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Definition (Concrete version)
A scheme is secure if any adversary A

running for time at most t

succeeds in breaking the scheme with probability at most ε.

Definition (Asymptotic version)
A scheme is asymptotically secure if any probabilistic
polynomial-time (in n) adversary A succeeds in breaking the
scheme with at most negligible probability (in n)1.

1Both the running time and the success probability are expressed as
functions of the security parameter n.
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Polynomial-time algorithm in n: its running time f (n) is in
O(n`) for some ` ∈ N, i.e. ∃N, λ ∈ N s.t. f (n) ≤ λn` ∀n ≥ N.

Negligible function g(n): for each ` ∈ N, there exists N ∈ N s.t.

g(n) ≤ 1

n`
∀n ≥ N.

Probabilistic Algorithm: it has access to a random source.



Notation

3/9

Polynomial-time algorithm in n: its running time f (n) is in
O(n`) for some ` ∈ N, i.e. ∃N, λ ∈ N s.t. f (n) ≤ λn` ∀n ≥ N.

Negligible function g(n): for each ` ∈ N, there exists N ∈ N s.t.

g(n) ≤ 1

n`
∀n ≥ N.

Probabilistic Algorithm: it has access to a random source.



Notation

3/9

Polynomial-time algorithm in n: its running time f (n) is in
O(n`) for some ` ∈ N, i.e. ∃N, λ ∈ N s.t. f (n) ≤ λn` ∀n ≥ N.

Negligible function g(n): for each ` ∈ N, there exists N ∈ N s.t.

g(n) ≤ 1

n`
∀n ≥ N.

Probabilistic Algorithm: it has access to a random source.



Perfect Indistinguishability

4/9

Perfect Indistinguishability Experiment PrivKperfect−ind
A,E

Challenger Ch Adversary A
m0,m1,|m0|=|m1|←−−−−−−−−−−

b←$ {0, 1}
c=Enc(k,mb)−−−−−−−→

Outputs their guess b′

Definition
An encryption scheme E is perfectly indistinguishable if, for
every adversary A, the following holds:

Pr(PrivKperfect−ind
A,E = 1) = 1/2,

where PrivKperfect−ind
A,E = 1 if b′ = b, and 0 otherwise.
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Adversarial Indistinguishability Experiment PrivKeav
A,E

Challenger Ch Adversary A
m0,m1,|m0|=|m1|←−−−−−−−−−−

b←$ {0, 1}
c=Enc(k,mb)−−−−−−−→

Outputs their guess b′

Definition
An encryption scheme E is computationally indistinguishable if,
for every PPT adversary A, there exists a negligible function
negl(n) s.t.

Pr(PrivKeav
A,E = 1) ≤ 1

2
+ negl(n),

where PrivKeav
A,E = 1 if b′ = b, and 0 otherwise.
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Does a computationally indistinguishable symmetric-key
encryption scheme exist?

Does a computationally indistinguishable symmetric-key
encryption scheme with |K| ≤ |M| exist?

We could use pseudo-random generators to transform a random
short key into a random− looking longer key...
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