Topological Groups, 20202021

Tom Sanders

We begin with the course overview as described on https://courses.maths.ox.ac.
uk/node/51770.

Course Overview:

Groups like the integers, the circle, and general linear groups (over R or C) share a number
of properties naturally captured by the notion of a topological group. Providing a unified
framework for these groups and properties was an important achievement of 20th century
mathematics, and in this course we shall develop this framework.

Highlights will include the existence and uniqueness of Haar integrals for locally compact
topological groups, the topology of dual groups, and the existence of characters in locally
compact Hausdorff Abelian topological groups. Throughout, the course will use the tools
of analysis to tie together the topology and algebra, getting at superficially more algebraic

facts by analytic means.

References

There are some references which may be of use: [Fol95| [K6r08| [Kral7, Megl7] and [Rud90].

Teaching

The lectures and these notes will appear online as they are produced. They will be supple-
mented by some tutorial-style teaching where we can discuss the course and also exercises
from the sheets. Once I have a list of the MFoCS students attending I shall be in touch to

arrange these.

Contact details and feedback

The current circumstances mean this course is appearing in a different way to normal. In
particular, there will inevitably be less audience response so I encourage you to get in touch

at tom.sanders@maths.ox.ac.uk if you have any questions or feedback.

Last updated: 7" April, 2021.
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General prerequisites

The course is designed to be pretty self-contained. We assume basic familiarity with groups
as covered in Prelims Groups and Group Actions (see e.g. [Earld]). We shall also assume
familiarity with Prelims Linear Algebra (see e.g. [May20]), though it is only in §7]that we use
anything of substance; and Part A: Metric Spaces and Complex Analysis (see e.g. [McG20])
for material on normed spaces.

Familiarity with topology is essential, though not much is required. What we use (and
more) is covered in Part A: Topology (see e.g. [DL18]), with the exception of Tychonoft’s
Theorem. This can be informally summarised as saying that a non-empty product of non-
empty compact spaces is compact, and there is no harm in taking it as a black box for the
course. Those interested in more detail may wish to consult Part C: Analytic Topology (see
e.g. [Knil8]).

The Axiom of Choice is sometimes formulated as saying that an arbitrary product of
non-empty sets is non-empty, and this perhaps makes it less surprising that it can be used
to prove Tychonoft’s Theorem. It turns out that the converse is also true, i.e. Tychonoft’s
Theorem and the other axioms of Zermelo—Fraenkel set theory can be used to prove the
Axiom of Choice, and both are equivalent to Zorn’s Lemmaﬂ. We shall make use of Zorn’s
Lemma once at the very end of the course (literally the last lemma — Lemma [7.22)).

Finally no familiarity with functional analysis is assumed, though there are clear simi-
larities and parallels for those who do have some. Those interested may consult [Pril7] and
[Whi19).

1 Introduction

In this course we are interested in the interaction between group structure and a ‘compatible’
topological structure.

Suppose that GG is a group written multiplicatively, by which we mean the binary op-
eration of the group is denoted G* — G;(z,y) — wzy; with inversion is denoted G —

. and the identity is denoted 1g. Suppose additionally that G is a topological

G;x — x~
space with topology 7. We say that the group operation is jointly continuous if the map
G? — G;(z,y) — xy is continuous, where G? is equipped with the product topology (from
the topology 7 on each factor of ). If inversion is continuous and the group operation is

jointly continuous then G is said to be a topological group.

Example 1.1 (Indiscrete groups). Any group G endowed with the indiscrete topology is a

topological group since any map into an indiscrete space is continuous.

!Those unfamiliar and looking for a reference may wish to consult the notes [Pil20] or [Con].
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Example 1.2 (Discrete groups). Any group G endowed with the discrete topology is a
topological group since the product of two copies of the discrete topology is discrete — so
both the topological spaces G' and G? are discrete — and any map from a discrete space is

continuous.

The reals under addition may be endowed with the discrete or indiscrete topologies to
make them into a topological group as above, however, there are other topologies on R

which are of interest.

Example 1.3 (The real line). The group R (the operation is addition) endowed with its
usual topology is a topological group. The relevant continuity is just the algebra of limits: in
particular, if x,, — xo then —(z,) = (—=1)z,, — (—1)z¢ = —x¢; and if additionally y,, — o,

then z, + v, — xo + vo.

Remark 1.4. The reals illustrate some important general features for which we need a little
terminology. A neighbourhood base of a point z in a topological space X is a family
B = (B;)ier of neighbourhoods of z such that if U is an open set containing z then there is
some ¢ € [ such that B, < U.

A topological space is said to be first countable if every element of the space has
a countable neighbourhood base (meaning every = has a a neighbourhood base B(z) =
(Ba(@))2y).

First countable spaces are important because matters of convergence may be resolved
just by considering sequences and not more general nets. In particular, a function f is
sequentially continuous if f(z,) — f(zo) whenever x,, — x¢, and it is easy enough to
check that a continuous function is sequentially continuous (see e.g. [DL18, Proposition

1.24]); if the domain is first countable thenE] sequential continuity implies continuity.

Example 1.5 (The real line, revisited). The group R endowed with its usual topology has
(x + (=1/n,1/n))*_; as a countable neighbourhood base for each x € R. In fact this is
in some sense just the neighbourhood base ((—1/n,1/n))>_, for 0 translated around the
group. This will be a general phenomenon of topological groups — they all have a (not
necessarily countable) neighbourhood basis of the identity which can be translated to give

a neighbourhood basis for any other point.

Example 1.6 (Normed spaces). The additive group of a normed space X with the topology
induced by the norm is a topological group.

