
Introduction to Cryptology

4.1 - Block Ciphers

Federico Pintore
Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

Block Ciphers

2/21

Block ciphers are designed to be concrete instantiations of
(strong) pseudorandom permutations.

A block cipher is a keyed map F : {0, 1}n ×{0, 1}` → {0, 1}` s.t.

Fk : {0, 1}` → {0, 1}`, x 7→ F(k, x) is a permutation for all
k ∈ {0, 1}n;

Fk and F−1
k are efficiently computable for all k ∈ {0, 1}n.

Naming: n is the key length, ` is the block length.

Block Ciphers

2/21

Block ciphers are designed to be concrete instantiations of
(strong) pseudorandom permutations.

A block cipher is a keyed map F : {0, 1}n ×{0, 1}` → {0, 1}` s.t.

Fk : {0, 1}` → {0, 1}`, x 7→ F(k, x) is a permutation for all
k ∈ {0, 1}n;

Fk and F−1
k are efficiently computable for all k ∈ {0, 1}n.

Naming: n is the key length, ` is the block length.

Concrete security of Block Ciphers

3/21

Let Perm` be the set of all permutations of {0, 1}`, and consider
a block cipher F : {0, 1}k × {0, 1}` → {0, 1}`.

For a PPT distinguisher D, we define their advantage as

AdvPRP
F,D = |Pr(Df () = 1)− Pr(DFk() = 1)|

where the first probability is taken over a uniform choice of f in
Perm` and the randomness of D, the second one over a uniform
choice of k in {0, 1}n and the randomness of D.

Concrete security of Block Ciphers

3/21

Let Perm` be the set of all permutations of {0, 1}`, and consider
a block cipher F : {0, 1}k × {0, 1}` → {0, 1}`.

For a PPT distinguisher D, we define their advantage as

AdvPRP
F,D = |Pr(Df () = 1)− Pr(DFk() = 1)|

where the first probability is taken over a uniform choice of f in
Perm` and the randomness of D, the second one over a uniform
choice of k in {0, 1}n and the randomness of D.

Concrete security of Block Ciphers

4/21

For any integers t and q, we define

AdvPRP
F (t, q) = max

D
{AdvPRP

F,D}

where the maximum is over all distinguishers D with time
complexity at most t and making at most q queries.

The terminology “F is a secure block cipher” indicates that
AdvPRP

F (t, q) is low for reasonable values of t and q.

Currently, a block cipher is considered secure if the best known
attack has time complexity approximately equal to a
brute-force attack to recover the key.

Concrete security of Block Ciphers

4/21

For any integers t and q, we define

AdvPRP
F (t, q) = max

D
{AdvPRP

F,D}

where the maximum is over all distinguishers D with time
complexity at most t and making at most q queries.

The terminology “F is a secure block cipher” indicates that
AdvPRP

F (t, q) is low for reasonable values of t and q.

Currently, a block cipher is considered secure if the best known
attack has time complexity approximately equal to a
brute-force attack to recover the key.

Concrete security of Block Ciphers

4/21

For any integers t and q, we define

AdvPRP
F (t, q) = max

D
{AdvPRP

F,D}

where the maximum is over all distinguishers D with time
complexity at most t and making at most q queries.

The terminology “F is a secure block cipher” indicates that
AdvPRP

F (t, q) is low for reasonable values of t and q.

Currently, a block cipher is considered secure if the best known
attack has time complexity approximately equal to a
brute-force attack to recover the key.

Constructing Block Ciphers

5/21

The permutations of a block cipher must:

behave like random permutations;

have a concise representation.

Representing an arbitrary permutation of {0, 1}` needs ` · 2`
bits (infeasible for ` > 50; for modern block ciphers ` ≥ 128).

Constructing Block Ciphers

5/21

The permutations of a block cipher must:

behave like random permutations;

have a concise representation.

Representing an arbitrary permutation of {0, 1}` needs ` · 2`
bits (infeasible for ` > 50; for modern block ciphers ` ≥ 128).

Confusion-Diffusion Paradigm

6/21

Confusion: use random-looking permutations fi with smaller
block length (e.g. 8 bits) than Fk to construct Fk.

Example: given x ∈ {0, 1}128, split it into 16 bytes
x1, · · · , x16 and define

Fk(x) = f1(x1)|| · · · ||f16(x16).

Fk(x) and Fk(x′) have only one different byte if w(x, x′) = 1.

Diffusion: use a mixing permutation to make a change in one
bit affect the entire output!

Confusion-Diffusion Paradigm

6/21

Confusion: use random-looking permutations fi with smaller
block length (e.g. 8 bits) than Fk to construct Fk.

Example: given x ∈ {0, 1}128, split it into 16 bytes
x1, · · · , x16 and define

Fk(x) = f1(x1)|| · · · ||f16(x16).

