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Block ciphers are designed to be concrete instantiations of
(strong) pseudorandom permutations.

A block cipher is a keyed map F : {0, 1}n ×{0, 1}` → {0, 1}` s.t.

Fk : {0, 1}` → {0, 1}`, x 7→ F(k, x) is a permutation for all
k ∈ {0, 1}n;

Fk and F−1
k are efficiently computable for all k ∈ {0, 1}n.

Naming: n is the key length, ` is the block length.
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Let Perm` be the set of all permutations of {0, 1}`, and consider
a block cipher F : {0, 1}k × {0, 1}` → {0, 1}`.

For a PPT distinguisher D, we define their advantage as

AdvPRP
F,D = |Pr(Df () = 1)− Pr(DFk() = 1)|

where the first probability is taken over a uniform choice of f in
Perm` and the randomness of D, the second one over a uniform
choice of k in {0, 1}n and the randomness of D.
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For any integers t and q, we define

AdvPRP
F (t, q) = max

D
{AdvPRP

F,D}

where the maximum is over all distinguishers D with time
complexity at most t and making at most q queries.

The terminology “F is a secure block cipher” indicates that
AdvPRP

F (t, q) is low for reasonable values of t and q.

Currently, a block cipher is considered secure if the best known
attack has time complexity approximately equal to a
brute-force attack to recover the key.
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Constructing Block Ciphers
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The permutations of a block cipher must:

behave like random permutations;

have a concise representation.

Representing an arbitrary permutation of {0, 1}` needs ` · 2`
bits (infeasible for ` > 50; for modern block ciphers ` ≥ 128).
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Confusion: use random-looking permutations fi with smaller
block length (e.g. 8 bits) than Fk to construct Fk.

Example: given x ∈ {0, 1}128, split it into 16 bytes
x1, · · · , x16 and define

Fk(x) = f1(x1)|| · · · ||f16(x16).

Fk(x) and Fk(x′) have only one different byte if w(x, x′) = 1.

Diffusion: use a mixing permutation to make a change in one
bit affect the entire output!
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Each function fi is called round function.

The confusion-diffusion steps together are called round.
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A substitution-permutation network is an
implementation of the confusion-diffusion paradigm.

Using a fixed public algorithm called key schedule,
sub-keys k1, . . . , kr+1 are derived from the key k.

Different permutations {Si} with small block length are
used to define the round functions:

fi(xi) = Si(xi ⊕ kj,i)

where kj,i denotes the i-th chunk of the sub-key kj.

Si is called S-box



Key Schedule: a simple example
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Let the key k be as follows:

k = 1110 0111 0110 0111 1001 0000 0011 1101.

Define ki as the 16 consecutive bits of k starting at bit 4i − 3:

k1 = 1110 0111 0110 0111

k2 = 0111 0110 0111 1001

k3 = 0110 0111 1001 0000

k4 = 0111 1001 0000 0011

k5 = 1001 0000 0011 1101



SPN - Example
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Input : m, S-boxes,
mixing permutation P,

(k1, . . . , kr+1).

Output : c.

state = m

for j = 1, . . . , r;

state = state ⊕ kj (key-mixing)
apply S-boxes to the t sub-strings..

..of state (substitution)
apply P to state (permutation)

c = state ⊕ kr+1



SPNs - Avalanche effect
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Some design principles are followed when constructing a SPN:

S-boxes: a change of one bit in the input determines a change of
at least two bits in the output.

mixing permutation P: the bits of the output of one S-box are
fed to multiple S-boxes in the next round.
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The Advanced Encryption Standard (AES) has a similar
structure (will see it soon).

The security of a SPN depends on the number of rounds.

for a SPN with a single round with no key mixing as
final step, it is easy to recover the key k;

a one round SPN is also not secure;

same for a two round SPN.



Feistel Networks
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Different approach to construct block ciphers following the
confusion-diffusion paradigm.

Advantage over SPNs: the round functions do not need to be
permutations.

For a permutation Fk : {0, 1}` → {0, 1}`, r key-dependent round
functions f1, · · · , fr, where fi : {0, 1}`/2 → {0, 1}`/2, are used.



Feistel Networks - An example
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Attacks on Block Ciphers



Linear Attacks
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Exploit linear combinations of input,
output and key bits.

The linearity here refers to ⊕ (the mod 2 bit-wise sum).

Goal: collect combinations whose probabilities of holding1

(linear probability biases) are as close to 0 or 1 as possible.

The relations are used in conjunction with known
input-output pairs to recover the key.

1Over the space of all possible values of their variables.



Differential Attacks
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Exploit relationship between ∆X = X1 ⊕ X2 and ∆Y = Y1 ⊕ Y2

for pairs of inputs (X1,X2) and corresponding outputs (Y1,Y2).

Ideally, Pd1,d2 = Pr(∆Y = d2|∆X = d1) = 1/2`, for every
d1, d2.

Pairs (d1, d2) s.t. Pd1,d2 � 1/2` are collected.

It is a chosen plaintext attack, so an attacker aims at
encrypting pairs (Xi1 ,Xi2) for which they know that a
certain ∆Yi occurs with high probability.



Quantum attacks
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Search problem: given A ⊂ X and f : X → {0, 1}
s.t. f (x) = 1 iff x ∈ A, find A having oracle accesso to f .

Classical computers: the best known algorithm runs in
time O(|X|).

Quantum computers: according to [Grover’96], the
runnning time is O

(√
|X|

)
(quadratic speedup).

Given input-output pairs (mi, ci), i = 1, . . . , t, define
f (k) = 1 if Fk(mi) = ci ∀i, and 0 otherwise.

Key length should be doubled
to protect against quantum attacks.
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