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Both perfect and computational indistinguishability focus on an
adversary A who knows one ciphertext.

What are the security definitions for more powerful adversaries?
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For example, the adversary A could be challenged on two lists
of messages instead of two messages m0,m1.

If Enc is deterministic, A trivially wins the game (two
equal messages only in one vector).

Deterministic encryption schemes are not secure under the
multiple encryptions threat model.

What about the Chosen Plaintext Attack (CPA) and the
Chosen Ciphertext Attack (CCA) threat models?
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CPA-Security
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CPA Indistinguishability Experiment PrivKcpa
A,E

Challenger Ch Adversary A
k← KeyGen(n)

Queries to Enc(k, ·)
m0,m1,|m0|=|m1|←−−−−−−−−−−

b←$ {0, 1}
c=Enc(k,mb)−−−−−−−→

Queries to Enc(k, ·)
Outputs their guess b′

Definition
An encryption scheme E is CPA-secure if, for every PPT
adversary A, it holds:

Advcpa
A,E(n) = Pr(PrivKcpa

A,E(n) = 1) ≤ 1/2 + negl(n) ,

where PrivKcpa
A,E(n) = 1 if b′ = b, and 0 otherwise.
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Ch runs k← KeyGen(n) and uniformly samples b ∈ {0, 1};

A has access to the oracle LRk,b: on a query (m0,i,m1,i),
with i = 1, 2, . . . , Enc(k,mb,i) is returned;

A submits their guess b′ ∈ {0, 1}.

Theorem
If an encryption scheme E is CPA-secure, it is CPA-secure for
multiple encryptions.

Enc cannot be deterministic (A can query on (m,m) and (m′,m))
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CCA Indistinguishability Experiment PrivKcca
A,E

Challenger Ch Adversary A
k← KeyGen(n)

Queries to Enc(k, ·)
and Dec(k, ·)

m0,m1,|m0|=|m1|←−−−−−−−−−−
b←$ {0, 1}

c=Enc(k,mb)−−−−−−−→
Queries to Enc(k, ·)

and Dec(k, ·)

Outputs their guess b′

Definition
An encryption scheme E is CCA-secure if for, every PPT A, it
holds Advcca

A,E(n) = Pr(PrivKcca
A,E(n) = 1) ≤ 1/2 + negl(n).
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CPA-secure encryption from
Pseudorandom Permutations



Pseudorandom Functions
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Generalisation to functions of the notion of pseudorandomness,
i.e. random-looking functions are considered.

The focus is on keyed functions, i.e. functions of the form

F : I → O

where I ⊂ {0, 1}∗ × {0, 1}∗ and O ⊂ {0, 1}∗.

given k ∈ {0, 1}∗ and Ik = {x|(k, x) ∈ I}, Fk : Ik → Ok

defined by x 7→ F(k, x) is a single-input function.

we require the existence of `key(n), `in(n), `out(n) ∈ Z[n] s.t.,
for any k ∈ {0, 1}`key(n), Ik = {0, 1}`in(n) and Ok = {0, 1}`out(n).

F is length-preserving if `key(n) = `in(n) = `out(n).
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Definition
F : I → O is a pseudorandom function (PRF) if it is
length-preserving, efficiently computable and, for every PPT
distinguisher D, there exists a negligible function negl(n) s.t.

AdvPRF
F,D (n) = |Pr(Df ()(n) = 1)− Pr(DFk()(n) = 1)| ≤ negl(n)

where the first probability is taken over uniform choice of
f ∈ Funcn and the randomness of D, while the second one over
uniform choice of k ∈ {0, 1}n and the randomness of D.

Funcn is the set of all functions from {0, 1}n to {0, 1}n.

Df () means that D has access to an evaluating oracle for f .
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F is a pseudorandom permutation (PRP) if:

`in(n) = `out(n);

Fk is a bijection for every k ∈ {0, 1}`key(n);

Fk and F−1
k are efficiently computable for every

k ∈ {0, 1}`key(n);

for a uniform k, Fk is indistinguishable from a uniform
permutation of {0, 1}`in(n).

F is a strong pseudorandom permutation if it is a PRP and the
distinguisher D is given access to both f and f−1, or Fk and F−1

k .
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Let F be a PRP. We define the following symmetric-key
encryption scheme E = (KeyGen,Enc,Dec):

k← KeyGen(n) : on input n, it outputs a uniformly
random key k ∈ {0, 1}`k(n).

c← Enc(k,m): given a key k and a message m ∈ {0, 1}`in(n),
it uniformly samples r ← {0, 1}`in(n), and outputs

(c0, c1)← (r,Fk(r)⊕ m).

m← Dec(k, (c0, c1)): on input a key k and a ciphertext
c = (c0, c1), it returns

m← (Fk(c0)⊕ c1).
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Theorem
If F is a PRP with `in(n) ≥ n, then the encryption scheme E is
CPA-secure.

Proof (by reduction)

Let A a PPT adversary against the CPA-security of E. A can
make a polynomial number q(n) of encryption queries.

We use A as a subroutine for a distinguisher D for the PRP.

On a query m ∈ {0, 1}n, D queries the oracle on a uniform
r ∈ {0, 1}`in(n), receiving the image y. They reply with (r, y⊕m).

If A wins the game, D outputs 1 (0 otherwise).
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Pr(DFk()(n) = 1) = Pr(PrivKcpa
A,E(n) = 1)

If E′ denotes a variant of E with a uniform permutation f
instead of Fk, then we have:

Pr(Df ()(n) = 1) = Pr(PrivKcpa
A,E′(n) = 1)

Since F is a PRP we deduce∣∣Pr(DFk()(n) = 1)− Pr(Df ()(n) = 1)
∣∣ =∣∣Pr(PrivKcpa

A,E(n) = 1)− Pr(PrivKcpa
A,E′(n) = 1)

∣∣ ≤ negl(n)
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For the case when A is interacting with E′, let rc be the first
component of the challenge ciphertext.

case 1: rc did not appear in any of the answers to the
encryption queries. Then f (rc) is a uniform string and the
probability to win the game is 1/2 (OTP is perfectly secret)

case 2: rc appeared in at least one of the queries. The
probability of this event is at most q(n)/2`in(n).

Thus
Pr(PrivKcpa

A,E′(n) = 1) ≤ 1/2 + q(n)/2`in(n)

and therefore

Pr(PrivKcpa
A,E(n) = 1) ≤ 1/2 + q(n)/2`in(n)n + negl(n) .

�
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The product of a positive polynomial in Z[n] and a
negligible function is a negligible function.

The sum of two negligible functions is a negligible function.
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