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Current State of Affairs
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strong security definition for symmetric-key encryption
schemes: perfect secrecy

the One Time Pad scheme is perfectly secret, but it
requires keys of the same size of messages

same issue with all perfectly-secret encryption schemes

relaxed security definition: computational
indistinguishability (or secrecy)

If the uniformly random key in the OTP scheme is replaced
by a random-looking key, is computational secrecy achieved?
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PRGs are used to efficiently produce, from short uniform bit
strings, longer bit strings that appear uniform.

A PRG determines a distribution X on bit strings.

Pseudorandomness: sampling from X should be
indistinguishable from sampling from the uniform distribution.
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Definition
Let `(n) ∈ Z[n] be a polynomial s.t. `(n) > n for every n.
Consider a deterministic polynomial-time algorithm G s.t., for
any n ∈ N and s ∈ {0, 1}n, the output G(s) belongs to {0, 1}`(n).

G is a pseudorandom generator if, for every PPT statistical test
(or distinguisher) D, there is a negligible function negl s.t.

AdvPRG
G,D (n) = |Pr(D(r) = 1)− Pr(D(G(s)) = 1)| ≤ negl(n)

where the probabilities are taken over uniform choice of
r ∈ {0, 1}`(n), s ∈ {0, 1}n and the randomness used by D.

D outputs either 1 or 0

`(n) is called expansion factor of G
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...where the probabilities are taken over uniform choice of
r ∈ {0, 1}`(n), s ∈ {0, 1}n and the randomness used by D.

Randn: set of all possible randomness used by D on input
an `(n)-bit string.

the uniform distributions over {0, 1}`(n) and Randn induce
a distribution over the event space E = P({0, 1}), where

Pr(D(r) = 1) =
∑

r,rand

1

2`(n)
1

|Randn|
D(r, rand)

Pr(D(r) = 0) =
∑

r,rand

1

2`(n)
1

|Randn|
(1− D(r, rand))
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Let G be a PRG with expansion factor `(n). Define an
encryption scheme

E = (KeyGen,Enc,Dec)

with M = {0, 1}`(n), as follows:

k← KeyGen(n) : it uniformly samples k ∈ {0, 1}n.

c← Enc(k,m) : on input a key k ∈ {0, 1}n and a message
m ∈ {0, 1}`(n), it outputs c = G(k)⊕ m.

m← Dec(k, c) : on input a key k ∈ {0, 1}n and a ciphertext
c ∈ {0, 1}`(n), it outputs m = G(k)⊕ c.



Computational indistinguishability of E
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Theorem
If G is a PRG, then the encryption scheme E derived from G is
computationally indistinguishable.

The proof is by reduction.

The reduction turns an adversary A against the computational
indistinguishability of E into a distinguisher D for G.

The steps of the proof will be similar also for the other proofs
by reduction we will encounter.
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Proof.

Let A be a PPT adversary in PrivKeav
A,E (the Adversarial

Indistinguishability Experiment).

A is exploited as a subroutine to construct a distinguisher D,
defined as follows:

D receives a bit string w ∈ {0, 1}`(n);

D runs A, and obtains two messages m0,m1 ∈ {0, 1}`(n);

D samples a uniformly random bit b ∈ {0, 1}, and sends
c = w⊕ mb to A;

upon reception of b′ from A, D outputs 1 if b = b′, 0
otherwise.



Computational indistinguishability of E

9/14

We have:

|Pr(D(G(s)) = 1)− Pr(D(r) = 1)| =
|Pr(Pr(PrivKeav

A,E = 1)− PrivKeav
A,OTP = 1)| =

|Pr(PrivKeav
A,E = 1)− 1/2| ≤ negl(n)

Therefore E is computationally indistinguishable. �
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Do PRGs exist?

not known how to unconditionally prove their existence;

their existence can be proven under the assumption that
one-way functions exist;

informally, a function is one-way if it is easy to compute
but hard to invert;

the existence of one-way functions implies NP6= P.
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What are the PRGs used in cryptographic schemes?

the algorithms G proven to PRGs (from the existence
one-way functions) are not efficient;

in practice, candidate PRGs are used, i.e. no successfull
distinguishers are known;

with an abuse of terminology, they are equally called PRGs;

practical constructions use stream ciphers.
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