The topology induced by the norm is the weakest topology such that x — |z| is contin-
uous. For each x € X, (z +{ye X : |y| < 1/n})¥_, is a countable neighbourhood base for

2In general this is proved using the Axiom of Countable Choice, though there are interesting cases where

this is not necessary.
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this topology so X is first countable. Moreover, the product of two first countable spaces is
first countable and hence to show that X is a topological group it is enough to note from
homogeneity that if x, — z¢ then —x,, — —x¢; and from the triangle inequality that if

Tn — xo and y, — Yo then z, + vy, — xg + Yo.

Remark 1.7. The above is essentially the same argument as in Example but in particular

gives the more general fact that R™ and C™ are topological groups under addition.

Remark 1.8. A topological vector space over R (resp. C) is a vector space over R
(resp. C) with a topology such that addition of vectors is jointly continuous, and scalar
multiplication is jointly continuous. It can be shown similarly to the above that any normed
space is a topological vector space, and a theory can be developed as in, for example, [Bou87].

This parallels many of our developments here but we shall not say more about it.

Given a normed space X we write B(X) for the set of continuous linear maps X — X
and GL(X) for the set of linear homeomorphisms. GL(X) is a group under composition

and it can be profitably viewed as inheriting topologies from B(X).

Example 1.9 (GL(X) with the operator norm topology). GL(X) may be endowed with
the subspace topology inherited from B(X) with the operator norm topology. With this
topology GL(X) is a topological group.

If S, = So and T,, — T then |T,,| < 2||To| for all sufficiently large n and hence

|50 T = SoToll < [[Sn = Soll[ Tl + S0l T = Toll — O

since the operator norm is sub-multiplicative; hence S, T,, — SoTy. B(X) is a normed space
so as in Example the topology is first countable, whence so is the topology on GL(X)
and on GL(X) x GL(X). Hence multiplication is continuous.

Now suppose that T,, — Tp, and let N € N be such that for n > N we have |T,, — Ty <
1/(2|T5 ). Now for all n we have

17, =157 = 1T (To = T) Ty | < 1T T — Tl 7571, (1.1)

and so if n > N then [T < 2|T;"| by the triangle inequality. Inserting this bound back

into ([1.1)) we have
|7, = Ty < 1T — Toll20 7577,

for n > N, and so T, ' — T, * as required.

Remark 1.10. In particular C* (which we may identify with GL(C)) is a topological group
under multiplication.

The above example is our first example where showing continuity of inversion is a little
more involved. The multiplicative group C* already gives a glimpse as to why: despite being

1

continuous, the inversion map C* — C*; z — 27" is not uniformly continuous.
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Remark 1.11. There are other natural topologies on GL(X), for example the strong and
weak operator topology, which are the same as the operator norm topology when X is
finite dimensional but different for infinite dimensional normed spaces. Though they are

important we shall not dwell on these.

Remark 1.12. In particular the matrix groups GL,(R) and GL,(C) are topological groups.

2 Some basics of the interplay of algebra and topology
Suppose that G is a group (written multiplicative) and S, T < G. We write
Sti={s':s5€e8}and ST := {st:se S,teT}.

For n € Ny we define S™ inductively by SY := {15} and S"*! := S"S, and S~ := (S~!)".

It will also be convenient to write xS := {x}S and Sz := S{z} for z € G.

Remark 2.1. The notation 2S5 (and Sz) generalises the usual coset notation for when S < G.
/N\In general $S—1 # S and S # {s*:s5€S]}.
/NG™ denotes the n-fold Cartesian product G x --- x G not the product defined above
which is just G.

We write (S) for the group generated by S, that is ({H < G : S © H}, the intersection
of all the subgroups of G containing S.
We call S « G symmetric if S = S

Remark 2.2. If S and T are symmetric then S n T is symmetric.

Remark 2.3. If S is symmetric then {(S) = J S™ by the subgroup test.

neNg

We say that an Abelian group G is written additively to mean that the binary operation
of the group is denoted G* — G (x,y) — x + y; the inversion is denoted G — Gz — —uz;
and the identity is denoted Og. The preceding notation changes in the obvious way, so we
write S + T instead of STetc. above.

Remark 2.4. The reals in Example [1.3, and more generally the additive group of normed
spaces (Example are examples of Abelian groups written additively. While, for example,
C* (as described in Remark [1.10)), is an Abelian group written multiplicatively.

Suppose that G is a group written multiplicatively. To understand the interplay of
algebra and topology in topological groups it is useful to have a further definition: We say
that the group operation on G is separately continuous if the maps G — G;x — xy and

G — G;x — yx are continuous for all y € G.

Remark 2.5. Separate continuity of the group operation is exactly equivalent to saying that

xU and Uz are open (resp. closed) whenever U is open (resp. closed) and z € G.
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Remark 2.6. The maps G — G*;z +— (z,y) (and G — G?*;x — (y, x)) are continuous for all

y € G and so joint continuity of the group operation implies separate continuity.

A group G with a separately continuous group operation is called a semitopological
group; and if, additionally, inversion is continuous then we call it a quasitopological
group.

These two definitions will only really be important to us in the present section, and then

primarily for illustrating how powerful joint continuity is compared with separate continuity.

Remark 2.7. In view of Remark [2.6], every topological group is a quasitopological group,

and of course every quasitopological group is a semitopological group.

Example 2.8 (Reals with the right order topology). The reals R (with the operation of
addition) and with topology {(a,0) : a € R} u {J,R} is a semitopological group since the
translate of any interval of the form (a, ) is also of this form; we denote it Rrp. This is

not a quasitopological group since (—o0, —a) is not open (whatever a).

Example 2.9. A group G endowed with the cofinite topology, that is the topology in which
the closed sets are the finite sets (and the whole of G), is a quasitopological group since U~!
is finite if U is finite (so inversion is continuous), and zU and Ux are finite if U is finite (so
multiplication is separately continuous).

