Introduction to Cryptology 5.1 - Modes of Operation

Federico Pintore

Mathematical Institute, University of Oxford (UK)

Michaelmas term 2020

Modes of operation

Stream and block ciphers are used to obtain computationallyindistinguishable and CPA-secure encryption, respectively.

Both the constructions have some drawbacks.

They are addressed by different modes of operation of block and stream ciphers.

Modes of Operation of Stream Ciphers

A stream cipher (Init,GetBits) can be used to construct PRGs.

Construction of a PRG $G_{\ell(n)}$:

 $\begin{aligned} & \operatorname{st}_{0} \leftarrow \operatorname{Init}(s, IV) \\ & \operatorname{for} i = 1, \cdots, \ell(n) \\ & (y_{i}, \operatorname{st}_{i}) \leftarrow \operatorname{GetBits}(\operatorname{st}_{i-1}) \\ & \operatorname{return} y_{1}, \cdots, y_{\ell(n)} \end{aligned}$

A stream cipher (Init,GetBits) can be used to construct PRGs.

Construction of a PRG $G_{\ell(n)}$:

 $\begin{aligned} & \operatorname{st}_{0} \leftarrow \operatorname{Init}(s, IV) \\ & \operatorname{for} i = 1, \cdots, \ell(n) \\ & (y_{i}, \operatorname{st}_{i}) \leftarrow \operatorname{GetBits}(\operatorname{st}_{i-1}) \\ & \operatorname{return} y_{1}, \cdots, y_{\ell(n)} \end{aligned}$

A stream cipher is secure if:

it takes no IV,

for any expansion factor $\ell(n)$, $G_{\ell(n)}$ is a PRG.

Let G be a pseudorandom generator with expansion factor $\ell(n)$. Define a fixed-length encryption scheme

E = (KeyGen, Enc, Dec)

with $\mathcal{M} = \{0, 1\}^{\ell(n)}$, as follows:

• $k \leftarrow \text{KeyGen}(n)$: it uniformly samples $k \in \{0, 1\}^n$.

- $c \leftarrow \operatorname{Enc}(k,m)$: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^{\ell(n)}$, it outputs $c = G(k) \oplus m$.
- ▶ $m \leftarrow \text{Dec}(k, c)$: on input a key $k \in \{0, 1\}^n$ and a ciphertext $c \in \{0, 1\}^{\ell(n)}$, it outputs $m = G(k) \oplus c$.

Let G be a pseudorandom generator with expansion factor $\ell(n)$. Define a fixed-length encryption scheme

E = (KeyGen, Enc, Dec)

with $\mathcal{M} = \{0, 1\}^{\ell(n)}$, as follows:

• $k \leftarrow \text{KeyGen}(n)$: it uniformly samples $k \in \{0, 1\}^n$.

- $c \leftarrow \operatorname{Enc}(k,m)$: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^{\ell(n)}$, it outputs $c = G(k) \oplus m$.
- ▶ $m \leftarrow \text{Dec}(k, c)$: on input a key $k \in \{0, 1\}^n$ and a ciphertext $c \in \{0, 1\}^{\ell(n)}$, it outputs $m = G(k) \oplus c$.

Theorem

If G is a PRG, then the encryption scheme E derived from G is computationally indistinguishable.

Drawbacks:

- message length is fixed;
- Enc is deterministic, hence E is not CPA secure.

Drawbacks:

- message length is fixed;
- Enc is deterministic, hence E is not CPA secure.

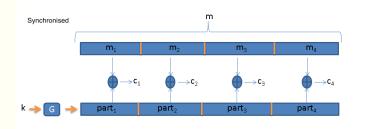
Are there alternative uses of stream ciphers which address these drawbacks?

Since every stream cipher gives rise to a family of PRGs (one for each $\ell(n)$), an arbitrary-length E can be defined.

The encryption of a message *m* is $G_{\ell(n)}(k) \oplus m$, where $\ell(n) = |m|$.

It can be proven that the resulting encryption scheme is computationally indistinguishable.

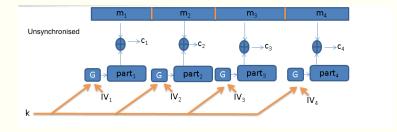
Synchronised mode of operation



Multiple messages can be treated as a single, long message.

- Encrypted blocks can be sent gradually.
- Sender and receiver have to maintain synchronised state.