Fk(x) and Fk(x′) have only one different byte if w(x, x′) = 1.

Diffusion: use a mixing permutation to make a change in one
bit affect the entire output!

Confusion-Diffusion Paradigm

6/21

Confusion: use random-looking permutations fi with smaller
block length (e.g. 8 bits) than Fk to construct Fk.

Example: given x ∈ {0, 1}128, split it into 16 bytes
x1, · · · , x16 and define

Fk(x) = f1(x1)|| · · · ||f16(x16).

Fk(x) and Fk(x′) have only one different byte if w(x, x′) = 1.

Diffusion: use a mixing permutation to make a change in one
bit affect the entire output!

Confusion-Diffusion Paradigm

7/21

Each function fi is called round function.

The confusion-diffusion steps together are called round.

Substitution-permutation Networks (SPNs)

8/21

A substitution-permutation network is an
implementation of the confusion-diffusion paradigm.

Using a fixed public algorithm called key schedule,
sub-keys k1, . . . , kr+1 are derived from the key k.

Different permutations {Si} with small block length are
used to define the round functions:

fi(xi) = Si(xi ⊕ kj,i)

where kj,i denotes the i-th chunk of the sub-key kj.

Si is called S-box

Key Schedule: a simple example

9/21

Let the key k be as follows:

k = 1110 0111 0110 0111 1001 0000 0011 1101.

Define ki as the 16 consecutive bits of k starting at bit 4i − 3:

k1 = 1110 0111 0110 0111

k2 = 0111 0110 0111 1001

k3 = 0110 0111 1001 0000

k4 = 0111 1001 0000 0011

k5 = 1001 0000 0011 1101

SPN - Example

10/21

Input : m, S-boxes,
mixing permutation P,

(k1, . . . , kr+1).

Output : c.

state = m

for j = 1, . . . , r;

state = state ⊕ kj (key-mixing)
apply S-boxes to the t sub-strings..

..of state (substitution)
apply P to state (permutation)

c = state ⊕ kr+1

SPNs - Avalanche effect

11/21

Some design principles are followed when constructing a SPN:

S-boxes: a change of one bit in the input determines a change of
at least two bits in the output.

mixing permutation P: the bits of the output of one S-box are
fed to multiple S-boxes in the next round.

SPNs - Avalanche effect

11/21

Some design principles are followed when constructing a SPN:

S-boxes: a change of one bit in the input determines a change of
at least two bits in the output.

mixing permutation P: the bits of the output of one S-box are
fed to multiple S-boxes in the next round.

SPNs - Avalanche effect

11/21

Some design principles are followed when constructing a SPN:

S-boxes: a change of one bit in the input determines a change of
at least two bits in the output.

mixing permutation P: the bits of the output of one S-box are
fed to multiple S-boxes in the next round.

SPNs - Miscellaneous

12/21

The Advanced Encryption Standard (AES) has a similar
structure (will see it soon).

The security of a SPN depends on the number of rounds.

for a SPN with a single round with no key mixing as
final step, it is easy to recover the key k;

a one round SPN is also not secure;

same for a two round SPN.

Feistel Networks

13/21

Different approach to construct block ciphers following the
confusion-diffusion paradigm.

Advantage over SPNs: the round functions do not need to be
permutations.

For a permutation Fk : {0, 1}` → {0, 1}`, r key-dependent round
functions f1, · · · , fr, where fi : {0, 1}`/2 → {0, 1}`/2, are used.

Feistel Networks - An example

14/21

Attacks on Block Ciphers 15/21

Attacks on Block Ciphers

Linear Attacks

Attacks on Block Ciphers 16/21

Exploit linear combinations of input,
output and key bits.

The linearity here refers to ⊕ (the mod 2 bit-wise sum).

Goal: collect combinations whose probabilities of holding1

(linear probability biases) are as close to 0 or 1 as possible.

The relations are used in conjunction with known
input-output pairs to recover the key.

1Over the space of all possible values of their variables.

Differential Attacks

Attacks on Block Ciphers 17/21

Exploit relationship between ∆X = X1 ⊕ X2 and ∆Y = Y1 ⊕ Y2

for pairs of inputs (X1,X2) and corresponding outputs (Y1,Y2).

Ideally, Pd1,d2 = Pr(∆Y = d2|∆X = d1) = 1/2`, for every
d1, d2.

Pairs (d1, d2) s.t. Pd1,d2 � 1/2` are collected.

It is a chosen plaintext attack, so an attacker aims at
encrypting pairs (Xi1 ,Xi2) for which they know that a
certain ∆Yi occurs with high probability.

Quantum attacks

Attacks on Block Ciphers 18/21

Search problem: given A ⊂ X and f : X → {0, 1}
s.t. f (x) = 1 iff x ∈ A, find A having oracle accesso to f .