If GG is finite then the cofinite topology is the same as the discrete topology and G is a
topological group (as in Example . On the other hand, we shall see in Remark that

it is mot always a topological group.

Example 2.10. A group G endowed with the cocountable topology, that is the topology
in which the closed sets are the countable sets (and the whole of G), is a quasitopological
group by the same argument as in Example [2.9) with finite replaced by countable.

Now, if G is countable again we recover a discrete group; we shall be interested in the

case when GG is uncountable.

Remark 2.11. There is also a notion of paratopological group, which is a group with
a jointly continuous group operation, but no continuity of the inverse is assumed. This
notion will not even be of illustrative importance to us. Exercise gives an example of a

paratopological group that is not a topological group.

There are a few key lemmas (Lemmas [2.12] [2.14] [2.18]|2.23] [2.25] and [2.28)) which capture

how the group operations interact with the topology of a (semi)topological group and while

these are not the main results we use later on, we highlight them in red because they each
capture a crucial technique or idea.

Lemma 2.12 (Key Lemma I). Suppose that G is a semitopological group, U is open and V'
is any set. Then UV and VU are open, and U is a neighbourhood of z if and only if = *U
(or Uz™1) is a neighbourhood of the identity.
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Proof. First, UV = |J,o; Uv which is a union of open sets by the first part and hence open.
Similarly VU is a union of open sets and so open. Finally, if U is a neighbourhood of z
then there is an open set U, < U containing x. Hence 271U, is an open set containing 14
and contained in U, which is to say 27'U is a neighbourhood of the identity. Similarly
if 271U is a neighbourhood of the identity then U is a neighbourhood of z, and the same

two arguments also work for Uz~ 0

In a similar vein we can say something about separation in semitopological groups:
A topological space X is Fréchet (or T7) if every singleton in X is closed. (The other

separation axioms we shall touch on in increasing order of strength are T3, just before

Remark Ts in Remark [2.34] T35, in Remark and Ty in Remark )

Lemma 2.13. Suppose that G is a semitopological group. Then G is Fréchet if and only if
{1¢} is closed.

Proof. Immediate from separate continuity. O

Lemma 2.14 (Key Lemma II). Suppose that G is a quasitopological group. If U is a
neighbourhood of 1¢ then U contains a symmetric open neighbourhood of the identity. If K

15 a compact set then K is contained in a compact symmetric set.

Proof. 1f U is a neighbourhood of 14 then U contains an open neighbourhood V of 15. Put
S := V nV~! which is open and contains 1¢ (since 15" = 1) and moreover S = S~! so that
S is a symmetric open neighbourhood of 15 contained in U. Since inversion is continuous
and K is compact, K~! is compact and since the union of compact sets is compact we

conclude that K U K~! is a compact symmetric set. O

Remark 2.15. We did not actually use separate continuity of multiplication above.

Remark 2.16. /N\Intersections of compact sets in topological groups are not necessarily
compact. See Exercise [[.6]

Remark 2.17. A symmetric set S in a quasitopological group has symmetric closure: In-
version is continuous and self-inverse so S is closed and contains S~' = S. Tt follows
that S = S . But inversion is an involutio so this tells us § ' < (S7)! = 5, and we

conclude that § = 5.

The next lemma captures an important nesting of open and closed sets.

Lemma 2.18 (Key Lemma III). Suppose that G is a semitopological group, and S is a set
and V is an open neighbourhood of the identity. Then SV < SVV 1.

3An involution is a map f: X — X on a set that is self-inverse 4.e. such that f2(z) = x for all x € X.
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Proof. Let A := G\(SVV ™), which is closed since V is open and so SVV ™! is open by
Lemma 2.1} and B := G\(AV') which is closed since AV is open again by Lemma It
x € SV and x € AV then there is some v € V such that zv™! € A4, so zv=' ¢ SVV~! a
contradiction. Hence SV < B and since B is closed SV < B. Now if x € B then x ¢ AV

and so in particular x ¢ A (since 1g € V) and hence x € SVV ™! as claimed. ]
The next result is, perhaps, a little surprising.

Corollary 2.19. Suppose that G is a semitopological group and H < G. If H is a neigh-
bourhood in G then H is open in G; and if H is open in G then H is closed in G.

Proof. 1If H is a neighbourhood of some z € G then by Lemma there is an open set
U such that 271U is an open set containing the identity. Now H = HU is open, again by
Lemma 2,12

For the second part, if H is open then by Lemma Hc HH ' = H and so H is
closed. [

Remark 2.20. If U is a neighbourhood in a semitopological group G then by Corollary
(U is closed so U < (U) and hence (U) = (U). /\This need not be true if U is not a
neighbourhood, for example U = QQ in R with its usual topology.

As it happens subgroup of a semitopological (resp. quasitopological) group with the sub-
space topology is itself a semitopological (resp. quasitopological) group, but more important

to us is the following:

Proposition 2.21. Suppose that G is a topological group and H < G. Then H is a topo-

logical group when endowed with the subspace topology.

Proof. Suppose U is an open set in H, and let W be an open subset of G such that U =
WnH ThenU't'=WnH)'=W11nH?'=W="1~H,but W=!is open in G and so
U~1is open in H i.e. inversion is continuous.

