsik Mantin, and Adi Shamir.
  Weaknesses in the key scheduling algorithm of RC4.
  In Selected areas in cryptography, pages 1–24. Springer, 2001.

# Further Reading III



Christina Garman, Kenneth G Paterson, and Thyla Van der Merwe.

Attacks only get better: Password recovery attacks against RC4 in TLS.

In 24th USENIX Security Symposium (USENIX Security 15), pages 113–128, 2015.



Itsik Mantin and Adi Shamir.

A practical attack on broadcast RC4.

In Fast Software Encryption, pages 152–164. Springer, 2002.