
Introduction to Cryptology

3.1 - Pseudorandom
Generators

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

Current State of Affairs

2/14

strong security definition for symmetric-key encryption
schemes: perfect secrecy

the One Time Pad scheme is perfectly secret, but it
requires keys of the same size of messages

same issue with all perfectly-secret encryption schemes

relaxed security definition: computational
indistinguishability (or secrecy)

If the uniformly random key in the OTP scheme is replaced
by a random-looking key, is computational secrecy achieved?

Current State of Affairs

2/14

strong security definition for symmetric-key encryption
schemes: perfect secrecy

the One Time Pad scheme is perfectly secret, but it
requires keys of the same size of messages

same issue with all perfectly-secret encryption schemes

relaxed security definition: computational
indistinguishability (or secrecy)

If the uniformly random key in the OTP scheme is replaced
by a random-looking key, is computational secrecy achieved?

Current State of Affairs

2/14

strong security definition for symmetric-key encryption
schemes: perfect secrecy

the One Time Pad scheme is perfectly secret, but it
requires keys of the same size of messages

same issue with all perfectly-secret encryption schemes

relaxed security definition: computational
indistinguishability (or secrecy)

If the uniformly random key in the OTP scheme is replaced
by a random-looking key, is computational secrecy achieved?

Current State of Affairs

2/14

strong security definition for symmetric-key encryption
schemes: perfect secrecy

the One Time Pad scheme is perfectly secret, but it
requires keys of the same size of messages

same issue with all perfectly-secret encryption schemes

relaxed security definition: computational
indistinguishability (or secrecy)

If the uniformly random key in the OTP scheme is replaced
by a random-looking key, is computational secrecy achieved?

Current State of Affairs

2/14

strong security definition for symmetric-key encryption
schemes: perfect secrecy

the One Time Pad scheme is perfectly secret, but it
requires keys of the same size of messages

same issue with all perfectly-secret encryption schemes

relaxed security definition: computational
indistinguishability (or secrecy)

If the uniformly random key in the OTP scheme is replaced
by a random-looking key, is computational secrecy achieved?

Pseudorandom Generators (PRGs)

3/14

PRGs are used to efficiently produce, from short uniform bit
strings, longer bit strings that appear uniform.

A PRG determines a distribution X on bit strings.

Pseudorandomness: sampling from X should be
indistinguishable from sampling from the uniform distribution.

Pseudorandom Generators (PRGs)

4/14

Definition
Let `(n) ∈ Z[n] be a polynomial s.t. `(n) > n for every n.
Consider a deterministic polynomial-time algorithm G s.t., for
any n ∈ N and s ∈ {0, 1}n, the output G(s) belongs to {0, 1}`(n).

G is a pseudorandom generator if, for every PPT statistical test
(or distinguisher) D, there is a negligible function negl s.t.

AdvPRG
G,D (n) = |Pr(D(r) = 1)− Pr(D(G(s)) = 1)| ≤ negl(n)

where the probabilities are taken over uniform choice of
r ∈ {0, 1}`(n), s ∈ {0, 1}n and the randomness used by D.

D outputs either 1 or 0

`(n) is called expansion factor of G

Pseudorandom Generators (PRGs)

4/14

Definition
Let `(n) ∈ Z[n] be a polynomial s.t. `(n) > n for every n.
Consider a deterministic polynomial-time algorithm G s.t., for
any n ∈ N and s ∈ {0, 1}n, the output G(s) belongs to {0, 1}`(n).

G is a pseudorandom generator if, for every PPT statistical test
(or distinguisher) D, there is a negligible function negl s.t.

AdvPRG
G,D (n) = |Pr(D(r) = 1)− Pr(D(G(s)) = 1)| ≤ negl(n)

where the probabilities are taken over uniform choice of
r ∈ {0, 1}`(n), s ∈ {0, 1}n and the randomness used by D.

D outputs either 1 or 0

`(n) is called expansion factor of G

Pseudorandom Generators (PRGs)

5/14

...where the probabilities are taken over uniform choice of
r ∈ {0, 1}`(n), s ∈ {0, 1}n and the randomness used by D.

Randn: set of all possible randomness used by D on input
an `(n)-bit string.

the uniform distributions over {0, 1}`(n) and Randn induce
a distribution over the event space E = P({0, 1}), where

Pr(D(r) = 1) =
∑

r,rand

1

2`(n)
1

|Randn|
D(r, rand)

Pr(D(r) = 0) =
∑

r,rand

1

2`(n)
1

|Randn|
(1− D(r, rand))

Fixed-length Encryption Scheme using a PRG

6/14

Let G be a PRG with expansion factor `(n). Define an
encryption scheme

E = (KeyGen,Enc,Dec)

with M = {0, 1}`(n), as follows:

k← KeyGen(n) : it uniformly samples k ∈ {0, 1}n.

c← Enc(k,m) : on input a key k ∈ {0, 1}n and a message
m ∈ {0, 1}`(n), it outputs c = G(k)⊕ m.

m← Dec(k, c) : on input a key k ∈ {0, 1}n and a ciphertext
c ∈ {0, 1}`(n), it outputs m = G(k)⊕ c.

Computational indistinguishability of E

7/14

Theorem
If G is a PRG, then the encryption scheme E derived from G is
computationally indistinguishable.

The proof is by reduction.

The reduction turns an adversary A against the computational
indistinguishability of E into a distinguisher D for G.

The steps of the proof will be similar also for the other proofs
by reduction we will encounter.

Computational indistinguishability of E

7/14

Theorem
If G is a PRG, then the encryption scheme E derived from G is
computationally indistinguishable.