For multiplication, let V := {(x,y) € G* : zy € W} so that V n H? = {(z,y) € H* : 2y €
U}. Since multiplication on G is continuous, by definition of the product topology there are
sets § and T of open subsets of G such that

V=|J{SxT:5€8TeT}

Now (S xT)n H? = (Sn H) x (T n H), and so the preimage of U under multiplication
on H is open in the product of the subspace topology on H with itself. That is to say,

multiplication is continuous on H and the result is proved. O

Example 2.22. S!' := {z € C* : |z| = 1} is a subgroup of C* and so it is a topological
group. In this case it is closed, but in general we are not making the assumption that any

subgroups we are considering are (topologically) closed.
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We now turn to a couple of key lemmas which (like Proposition [2.21]) make essential use

of joint continuity in topological groups.

Lemma 2.23 (Key Lemma IV). Suppose that G is a topological group and K, ..., K, are
compact subsets of G. Then Ky --- K, is compact. In particular, if K is compact then K"

is compact for alﬁ n € Ny.

Proof. The (topological) product of two compact sets is compact so if K; - - - K, is compact
and K, is compact then (K;--- K,,_1) x K, is compact. But then the continuous image of
a compact set is compact and so K;--- K, = (K- - K,_1)K, is compact and the result

follows by induction on n. O]

Remark 2.24. Exercise[[.3|gives an example of a quasitopological group where the conclusion

above does not hold.

Lemma 2.25 (Key Lemma V). Suppose that G is a topological group and X is a neigh-
bourhood of z. Then there is a symmetric open neighbourhood of the identity V' such that
V2 e X.

Proof. Let U < X be an open neighbourhood of z. The map (z,y) — xy is continuous and
so {(z,y) : zy € U} is an open subset of G x GG. By definition of the product topology there
are sets S and T of open subsets of G such that

{(x,y):xyeU}:U{SxT:SeS,TeT}.

Since z1g = z € U, there is some S € § and T € T such that (z,1g) € S x T. Thus S is
an open neighbourhood of z and T is an open neighbourhood of the identity, so by Lemma
(2715) N T is an open neighbourhood of the identity, which by Lemma contains a
symmetric open neighbourhood of the identity V. Now zV < Sand V < T and so V2 < U

as required. O

Remark 2.26. Endow Z with the cofinite topology as in Example so that if V < Z is open
and non-empty then there is some a € Ny such that x, —z € V for all z > a (since Z\V is
finite). It follows that if n € Ny then a+n,a, —a,—a—n € V and son = (a+n)+(—a) e V+V
and —n = a+(—a—n) € V+V, whence V4V = Z. In particular, then, U := Z\{w} which
is a neighbourhood of every z # w does not contain z + V' + V for any non-empty open set
V.

In view of Lemma[2.25], Z with the cofinite topology is not a topological group, and since
we know from Example that it is a quasitopological group it follows that the hypothesis
of Lemma cannot be relaxed to apply to quasitopological groups.

“Note that K = {1g} by definition and so is compact since it is finite.
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Lemma [2.25| can be used to establish some uniformity in open covers of compact sets. A
cover U is a refinement of a cover V of a set X if I/ is a cover of X and each set in U is

contained in some set in V.

Remark 2.27. Refinements are transitive meaning that if ¥V is a refinement of V and V is a

refinement of U then W is a refinement of .

Lemma 2.28 (Key Lemma VI). Suppose that G is a topological group and K < G" is
compact for some n € N, and U is an open cover of K. Then there is a symmetric open
neighbourhood of the identity U < G such that {z1U x --- x 2, U : x € K} is a refinement of
U.

Proof. First, the structure of the product topology (and Lemma means that we can
pass to a refinement of i where for each x € K there are open neighbourhoods of the identity
Ul(x), Ce U (our notation is a little clumsy here to make the z-dependence explicit) such
that 2;U") x - - x 2,U" is in the refinement. The set N, U,L»(x) is an open neighbourhood of
the identity and so by Lemma there is a symmetric open neighbourhood of the identity
U, such that U? UZ-('T) for all 1 <4 < n. In particular, V := {z1U, x - - x 2,U, : x € K} is
an open cover of K and a refinement of .

By compactness of K there is a finite set F' < K such that W := {2{Uy x -+ x 2/ Uy :
x' € F}is a cover of K. Let U := (), Uy which is a finite intersection of symmetric open
neighbourhoods of the identity and so a symmetric open neighbourhood of the identity. Since
W is a cover of K, for each x € K there is some 2’ € F such that € U, x -+ x &, Uy,

and hence

U x - x 2,U c 2{UyU x -+ x 2l UpU

c U x - x 2 U2 < 2,U™) x - x 2 U
so that {z;U x --- x z,,U : v € K} is a refinement of V which in turn is a refinement of U
as required. H

Remark 2.29. The lemma above is not unrelated to the Generalised Tube Lemma from
topology (see e.g. [Mun00, Lemma 26.8]), which is also known as Wallace’s Theorem.

This proposition highlights an important interplay of compactness and the group struc-

ture and has content even in seemingly simple cases:

Corollary 2.30. Suppose that G is a topological group, A is a compact set and B is an open
set containing A. Then there is a symmetric open neighbourhood of the identity U such that

AU < B. In particular, every neighbourhood of x contains a closed neighbourhood of x.
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Proof. Apply Lemma with n = 1 to the open cover {B} of A to get an open neigh-
bourhood of the identity, V', such that AV < B. By Lemma there is a symmetric
open neighbourhood of the identity U such that UU~! = U? < V, and so by Lemma m
AU c AUU-' ¢ AV < B as required.

The last part follows immediately since the given neighbourhood contains an open neigh-
bourhood B of x. The set {z} is compact and so there is an open neighbourhood of the
identity U with U < B as required. O

A topological space is said to be regular if for any closed set A and x ¢ A there are
open sets U and V such that Ac U and z e V.

