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More security definitions are needed...

Both perfect and computational indistinguishability focus on an
adversary A who knows one ciphertext.

What are the security definitions for more powerful adversaries?
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More security definitions are needed...

For example, the adversary A could be challenged on two lists
of messages instead of two messages mq,m;.

= If Enc is deterministic, A trivially wins the game (two
equal messages only in one vector).

= Deterministic encryption schemes are not secure under the
multiple encryptions threat model.

What about the Chosen Plaintext Attack (CPA) and the
Chosen Ciphertext Attack (CCA) threat models?
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CPA-Security

cpa

CPA Indistinguishability Experiment PrivK’y",

Challenger Ch Adversary A
k + KeyGen(n)
Queries to Enc(k, -)
mo,m1,|mo|=|m1|
b+<+s{0,1}
c=Enc(k,m;)
A
Queries to Enc(k, -)
Outputs their guess o’

4/18



CPA-Security

CPA Indistinguishability Experiment PrviCpa

Challenger Ch Adversary A
k + KeyGen(n)

Queries to Enc(k, -)

m07m17|m0|:‘m1|
«— -

b+«+-s{0,1}
c=Enc(k,m;)

Queries to Enc(k, -)
Outputs their guess o’

Definition

An encryption scheme E is CPA-secure if, for every PPT
adversary A, it holds:

Adv ey (n) = Pr(PrivKey(n) = 1) < 1/2+ negl(n) ,

where PrivKy;(n) = 1 ifb’ = b, and 0 otherwise. e



CPA-security for multiple encryptions

= Ch runs k + KeyGen(n) and uniformly samples b € {0, 1};

= A has access to the oracle LRy 4: on a query (mg;,mi ),
with i =1,2,..., Enc(k,mp;) is returned;

= A submits their guess b’ € {0,1}.
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CPA-security for multiple encryptions

= Ch runs k + KeyGen(n) and uniformly samples b € {0, 1};

= A has access to the oracle LRy 4: on a query (mg;,mi ),
with i =1,2,..., Enc(k,mp;) is returned;

= A submits their guess b’ € {0,1}.

Theorem
If an encryption scheme E is CPA-secure, it is CPA-secure for

multiple encryptions.

Enc cannot be deterministic (A can query on (m,m) and (m’, m))
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CCA-Security

CCA Indistinguishability Experiment PrivK{%

Challenger Ch Adversary A
k < KeyGen(n)
Queries to Enc(k, -)

and Dec(k, -)
mo,m1,|mo|=|m |
%
b<«s{0,1}
c=Enc(k,m;)
R
Queries to Enc(k, -)
and Dec(k, )
Outputs their guess b’
Definition

An encryption scheme E is CCA-secure if for, every PPT A, it
holds Adv;(n) = Pr(PrivK§E(n) = 1) < 1/2 + negl(n).
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CPA-secure encryption from
Pseudorandom Permutations
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i.e. random-looking functions are considered.
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Pseudorandom Functions

Generalisation to functions of the notion of pseudorandomness,
i.e. random-looking functions are considered.

The focus is on keyed functions, i.e. functions of the form
F:1—0
where I C {0,1}* x {0,1}* and O C {0,1}".

= given k € {0,1}* and Iy = {x|(k,x) € I}, Fi : [t — O
defined by x — F(k,x) is a single-input function.

= we require the existence of liey (1), lin(n), Lous(n) € Zn] s.t.,
for any k € {0,1}%™ 1, = {0,1}™ and 0y = {0, 1},

= F is length-preserving if liey(n) = £in(n) = Low(n).
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Pseudorandom Functions

Definition

F : I — O is a pseudorandom function (PRF) if it is
length-preserving, efficiently computable and, for every PPT
distinguisher D, there exists a negligible function negl(n) s.t.

AdvPE (n) = | Pr(D/O(n) = 1) — Pr(D"0(n) = 1)| < negl(n)

where the first probability is taken over uniform choice of
f € Func, and the randomness of D, while the second one over
uniform choice of k € {0,1}" and the randomness of D.

= Func, is the set of all functions from {0,1}" to {0,1}".

» D0 means that D has access to an evaluating oracle for f.
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Pseudorandom Permutations

F is a pseudorandom permutation (PRP) if:

- ejn(n) - gout(”);

"

Fy is a bijection for every k € {0, 1}%®);

» Fpand F L are efficiently computable for every
k € {0,1}be ),

= for a uniform k, Fy is indistinguishable from a uniform
permutation of {0, 1}
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Pseudorandom Permutations

F is a pseudorandom permutation (PRP) if:

- ejn(n) - gout(”);

"

Fy is a bijection for every k € {0, 1}%®);

= F; and Fk_1 are efficiently computable for every
k € {0,1}be ),

= for a uniform k, Fy is indistinguishable from a uniform
permutation of {0, 1}

F is a strong pseudorandom permutation if it is a PRP and the
distinguisher D is given access to both f and f~%, or Fy and F © L
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Encryption using PRPs

Let F be a PRP. We define the following symmetric-key
encryption scheme E = (KeyGen, Enc, Dec):

= k + KeyGen(n) : on input n, it outputs a uniformly
random key k € {0,1}%".

* ¢ <+ Enc(k,m): given a key k and a message m € {0, 1}
it uniformly samples r « {0, l}gi"(”), and outputs

(co,c1) + (r, Fr(r) ® m).

= m <+ Dec(k, (co,c1)): on input a key k and a ciphertext
¢ = (co,c1), it returns

m <— (Fk(CO) b Cl).
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Encryption using PRP

Theorem
If F is a PRP with ¢;,(n) > n, then the encryption scheme E is
CPA-secure.

Proof (by reduction)

Let A a PPT adversary against the CPA-security of E. A can
make a polynomial number g(n) of encryption queries.

We use A as a subroutine for a distinguisher D for the PRP.

On a query m € {0,1}", D queries the oracle on a uniform
r e {0,1}  receiving the image y. They reply with (r,y & m).

If A wins the game, D outputs 1 (0 otherwise).
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Encryption using PRP

Pr(DF0(n) = 1) = Pr(PrivK$y(n) = 1)
If E' denotes a variant of E with a uniform permutation f
instead of Fy, then we have:

Pr(D0(n) =1) = Pr(PrivKi{”ag, (n)=1)

Since F is a PRP we deduce

|PI.(DFk()(n) =1)— Pr(Df()(n) _ 1)} _
|PI“(P1“iVKiE%(n) =1)— Pr(PriVKi{’}, (n) = 1)‘ < negl(n)
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Encryption using PRP

For the case when A is interacting with E', let r. be the first
component of the challenge ciphertext.

= case 1: r. did not appear in any of the answers to the
encryption queries. Then f(r.) is a uniform string and the
probability to win the game is 1/2 (OTP is perfectly secret)

= case 2: r. appeared in at least one of the queries. The
probability of this event is at most g(n) /2%,

Thus
Pr(PrivK?y, (n) =1) <1/2+ g(n) /2t

and therefore
Pr(PrivKyy(n) = 1) <1/2 + q(n) /2" n 4+ negl(n) .
O
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= The product of a positive polynomial in Z[n] and a
negligible function is a negligible function.

= The sum of two negligible functions is a negligible function.
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