Classical computers: the best known algorithm runs in
time O(|X|).

Quantum computers: according to [Grover’96], the
runnning time is O

(√
|X|

)
(quadratic speedup).

Given input-output pairs (mi, ci), i = 1, . . . , t, define
f (k) = 1 if Fk(mi) = ci ∀i, and 0 otherwise.

Key length should be doubled
to protect against quantum attacks.

Quantum attacks

Attacks on Block Ciphers 18/21

Search problem: given A ⊂ X and f : X → {0, 1}
s.t. f (x) = 1 iff x ∈ A, find A having oracle accesso to f .

Classical computers: the best known algorithm runs in
time O(|X|).

Quantum computers: according to [Grover’96], the
runnning time is O

(√
|X|

)
(quadratic speedup).

Given input-output pairs (mi, ci), i = 1, . . . , t, define
f (k) = 1 if Fk(mi) = ci ∀i, and 0 otherwise.

Key length should be doubled
to protect against quantum attacks.

Quantum attacks

Attacks on Block Ciphers 18/21

Search problem: given A ⊂ X and f : X → {0, 1}
s.t. f (x) = 1 iff x ∈ A, find A having oracle accesso to f .

Classical computers: the best known algorithm runs in
time O(|X|).

Quantum computers: according to [Grover’96], the
runnning time is O

(√
|X|

)
(quadratic speedup).

Given input-output pairs (mi, ci), i = 1, . . . , t, define
f (k) = 1 if Fk(mi) = ci ∀i, and 0 otherwise.

Key length should be doubled
to protect against quantum attacks.

Quantum attacks

Attacks on Block Ciphers 18/21

Search problem: given A ⊂ X and f : X → {0, 1}
s.t. f (x) = 1 iff x ∈ A, find A having oracle accesso to f .

Classical computers: the best known algorithm runs in
time O(|X|).

Quantum computers: according to [Grover’96], the
runnning time is O

(√
|X|

)
(quadratic speedup).

Given input-output pairs (mi, ci), i = 1, . . . , t, define
f (k) = 1 if Fk(mi) = ci ∀i, and 0 otherwise.

Key length should be doubled
to protect against quantum attacks.

Quantum attacks

Attacks on Block Ciphers 18/21

Search problem: given A ⊂ X and f : X → {0, 1}
s.t. f (x) = 1 iff x ∈ A, find A having oracle accesso to f .

Classical computers: the best known algorithm runs in
time O(|X|).

Quantum computers: according to [Grover’96], the
runnning time is O

(√
|X|

)
(quadratic speedup).

Given input-output pairs (mi, ci), i = 1, . . . , t, define
f (k) = 1 if Fk(mi) = ci ∀i, and 0 otherwise.

Key length should be doubled
to protect against quantum attacks.

Further Reading I

Attacks on Block Ciphers 19/21

Nadhem J AlFardan, Daniel J Bernstein, Kenneth G
Paterson, Bertram Poettering, and Jacob CN Schuldt.
On the security of RC4 in TLS.
In 22nd USENIX Security Symposium (USENIX Security
13), pages 305–320, 2013.

Boaz Barak and Shai Halevi.
A model and architecture for pseudo-random generation
with applications to/dev/random.
In Proceedings of the 12th ACM conference on Computer
and communications security, pages 203–212. ACM, 2005.

Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip
Rogaway.
A concrete security treatment of symmetric encryption.
In Proceedings 38th Annual Symposium on Foundations of
Computer Science, 1997, pages 394–403, 1997.

Further Reading II

Attacks on Block Ciphers 20/21

Daniel J Bernstein.
The Salsa20 Family of Stream Ciphers.
In New stream cipher designs, pages 84–97. Springer, 2008.

Lenore Blum, Manuel Blum, and Mike Shub.
A simple unpredictable pseudo-random number generator.
SIAM Journal on computing, 15(2):364–383, 1986.

Christian Cachin.
Entropy measures and unconditional security in
cryptography.
PhD thesis, ETH Zurich, 1997.

Scott Fluhrer, Itsik Mantin, and Adi Shamir.
Weaknesses in the key scheduling algorithm of RC4.
In Selected areas in cryptography, pages 1–24. Springer,
2001.

Further Reading III

Attacks on Block Ciphers 21/21

Christina Garman, Kenneth G Paterson, and Thyla
Van der Merwe.
Attacks only get better: Password recovery attacks against
RC4 in TLS.
In 24th USENIX Security Symposium (USENIX Security
15), pages 113–128, 2015.

Itsik Mantin and Adi Shamir.
A practical attack on broadcast RC4.
In Fast Software Encryption, pages 152–164. Springer, 2002.

	Attacks on Block Ciphers