Remark 2.31. Since finite sets (and in particular singletons) are compact Corollary
implies that every topological group is regular, and in particular that every neighbourhood
contains a closed neighbourhood. On the other hand an infinite group (e.g. Z) endowed with
the cofinite topology (as in Example shows that this does not hold in quasitopological
groups since any non-empty open set there is infinite, while the only infinite closed set is

the whole group.

A topological space is said to be Hausdorff (or T3) if for any x # y there are disjoint
open sets U and V' such that x e U and y e V.

Remark 2.32. A topological space has unique limits (for nets) if and only if it is Hausdorff,

so this is a pretty uncontroversial axiom to want.

Remark 2.33. A subspace of a Hausdorff topological space is Hausdorff, so if H is a subgroup
of a Hausdorff topological group G then H is a Hausdorff topological group when equipped
with the subspace topology.

Remark 2.34. /\ At first glance it may look as if regularity is a stronger condition than
being Hausdorff, and to make matters worse it is sometimes called separation axiom T3,
but in fact while we noted in Remark that all topological groups are regular, there
are topological groups that are not Hausdorff e.g. a non-trivial group with the indiscrete

topology. More usually T3 space means regular Hausdorff.

Corollary 2.35. Suppose that G is a topological group. Then G is Hausdorff if and only if
{1¢} is closed (equz'valentlgﬂ if and only if G is Fréchet).

Proof. First, if G is Hausdorff then for each x # 14 there is an open set U, containing z
and not containing 1. Hence G\{1g} = |, Us is open as required.

Conversely, if {15} is closed then G is Fréchet and so for all = # y, {z} is closed and {y}
is compact (since it is finite) so G is Hausdorff by Corollary [2.30} O

5By Lemma m
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Remark 2.36. Compact subsets of Hausdorff topological spaces are closed. Conversely, the
Corollary tells us that a topological group G is Hausdorff if the compact set {15} is
closed and a fortiori if every compact set is closed.

/\ An uncountable group (e.g. R) endowed with the cocountable topology (as in Example
has no infinite compact set: if K is infinite then there is (by the Axiom of Countable
Choice!) a countably infinite set S < K, but then {S°uU {s} : s € S} is an open cover of
K with no finite subcover i.e. K is mot compact. Since every finite set is closed in this
topology, we conclude that we have a quasitopological group in which every compact set is
closed. It is nmot, however, Hausdorff since any two non-empty open sets have a non-trivial

Intersection.

To some extent the situation in non-Hausdorff topological groups can be recovered by

the following lemma.

Lemma 2.37. Suppose that G is a topological group and K is a compact subset of G. Then

K is compact.

Proof. Suppose U is an open cover of K then by for each € K there is an open neighbour-
hood of x in U, call it U,. By Corollary applied to the compact set {z} in the open set
U, there is an open neighbourhood of z, call it V;, such that V,  U,. The set (Ve 1z e K}
is an open cover of K and so by compactness has a finite subcover, say K < V,, u---uV,,
and hence K < Uz, U -+ U,,. Thus U has a finite subcover of K, and the result is

proved. O

Remark 2.38. The reals with the right order topology (Rgro from Example have {0} as
a compact subset (since it is finite), but {0} = (—o0, 0] which is not compact since the open
cover {(a,0) : a € R} has no finite subcover. In particular, we cannot relax the requirement

that G be a topological group to semitopological group in Lemma [2.37]

A topological space X is locally compact if every point has a compact neighbourhood.

Example 2.39. Q is a subgroup of R (with its usual topology) and so by Proposition m
is a topological group with the subspace topology. However, while R is locally compact, Q is
not locally compact. In particular, unlike the situation in Remark [2.33] locally compactness

is not preserved on passing to subgroups.

Remark 2.40. We shall mostly be interested in locally compact topologies and this is one
of the reasons we do not concern ourselves overly with semitopological and quasitopological
groups: there is a theorem of Ellis [EII57, Theorem 2| which says that any locally compact

Hausdorff semitopological group is a topological group.

We shall think of a locally compact topological group is a group that is ‘locally’ not
too large — every point has a neighbourhood that is compact — but it might otherwise be

massive, for example any group with the discrete topology is locally compact.
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Lemma 2.41. Suppose that G is a locally compact topological group and K is a compact set.
Then there is a symmetric open neighbourhood of the identity containing K whose closure is
compact. In particular, G has a symmetric open neighbourhood of the identity with compact

closure.

Proof. Since G is locally compact there is a compact neighbourhood of the identity L, and
hence by Lemma [2.14] there is a symmetric open neighbourhood of the identity V' < L. The
union of two compact sets is compact so K U {15} is compact and so by Lemma there is
a symmetric compact set M containing K u{lg}. Now, U := VMV is open by Lemma [2.12;
it contains the identity since V' and M do; it contains K since V' contains the identity and M
contains K; and it is symmetric since (VMV)™! = VY (VM) = VMV = VMV,
Finally, U ¢ LM L which is compact by Lemma , and hence U — LML is compact by
Lemma [2.37] [

We say that GG is compactly generated to mean that there is a symmetric open neigh-
bourhood of the identity S with compact closure such that G = {S).

Remark 2.42. /N A topological space is said to be compactly generated if A is closed if and
only if A n K is closed for all compact subsets K. This is a distinct notion — for example a
discrete group that is not finitely generated is compactly generated in this sense but not in

our sense — which we shall not use.

We think of compactly generated groups as ‘globally’ not too large, a bit like being
finitely generated.

Corollary 2.43. Suppose that G is a locally compact topological group. Then there is a

compactly generated open subgroup of G.

Proof. Apply Lemma to get a symmetric open neighbourhood of the identity S with

compact closure. Then (S) is a compactly generated subgroup of G, and it is open by

Corollary [2.19] O

Proposition 2.44. Suppose that G is a topological group and U is a symmetric neighbour-
hood of the identity with compact closure. Then there is a finite set T such that (U) = (T)U.