Unsynchronised mode of operation



Initialisation vectors are used.

Stateless CPA-secure encryption is obtained, provided that the stream cipher enjoys extra properties.

Modes of Operation of Block Ciphers

Let F be a PRP. We define the following fixed-lenght encryption scheme E = (KeyGen, Enc, Dec):

- ▶ $k \leftarrow \text{KeyGen}(n)$: on input n, it outputs a uniformly random key $k \in \{0, 1\}^{\ell_{key}(n)}$.
- $c \leftarrow \operatorname{Enc}(k,m)$: given a key k and a message $m \in \{0,1\}^{\ell_{in}(n)}$, it uniformly samples $r \leftarrow \{0,1\}^{\ell_{in}(n)}$, and outputs

$$(c_0,c_1) \leftarrow (r,F_k(r)\oplus m).$$

▶ $m \leftarrow \text{Dec}(k, (c_0, c_1))$: on input a key k and a ciphertext $c = (c_0, c_1)$, it returns

$$m \leftarrow (F_k(c_0) \oplus c_1).$$

Let F be a PRP. We define the following fixed-lenght encryption scheme E = (KeyGen, Enc, Dec):

- ▶ $k \leftarrow \text{KeyGen}(n)$: on input n, it outputs a uniformly random key $k \in \{0, 1\}^{\ell_{key}(n)}$.
- $c \leftarrow \operatorname{Enc}(k,m)$: given a key k and a message $m \in \{0,1\}^{\ell_{in}(n)}$, it uniformly samples $r \leftarrow \{0,1\}^{\ell_{in}(n)}$, and outputs

$$(c_0,c_1) \leftarrow (r,F_k(r)\oplus m).$$

▶ $m \leftarrow \text{Dec}(k, (c_0, c_1))$: on input a key k and a ciphertext $c = (c_0, c_1)$, it returns

$$m \leftarrow (F_k(c_0) \oplus c_1).$$

Theorem

If *F* is a PRP with $\ell_{in}(n) \ge n$, then the encryption scheme *E* is CPA-secure.

Drawbacks:

- message length is fixed;
- the length of the ciphertext is double the length of the message.

Drawbacks:

- message length is fixed;
- the length of the ciphertext is double the length of the message.

Are there alternative uses of block ciphers to address these drawbacks?

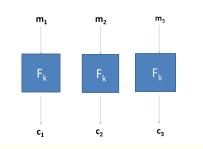
Drawbacks:

- message length is fixed;
- the length of the ciphertext is double the length of the message.

Are there alternative uses of block ciphers to address these drawbacks?

We assume F is a length-preserving PRP (block cipher), with $\ell_{in}(n) = \ell_{out}(n) = n$, and messages have length multiple of n.

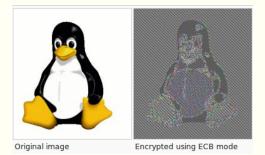
Electronic Code Book (ECB) mode



- It is deterministic, so it cannot be CPA-secure;
- it is not even computationally indistinguishable.

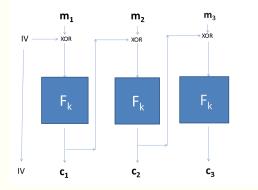
Electronic Code Book (ECB) mode

The ECB mode may reveal information about the message:



Source: Wikipedia

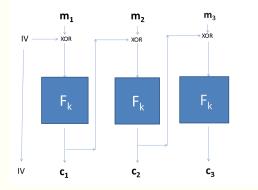
Cipher Block Chaining (CBC) mode



 $c \leftarrow \operatorname{Enc}(k, m)$: given a message $m = (m_1, m_2, \dots, m_t)$ and a key k, it outputs $c = (c_0, c_1, \dots, c_t)$, where $c_0 = IV$ and

$$c_i = F_k(c_{i-1} \oplus m_i)$$
 for $i = 1 \dots t$.

Cipher Block Chaining (CBC) mode



 $m \leftarrow \text{Dec}(k, c)$: given a ciphertext $c = (c_0, c_1, \dots, c_t)$ and a key k, it outputs $m = (m_1, \dots, m_t)$, where

$$m_i \leftarrow F_k^{-1}(c_i) \oplus c_{i-1}$$
 for $i = 1 \cdots t$.

