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Current State of Affairs

= strong security definition for symmetric-key encryption
schemes: perfect secrecy

"

the One Time Pad scheme is perfectly secret, but it
requires keys of the same size of messages

= same issue with all perfectly-secret encryption schemes

= relaxed security definition: computational
indistinguishability (or secrecy)

If the uniformly random key in the OTP scheme is replaced
by a random-looking key, is computational secrecy achieved?
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Pseudorandom Generators (PRGs)

PRGs are used to efficiently produce, from short uniform bit
strings, longer bit strings that appear uniform.

A PRG determines a distribution X on bit strings.

Pseudorandomness: sampling from X should be
indistinguishable from sampling from the uniform distribution.
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Pseudorandom Generators (PRGs)

Definition

Let ¢(n) € Z[n] be a polynomial s.t. £(n) > n for every n.
Consider a deterministic polynomial-time algorithm G s.t., for
anyn € N ands € {0,1}", the output G(s) belongs to {0,1}*".

G is a pseudorandom generator if, for every PPT statistical test
(or distinguisher) D, there is a negligible function negl s.t.

Advg%G(n) = |Pr(D(r) = 1) — Pr(D(G(s)) = 1)| < negl(n)

where the probabilities are taken over uniform choice of
re {0,11™ s e {0,1}" and the randomness used by D.
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where the probabilities are taken over uniform choice of
re {0,11™ s e {0,1}" and the randomness used by D.

= D outputs either 1 or 0

= {(n) is called expansion factor of G
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Pseudorandom Generators (PRGs)

...where the probabilities are taken over uniform choice of
r € {0, 1}4("), s € {0,1}" and the randomness used by D.

= Rand,: set of all possible randomness used by D on input
an £(n)-bit string.

* the uniform distributions over {0,1}*™ and Rand, induce
a distribution over the event space & = P({0,1}), where

1 1
Pr(D(r)=1) = Z WwD(n rand)

r,rand

Pr(D() = 0) = 3 ﬁma—p(n )

r,rand

5/14




Fixed-length Encryption Scheme using a PRG

Let G be a PRG with expansion factor £(n). Define an
encryption scheme

E = (KeyGen, Enc, Dec)
with M = {0,1}*®) ] as follows:
= k + KeyGen(n) : it uniformly samples k € {0,1}".

= ¢+ Enc(k,m) : on input a key k € {0,1}" and a message
m e {0,1}™ it outputs ¢ = G(k) & m.

= m « Dec(k,c) : on input a key k € {0,1}" and a ciphertext
c € {0, 1}6("), it outputs m = G(k) @ c.
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Computational indistinguishability of £

Theorem
If G is a PRG, then the encryption scheme E derived from G is
computationally indistinguishable.
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Computational indistinguishability of £

Theorem
If G is a PRG, then the encryption scheme E derived from G is
computationally indistinguishable.

The proof is by reduction.

The reduction turns an adversary A against the computational
indistinguishability of E into a distinguisher D for G.

The steps of the proof will be similar also for the other proofs
by reduction we will encounter.
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Computational indistinguishability of £

Proof.

Let A be a PPT adversary in PrivK{'; (the Adversarial
Indistinguishability Experiment).

A is exploited as a subroutine to construct a distinguisher D,
defined as follows:

* D receives a bit string w € {0,1}4";
= D runs A, and obtains two messages mg, m; € {0, 1}4(");

= D samples a uniformly random bit b € {0,1}, and sends
c=wdm to A,

= upon reception of b’ from A, D outputs 1 if b =5', 0
otherwise.

8/14



Computational indistinguishability of £

We have:
|Pr(D(G(s)) =1) = Pr(D(r) =1)| =
| Pr(Pr(PrivK3y = 1) — PrivK{ orp = 1)| =

Pr(PrivK%Y% = 1) — 1/2] < negl(n
AE

Therefore E is computationally indistinguishable. O
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Pseudorandom Generators (PRGs)

Do PRGs exist?
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Pseudorandom Generators (PRGs)

Do PRGs exist?
= not known how to unconditionally prove their existence;

= their existence can be proven under the assumption that
one-way functions exist;

= informally, a function is one-way if it is easy to compute
but hard to invert;

= the existence of one-way functions implies NP+# P.
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Pseudorandom Generators (PRGs)

What are the PRGs used in cryptographic schemes?

= the algorithms G proven to PRGs (from the existence
one-way functions) are not efficient;
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Pseudorandom Generators (PRGs)

u

"

What are the PRGs used in cryptographic schemes?

the algorithms G proven to PRGs (from the existence
one-way functions) are not efficient;

in practice, candidate PRGs are used, i.e. no successfull
distinguishers are known;

with an abuse of terminology, they are equally called PRGs;

practical constructions use stream ciphers.
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