Proof. Let V' < U be open and note that {tV :t e UQ} is an open cover of U°. The latter
is compact by Lemma and so there is a finite set 7" such that {tV : ¢ € T'} is a cover
of U°. Tt follows that U2 = U° = TV < TU. Now by induction U" = T"'U < (T)U for
n € N, and so since U is symmetric and contains the identity, | J, .y U™ is a subgroup by the
subgroup test. We conclude that (U) < (T)U.

Since U is a neighbourhood, (U) is closed by Corollary and so U < (U), and
by algebraic closure T' < U < (U). We conclude that (T)U < (U), and the result is
proved. O

Page 13



3 The structure-preserving maps

A map 0 : G — H is a homomorphism of topological groups if it is a continuous group

homomorphism between topological groups.

Example 3.1. The map 6 : R — S'; 2 +— exp(2miz) is a (surjective) continuous homomor-

phism.

Example 3.2. Suppose that G is a group and # : G — G is the identity map. If the
domain is endowed with the discrete topology then € is a homomorphism of topological
groups whatever the topology on the codomain, and if the codomain is endowed with the

indiscrete topology then similarly.
This example may seem trivial but leads to a number of counter-examples.

Example 3.3. Suppose that 6 : Q — Q is the identity map, with the domain discrete and
the codomain the usual subspace topology inherited from R (as in Example[2.39)). Then the
domain is locally compact but the codomain is not, so local compactness is not preserved

by surjective topological group homomorphisms.

Example 3.4. Suppose that 6 : R — R is the identity map, with the domain the usual
topology on R and the codomain the indiscrete topology. Then the domain is Hausdorff
and the codomain is not, so being Hausdorff is not preserved by surjective topological group

homomorphisms.

Remark 3.5. This being said, if there is a surjective topological group homomorphism from
a compact topological group G to a topological group H then H is compact. (Of course,

this fact is purely topological.)

The group structure makes checking continuity and openness a little easier:

Lemma 3.6. Suppose that G and H are semitopological groups and B = (B;)s s a neigh-
bourhood basd’| of the identity in H. Then a homomorphism 0 : G — H is continuous if
(and only if) 0= (B;) is a neighbourhood of the identity for all i € I; and a homomorphism
0 : H — G is open if (and only if) 0(B;) is a neighbourhood of the identity for all i e I.

Proof. Suppose that U < H is open and #(y) € U. By Lemma there is an open
neighbourhood of the identity V,, such that 6(y)V, < U. Since B is a neighbourhood base
of the identity there is ¢ € I such that B; < V,, and hence §~1(B;) < 671(V},) so y0~*(B;) <
0~1(U) (using that € is a homomorphism) and hence #~!(U) contains a neighbourhood of
y i.e. 0~1(U) is open. In the other direction, since B; is a neighbourhood of the identity it

contains an open neighbourhood of the identity which has an open set as a preimage and the

6Defined in Remark
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identity in this preimage (since homomorphisms map the identity to the identity), whence
it is an open neighbourhood of the identity and 6=*(B;) is a neighbourhood of the identity.

Now suppose that U < H is open and x € §(U) so that there is some y € U such that
x = 0(y). Since U is open, by Lemma there is an open neighbourhood of the identity
V, such that yV, < U. Since B is a neighbourhood base of the identity there is 7 € I such
that B; < V, and hence z0(B;) = 6(yB;) < 6(U) (using that # is a homomorphism). But
x6(B;) is open by hypothesis, so §(U) is open as required. In the other direction since B; is
a neighbourhood of the identity it contains an open set containing the identity which has an
open image containing the identity (since homomorphisms map the identity to the identity),

and hence the image of B; is a neighbourhood of the identity. O

Topological groups G and H are isomorphic as topological groups if there are con-
tinuous homomorphisms 6 : G — H and ¢ : H — G such that 0 o1 = 1y and Y o0 = 1o

where g and (g are the identity maps on H and G respectively.

Example 3.7 (Conjugation). For a topological group G, the map G x G — G, (a,z) —
ara~! is a left action of G on G — it is called conjugation— and it is (jointly) continuous
(as it is a composition of continuous maps).

In particular, for fixed a € G the map G — G;x — aza™?

is a continuous map with a
continuous inverse G — G;x +— a 'za, and hence a topological isomorphism. /N The joint

continuity says more than just this last fact however.

Some useful examples of topological groups and homomorphisms between them arise

through products.

Proposition 3.8. Suppose that (G;)ier is a family of topological groups. Then the direct

product of the groups, |[..; Gi, with the product topology is a topological group and the

iel
projection maps p; - | L.e; Gi — Gj;x — x; for each j € I are continuous open maps.

Proof. The key to this is recalling the fact that the open sets in [ [,_.; G; are unions of sets

of the form

Ui =G, foralliel\J
H U; where (3.1)
iel U; is open in G; for all i € J

where J ranges all finite subsets of I. The image of a set like this under the projection
p; is open and so p; is an open map, and if U; < G, is open then pj_l(Uj) = [Lie; Ui
where U; = G, for i # j, is open, so the p;s are continuous. If [[,_; U; is as in then
(T Tic; U™ = Ty Ui ! is also open and hence inversion is continuous, and similarly for

multiplication. O

Remark 3.9. We call the topological group above the topological direct product of the
groups (G;)ier-
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Quotient groups

Given a topological group G and a subgroup H the quotient map ¢ : G — G/H;x — xH
naturally induces a topology on G/H — the weakest topology making the quotient map

continuous or, more concretely, U < G/H is open if and only if JU is open in G.