The proof is by reduction.

The reduction turns an adversary A against the computational
indistinguishability of E into a distinguisher D for G.

The steps of the proof will be similar also for the other proofs
by reduction we will encounter.

Computational indistinguishability of E

8/14

Proof.

Let A be a PPT adversary in PrivKeav
A,E (the Adversarial

Indistinguishability Experiment).

A is exploited as a subroutine to construct a distinguisher D,
defined as follows:

D receives a bit string w ∈ {0, 1}`(n);

D runs A, and obtains two messages m0,m1 ∈ {0, 1}`(n);

D samples a uniformly random bit b ∈ {0, 1}, and sends
c = w⊕ mb to A;

upon reception of b′ from A, D outputs 1 if b = b′, 0
otherwise.

Computational indistinguishability of E

9/14

We have:

|Pr(D(G(s)) = 1)− Pr(D(r) = 1)| =
|Pr(Pr(PrivKeav

A,E = 1)− PrivKeav
A,OTP = 1)| =

|Pr(PrivKeav
A,E = 1)− 1/2| ≤ negl(n)

Therefore E is computationally indistinguishable. �

Pseudorandom Generators (PRGs)

10/14

Do PRGs exist?

not known how to unconditionally prove their existence;

their existence can be proven under the assumption that
one-way functions exist;

informally, a function is one-way if it is easy to compute
but hard to invert;

the existence of one-way functions implies NP6= P.

Pseudorandom Generators (PRGs)

10/14

Do PRGs exist?

not known how to unconditionally prove their existence;

their existence can be proven under the assumption that
one-way functions exist;

informally, a function is one-way if it is easy to compute
but hard to invert;

the existence of one-way functions implies NP6= P.

Pseudorandom Generators (PRGs)

10/14

Do PRGs exist?

not known how to unconditionally prove their existence;

their existence can be proven under the assumption that
one-way functions exist;

informally, a function is one-way if it is easy to compute
but hard to invert;

the existence of one-way functions implies NP6= P.

Pseudorandom Generators (PRGs)

10/14

Do PRGs exist?

not known how to unconditionally prove their existence;

their existence can be proven under the assumption that
one-way functions exist;

informally, a function is one-way if it is easy to compute
but hard to invert;

the existence of one-way functions implies NP6= P.

Pseudorandom Generators (PRGs)

10/14

Do PRGs exist?

not known how to unconditionally prove their existence;

their existence can be proven under the assumption that
one-way functions exist;

informally, a function is one-way if it is easy to compute
but hard to invert;

the existence of one-way functions implies NP 6= P.

Pseudorandom Generators (PRGs)

11/14

What are the PRGs used in cryptographic schemes?

the algorithms G proven to PRGs (from the existence
one-way functions) are not efficient;

in practice, candidate PRGs are used, i.e. no successfull
distinguishers are known;

with an abuse of terminology, they are equally called PRGs;

practical constructions use stream ciphers.

Pseudorandom Generators (PRGs)

11/14

What are the PRGs used in cryptographic schemes?

the algorithms G proven to PRGs (from the existence
one-way functions) are not efficient;

in practice, candidate PRGs are used, i.e. no successfull
distinguishers are known;

with an abuse of terminology, they are equally called PRGs;

practical constructions use stream ciphers.

Pseudorandom Generators (PRGs)

11/14

What are the PRGs used in cryptographic schemes?

the algorithms G proven to PRGs (from the existence
one-way functions) are not efficient;

in practice, candidate PRGs are used, i.e. no successfull
distinguishers are known;

with an abuse of terminology, they are equally called PRGs;

practical constructions use stream ciphers.

Pseudorandom Generators (PRGs)

11/14

What are the PRGs used in cryptographic schemes?

the algorithms G proven to PRGs (from the existence
one-way functions) are not efficient;

in practice, candidate PRGs are used, i.e. no successfull
distinguishers are known;

with an abuse of terminology, they are equally called PRGs;

practical constructions use stream ciphers.

Further Reading I

12/14

Nadhem J AlFardan, Daniel J Bernstein, Kenneth G
Paterson, Bertram Poettering, and Jacob CN Schuldt.
On the security of RC4 in TLS.
In 22nd USENIX Security Symposium (USENIX Security
13), pages 305–320, 2013.

Boaz Barak and Shai Halevi.
A model and architecture for pseudo-random generation
with applications to/dev/random.
In Proceedings of the 12th ACM conference on Computer
and communications security, pages 203–212. ACM, 2005.

Daniel J Bernstein.
The Salsa20 Family of Stream Ciphers.
In New stream cipher designs, pages 84–97. Springer, 2008.

Further Reading II

13/14

Lenore Blum, Manuel Blum, and Mike Shub.
A simple unpredictable pseudo-random number generator.
SIAM Journal on computing, 15(2):364–383, 1986.

Christian Cachin.
Entropy measures and unconditional security in
cryptography.
PhD thesis, ETH Zurich, 1997.

Scott Fluhrer, Itsik Mantin, and Adi Shamir.
Weaknesses in the key scheduling algorithm of RC4.
In Selected areas in cryptography, pages 1–24. Springer,
2001.

Further Reading III

14/14

Christina Garman, Kenneth G Paterson, and Thyla
Van der Merwe.
Attacks only get better: Password recovery attacks against
RC4 in TLS.
In 24th USENIX Security Symposium (USENIX Security
15), pages 113–128, 2015.

Itsik Mantin and Adi Shamir.
A practical attack on broadcast RC4.
In Fast Software Encryption, pages 152–164. Springer, 2002.