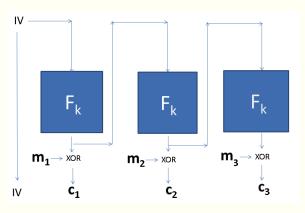
Cipher Block Chaining (CBC) mode

Security:

- ▶ If *F* is a pseudorandom permutation, than the CBC-mode encryption is CPA-secure.
- Chained CBC mode: stateful variant of CBC mode, where the last block of the previous ciphertext repleaces *IV* in the encryption of the new message. It is not CPA-secure.

Efficiency: no parallel processing (encryption is sequential).

Output Feedback (OFB) mode



▶ $IV \in \{0,1\}^n$ is chosen uniformly at random.

•
$$y_0 := IV$$
 and
 $y_i := F_k(y_{i-1})$.

- Given IV, a message *m* = (*m*₁,...,*m*_t) and a key *k*, Enc returns (*c*₀, *c*₁,...,*c*_t) where *c*₀ := *y*₀, *c*_i := *y*_i ⊕ *m*_i.
- To decrypt, $m_i := y_i \oplus c_i$ are computed.

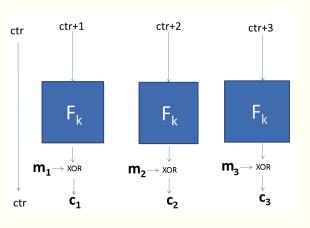
Output Feedback (OFB) mode

Security:

- F_k does not have to be invertible.
- If F is a pseudorandom function, then the OFB mode is CPA-secure.
- Its stateful variant is secure.

Efficiency: most of the computation can be done before encrypting/decrypting.

Counter (CTR) mode



• $\operatorname{ctr} \in \{0, 1\}^n$ is chosen uniformly at random.

$$y_i := F_k(\operatorname{ctr} + i \pmod{2^n}).$$

- Given ctr, a message $m = (m_1, \ldots, m_t)$ and a key k, Enc returns (c_1, \ldots, c_t) where $c_i := y_i \oplus m_i$.
- To decrypt, $m_i := y_i \oplus c_i$ are computed.

Counter (CTR) mode

Security:

- F_k does not have to be invertible.
- If F is a pseudorandom function, then the CTR mode is CPA-secure.
- Its stateful version is secure.

Efficiency: parallel processing is possible.

Initialisation Vector *IV*

CBC, OFB and CTR modes use a random IV (or ctr).

¹(For the birthday paradox - we will cover it.)

Initialisation Vector IV

CBC, OFB and CTR modes use a random IV (or ctr).

A repeated *IV* could jeopardise security:

- OFB or CTR: the attacker can xor the two resulting ciphertexts to learn about the encrypted plaintexts.
- **CBC**: after few blocks the inputs to F_k will "diverge".

¹(For the birthday paradox - we will cover it.)

Initialisation Vector IV

CBC, OFB and CTR modes use a random IV (or ctr).

A repeated *IV* could jeopardise security:

- OFB or CTR: the attacker can xor the two resulting ciphertexts to learn about the encrypted plaintexts.
- **CBC**: after few blocks the inputs to F_k will "diverge".

The block length for DES is $\ell = 64$. After the encryption of data of size 2^{32} bits ≈ 34 gigabytes, a repeated *IV* is expected¹.

¹(For the birthday paradox - we will cover it.)

Further Reading

Don Coppersmith.

The data encryption standard (DES) and its strength against attacks.

IBM journal of research and development, 38(3):243–250, 1994.

Itai Dinur, Orr Dunkelman, Masha Gutman, and Adi Shamir.

Improved top-down techniques in differential cryptanalysis. Cryptology ePrint Archive, Report 2015/268, 2015. http://eprint.iacr.org/.

Further Reading

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir.

Efficient dissection of composite problems, with applications to cryptanalysis, knapsacks, and combinatorial search problems.

Cryptology ePrint Archive, Report 2012/217, 2012. http://eprint.iacr.org/.

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir.

New attacks on feistel structures with improved memory complexities.

In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology – CRYPTO 2015, volume 9215 of Lecture Notes in Computer Science, pages 433–454. Springer Berlin Heidelberg, 2015.

Further Reading III

Lov K Grover.

A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219. ACM, 1996.

Howard M Heys.

A tutorial on linear and differential cryptanalysis. Cryptologia, 26(3):189–221, 2002.