Proposition 3.10. Suppose that G is a topological group and H is a normal subgroup of G.
Then G/H is a topological group when endowed with the quotient topology and the quotient
map q : G — G/H is (continuous and) open.

Proof. The quotient map is continuous by definition; to show it is open it suffices to note
that if U is open in G then UH is open by Lemma and q(U) = {uH : u € U} so that
Uq(U) =UH. Thus | Jq(U) is open in G, and hence ¢(U) is open by definition.

Suppose that U < G/H is open. First we show that inversion is continuous on G/H:

vt =Ulem e ev} = {otw e Jul = (JU)

and so U™! is open in G/H by definition since | JU is open in G and inversion is continuous
on GG. Second, define

-1

W :={(zH,wH) € (G/H)*: (zH)(wH) e U} and V := {(z,w) eG?:2we UU}

Suppose that (zH,yH) e W. Then zy € (xH)(yH) < | JU so (z,y) € V and since V is open
there are open sets S,T < G suchthat z € S, yeT,and SxT c V. If se SandteT,
then st € [ JU, and since the latter is a union of cosets of H we have (st)H < | JU. Since
H is normal we have (sH)(tH) = (st)H < |JU, and so SH x TH c V.

By Lemma [2.12, SH and TH are open sets, and so the sets S’ := {sH : s € S} and
T :={tH : t € T} are open in G/H; xH € S’ and yH € T'; and S’ x T" < W. It follows
that W is open as required. O]

Remark 3.11. If G is a (locally) compact topological group and H is a normal subgroup of
G then G/H is (locally) compact. In the case of compactness this is just that the quotient
map is continuous and the continuous image of a compact space is compact. In the locally
compact case since the quotient map is open it maps neighbourhoods to neighbourhoods so
a compact neighbourhood of the identity in G (which exists by local compatness) is mapped

to a compact neighbourhood of the identity in G/H as required.

Example 3.12. The topological group R has a (normal) subgroup Z and R/Z is a topolog-
ical group — it is the reals modulo 1. Moreover, the map R/Z — S'; x + nZ — exp(2riz) is

an isomorphism of topological groups.

Remark 3.13. /NThe adjunction space formed by taking the topological space R and iden-
tifying all the elements of Z considered as a topological subspace of R is also sometimes

denoted R/Z though this is quite a different object; we shall have no call to refer to it.
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Example 3.14. The group Q is a subgroup of R with its usual topology, and so R/Q is a
topological group. If U < R/Q is open then | JU is open in R and so if it is non-empty it
contains an interval I. However, | JU is a union of cosets of Q so | JU = | JU+Q 2> I+Q =
R. It follows that R/Q is indiscrete.

/N\Note that the quotient map ¢ : R — R/Q is not closed since e.g. ¢({0}) = {Q} is not
closed in R/Q. This is by way of contrast with the fact that every quotient map between

topological groups is open.
Topological closure preserves algebraic structure in a useful way:

Lemma 3.15. Suppose that G is a topological group and H < G. Then H is a subgroup of
G. If G is compact then so is H; if G is locally compact then so is H; and if H is normal

then so is H.

Proof. Suppose that (z,y) € G? is such that zy~' ¢ H. Then since (z,w) — zw™' is

continuous, there are open sets S,T < G such that x € S, ye T and ST~' n H = . Since
H o H, and H is a subgroup, if SN H # ¢ then T n H = &, and hence H < G\T so that
T nH = . Similarly, if S n H = & then S n H = &&. It follows that « ¢ H or y ¢ H and
so H is a group.

Closed subsets of compact sets are compact so if G is compact then so is H; and if G is
locally compact then G has a compact neighbourhood of the identity N and hence N n H
is a compact neighbourhood of the identity in H and so H is locally compact.

Finally, assume that H is normal. Conjugation is continuous and hence a~'Ha is closed
for all a € G, and contains a ' Ha = H. Hence it contains the closure of H and so applying

1 1

the map = — aza™' we get aHa™' < H i.e. H is normal. O]

Taking quotients gives us a way of introducing the Hausdorff property in topological

groups.

Proposition 3.16. Suppose that G is a topological group and H is a normal subgroup of
G. Then H is a closed normal subgroup of G and G/H is a Hausdorff topological group.

Proof. H is a closed normal subgroup by Lemma/[3.15| By Corollary [2.35, G/H is Hausdorff
if and only if {H} is closed in G//H which, by definition of the quotient topology, is true

since H is closed in G. O]

Since {1} is a normal subgroup of any topological group (and it is compact) we have
the following corollary (with Lemma for compactness).

Corollary 3.17. Suppose that G is a topological group. Then {lg} is a compact normal
subgroup and G/{1g} is a Hausdorff topological group.
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As well as the ‘small’ normal subgroup {1} (which in some cases is the whole of G!),
open subgroups in compact topological groups create large normal subgroups. To establish

this we begin with a lemma.

Lemma 3.18. Suppose that G is a semitopological group and H is a closed subgroup of G
of finite index. Then H is open in G and there is an open (and so closeaﬂ) normal subgroup
of G contained in H.

Proof. Since H has finite index in G there are elements z1,...,x,, € G such that G/H =
{z1H,...,x,,H}. The sets z;H are all closed and so | J{z;H : H # x;H} is a finite union
of closed sets and so closed. Since G/H is a partition of G it follows that we have H® =
\J{z:H : H # x;H} and hence H is open.

