
Introduction to Cryptology

3.2 - Stream Ciphers

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020



Stream Ciphers

2/13

Terminology is not standard: either used to refer to a practical
instantiation of PRGs or to the encryption scheme which uses it.

Each stream cipher gives rise to a family of PRGs (one for each
expansion factor `(n)).



Stream Ciphers

3/13

A stream cipher consists of two deterministic algorithms:

st0 ← Init(s, IV): on input a seed s and an optional
initialisation vector IV, it outputs an initial state st0.

(y, sti+1) ← GetBits(sti): it takes the i-th state sti and
outputs a bit y and an updated state, i.e. sti+1.



Stream Ciphers and PRGs

4/13

Construction of a PRG G`(n): st0 ← Init(s, IV)

for i = 1, · · · , `(n);
(yi, sti)← GetBits(sti−1)

return y1, · · · , y`(n)

A stream cipher is secure if:

it takes no IV,

for any expansion factor `(n), G`(n) is a PRG.



Stream Ciphers and PRGs

4/13

Construction of a PRG G`(n): st0 ← Init(s, IV)

for i = 1, · · · , `(n);
(yi, sti)← GetBits(sti−1)

return y1, · · · , y`(n)

A stream cipher is secure if:

it takes no IV,

for any expansion factor `(n), G`(n) is a PRG.



Examples of Stream Ciphers

5/13

Linear-Feedback Shift Registers (LFSRs)

RC4, proposed by Ron Rivest in 1987 (it should no longer
be used)

eStream competition:

Salsa20 (and ChaCha)

SOSEMANUK



RC4 - Efficiency/security trade-off

6/13

RC4 became extremely popular for SSL/TLS connections:

immune to some attacks;

it is pretty fast.

Security-wise, it has been less successfull:

its outputs have several biases (e.g. the probability that
the second byte is 0 is 1/128 instead of 1/256);

these biases can be used to recover a message when
encrypted several times with different keys (AlFardan et
al., 2013).



RC4 - Efficiency/security trade-off

6/13

RC4 became extremely popular for SSL/TLS connections:

immune to some attacks;

it is pretty fast.

Security-wise, it has been less successfull:

its outputs have several biases (e.g. the probability that
the second byte is 0 is 1/128 instead of 1/256);

these biases can be used to recover a message when
encrypted several times with different keys (AlFardan et
al., 2013).



Salsa20

7/13

Salsa20 works with 4-byte words to expand

a 32-byte key k = (k1, k2, . . . , k8) and

a 8-byte nonce1 IV = (IV1, IV2)

into a 270-byte string (the stream).

The stream is generated in 64-byte blocks:

each block is derived from the key, the nonce, and a 8-byte
block number bc = (bc1,bc2);

therefore and any number of blocks can be computed in
parallel.

1A random string, shared with the receiver.



Salsa20

7/13

Salsa20 works with 4-byte words to expand

a 32-byte key k = (k1, k2, . . . , k8) and

a 8-byte nonce1 IV = (IV1, IV2)

into a 270-byte string (the stream).

The stream is generated in 64-byte blocks:

each block is derived from the key, the nonce, and a 8-byte
block number bc = (bc1,bc2);

therefore and any number of blocks can be computed in
parallel.

1A random string, shared with the receiver.



Salsa20 - Notation

8/13

The sum of two 4-byte words is denoted by +.
The xor of two 4-bytes words is denoted by ⊕.
The operator <<< t rotates of t positions to the left the
bits of a 4-byte word.
The quarterround operator takes four 4-byte words
(y1, y2, y3, y4) and returns four 4-byte words (z1, z2, z3, z4):

z1 = y1 ⊕ ((y0 + y3) <<< 7)

z2 = y2 ⊕ ((z1 + y0) <<< 9)

z3 = y3 ⊕ ((z2 + z1) <<< 13)

z4 = y0 ⊕ ((z3 + z2) <<< 18).



Salsa20

9/13

The block indexed by bc = (bc1,bc2) takes the matrix

A =


λ1 k1 k2 k3
k4 λ2 IV1 IV2

bc1 bc1 λ3 k5
k6 k7 k8 λ4


as input (λ1, λ2, λ3, λ4 are constant words). It returns the 4x4
matrix B obtained as follows:

B = A

for i = 1, · · · , 20;
for j = 1, · · · , 4;

(B1,j,B2,j,B3,j,B4,j)← quarterround(B1,j,B2,j,B3,j,B4,j)

B← Transpose(B)
B← A + Transpose(B)
return B



Salsa20

10/13

To encrypt a b-byte plaintext m, the first b bytes of the 270-byte
stream are xor’ed with m (the rest of the stream is discarded).

The decryption of a b-byte ciphertext c consists in xor’ing c
with the first b bytes of the 270-byte stream.



Further Reading I

11/13

Nadhem J AlFardan, Daniel J Bernstein, Kenneth G
Paterson, Bertram Poettering, and Jacob CN Schuldt.
On the security of RC4 in TLS.
In 22nd USENIX Security Symposium (USENIX Security
13), pages 305–320, 2013.

Boaz Barak and Shai Halevi.
A model and architecture for pseudo-random generation
with applications to/dev/random.
In Proceedings of the 12th ACM conference on Computer
and communications security, pages 203–212. ACM, 2005.

Daniel J Bernstein.
The Salsa20 Family of Stream Ciphers.
In New stream cipher designs, pages 84–97. Springer, 2008.



Further Reading II

12/13

Lenore Blum, Manuel Blum, and Mike Shub.
A simple unpredictable pseudo-random number generator.
SIAM Journal on computing, 15(2):364–383, 1986.

Christian Cachin.
Entropy measures and unconditional security in
cryptography.
PhD thesis, ETH Zurich, 1997.

Scott Fluhrer, Itsik Mantin, and Adi Shamir.
Weaknesses in the key scheduling algorithm of RC4.
In Selected areas in cryptography, pages 1–24. Springer,
2001.



Further Reading III

13/13

Christina Garman, Kenneth G Paterson, and Thyla
Van der Merwe.
Attacks only get better: Password recovery attacks against
RC4 in TLS.
In 24th USENIX Security Symposium (USENIX Security
15), pages 113–128, 2015.

Itsik Mantin and Adi Shamir.
A practical attack on broadcast RC4.
In Fast Software Encryption, pages 152–164. Springer, 2002.


