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Terminology is not standard: either used to refer to a practical
instantiation of PRGs or to the encryption scheme which uses it.

Each stream cipher gives rise to a family of PRGs (one for each
expansion factor `(n)).
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A stream cipher consists of two deterministic algorithms:

st0 ← Init(s, IV): on input a seed s and an optional
initialisation vector IV, it outputs an initial state st0.

(y, sti+1) ← GetBits(sti): it takes the i-th state sti and
outputs a bit y and an updated state, i.e. sti+1.
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Construction of a PRG G`(n): st0 ← Init(s, IV)

for i = 1, · · · , `(n);
(yi, sti)← GetBits(sti−1)

return y1, · · · , y`(n)

A stream cipher is secure if:

it takes no IV,

for any expansion factor `(n), G`(n) is a PRG.
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Linear-Feedback Shift Registers (LFSRs)

RC4, proposed by Ron Rivest in 1987 (it should no longer
be used)

eStream competition:

Salsa20 (and ChaCha)

SOSEMANUK
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RC4 became extremely popular for SSL/TLS connections:

immune to some attacks;

it is pretty fast.

Security-wise, it has been less successfull:

its outputs have several biases (e.g. the probability that
the second byte is 0 is 1/128 instead of 1/256);

these biases can be used to recover a message when
encrypted several times with different keys (AlFardan et
al., 2013).
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Salsa20 works with 4-byte words to expand

a 32-byte key k = (k1, k2, . . . , k8) and

a 8-byte nonce1 IV = (IV1, IV2)

into a 270-byte string (the stream).

The stream is generated in 64-byte blocks:

each block is derived from the key, the nonce, and a 8-byte
block number bc = (bc1,bc2);

therefore and any number of blocks can be computed in
parallel.

1A random string, shared with the receiver.
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The sum of two 4-byte words is denoted by +.
The xor of two 4-bytes words is denoted by ⊕.
The operator <<< t rotates of t positions to the left the
bits of a 4-byte word.
The quarterround operator takes four 4-byte words
(y1, y2, y3, y4) and returns four 4-byte words (z1, z2, z3, z4):

z1 = y1 ⊕ ((y0 + y3) <<< 7)

z2 = y2 ⊕ ((z1 + y0) <<< 9)

z3 = y3 ⊕ ((z2 + z1) <<< 13)

z4 = y0 ⊕ ((z3 + z2) <<< 18).
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The block indexed by bc = (bc1,bc2) takes the matrix

A =


λ1 k1 k2 k3
k4 λ2 IV1 IV2

bc1 bc1 λ3 k5
k6 k7 k8 λ4


as input (λ1, λ2, λ3, λ4 are constant words). It returns the 4x4
matrix B obtained as follows:

B = A

for i = 1, · · · , 20;
for j = 1, · · · , 4;

(B1,j,B2,j,B3,j,B4,j)← quarterround(B1,j,B2,j,B3,j,B4,j)

B← Transpose(B)
B← A + Transpose(B)
return B
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To encrypt a b-byte plaintext m, the first b bytes of the 270-byte
stream are xor’ed with m (the rest of the stream is discarded).

The decryption of a b-byte ciphertext c consists in xor’ing c
with the first b bytes of the 270-byte stream.
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