Let N := (", ;Hx;" which is a finite intersection of open subgroups and so an open
subgroup. On the other hand, if z € G then for each 1 < j < m there is some 1 < i < m
(depending on j and z) such that za;H = x;H. But then (Hz;')z™' = Hz;' and so
xNz~! < N, and N is normal as required. The result is proved. O]

z(z;Hz;)2™! < zjHx;', whence zNx 1 < xijj_l. However, j was arbitrary and so

Remark 3.19. This result almost deserves the status of one of the ‘Key Lemma’s we marked
in red in §21 The reason we omit it is because we do not make very much use of it restricting

ourselves to the next corollary.

Corollary 3.20. Suppose that G is a compact semitopological group and H is an open
subgroup of G. Then H has finite index in G and there is an open (and so closed) normal

subgroup of G contained in H.

Proof. Since H is open the set of left cosets — G/H — is an open over of G. Since G is
compact, there is a finite subset of G/H that covers G and since the cosets in G/H are
disjoint this must be the whole of G/H so that G/H is finite i.e. H has finite index in G.
Thus by Lemma [3.18, H contains an open normal subgroup of G. O

The open mapping theorem

Example |3.2 shows that there are continuous bijective group homomorphisms that are not
isomorphisms of topological groups. This is by contrast with the purely algebraic situation
where any bijective group homomorphism is a group isomorphism (i.e. has an inverse that
is a homomorphism), but in alignment with the topological situation where continuous
bijections need not be homeomorphisms. With a few mild conditions on the topology we

can recover with algebraic situation:

"By Corollary
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Theorem 3.21. Suppose that G is a compactly generated topological group, H is a locally
compact Hausdorff topological group, and m : G — H is a continuous bijective homomor-

phism. Then 7 is an isomorphism of topological groups.

Proof. Since the inverse of a bijective group homomorphism is a group homomorphism, it
suffices to show that 7(C') is closed whenever C'is closed in G. Let K be the compact closure
of the symmetric open neighbourhood generating G. Then K is symmetric (Remark [2.17))

and G = oy, K" (Remark .

Claim. There is some n € N such that ©(K™) is a neighbourhood.

Proof. For those familiar with the Baire Category Theorem this is particularly straightfor-
ward. We shall proceed directly by what is essentially the proof of the BCT for locally
compact Hausdorff spaces.

By Lemma , for each n € N the set K™ is compact and so 7(K™) is compact. Since H
is Hausdorff the sets w(K™) are therefore closed. We construct a nested sequence of closed
neighbourhoods inductively: Let Uy be a compact (and so closed since H is Hausdorff)
neighbourhood in H, and for n € N let U,, € w(K")¢ n U,,_; be a closed neighbourhood.

This is possible since (by the inductive hypothesis) U,_; is a neighbourhood and so
contains an open neighbourhood V,,_;. But then 7(K"™)¢ n V,,_; is open and non-empty
since otherwise m(K™) contains a neighbourhood. It follows that 7(K™)¢ N U,_1 contains an
open neighbourhood and so it contains a closed neighbourhood by Corollary

Now by the finite intersection property of the compact space Uy, the set [, U, is non-

empty. This contradicts surjectivity of 7 since G = | J K™ and the claim is proved. [

TLENQ

Claim. If X < H is compact then 7=1(X) is compact.

Proof. Suppose X is compact. By the previous claim 7(K™) contains a neighbourhood
and the set {zw(K™) : z € H} covers X, so there are elements zi,...,z,, such that
X < U, xim(K™) and hence 7 1(X) < U2, 7 ' (z;) K™ (by injectivity of mr). 7 *(z;) K™
is compact by Lemma @ (and the fact that the continuous image of a compact set is
compact), and since a finite union of compact sets is compact it follows that 7= 1(X) is
contained in a compact set. Finally, X is closed so 771(X) is closed and H is Hausdorff so

a closed a subset of a compact set is compact we have the claim. O

Finally, suppose that C' < G is closed, and y is a limit point of 7(C). H is locally
compact so y has a compact neighbourhood X. Now 7 !(X) is compact and so 771 (X) nC
is compact. But then X n 7(C) is compact since 7 is continuous, and hence closed since H
is Hausdorff. But by design y € X n 7(C) = X n n(C) < 7(C). O
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Remark 3.22. The Open Mapping Theorem in functional analysis is the result that if A :
X — Y is a surjective continuous linear operator between Banach spaces X and Y then

A is an open mapping. The connection between this and the above result is spelt out in
Exercise [L5.

4 Continuous complex-valued functions

Given a topological space X the support of a (not necessarily continuous) function f :
X — C, denoted supp f, is the set of x € X such that f(z) # 0; f is said to be compactly
supported if its support is contained in a compact set.

We write C'(X) for the complex vector space of continuous complex-valued functions
X — C, and C.(X) for the subset of functions in C'(X) that are compactly supported.

Remark 4.1. /\ As we have defined it the support of a function f that is compactly sup-
ported need not actually be a compact set it is simply contained in one. Terminology in the

literature is not always completely clear on this point.

Remark 4.2. The set C.(X) is a subspace of C'(X) since the union of two compact sets is
compact and the support of the sum of two functions is contained in the union of their

supports. More than this, the function

[flloo := sup {|f(z)] : 2 € X}

is a norm on C.(X). It is well-defined since every continuous (complex-valued) function on
a compact set is bounded, and the axioms of a norm are easily checked.

/N\In general | - |l is mot a norm on C'(X) since we are not assuming the elements of
C(X) are bounded.

/\In general C.(X) is not complete despite the fact that the uniform limit of continuous

functions is continuous since this limit function may not be compactly supported.
Remark 4.3. As a normed space C,(X) is, itself, a topological group (recall Example [L.6).

Remark 4.4. If G is a topological group and C.(G) contains a non-zero function then G is
locally compact: Indeed, if f € C.(G) is non-trivial then supp f # &, but supp f is open
(since f is continuous), and supp f is contained in a compact set K (since f is compactly
supported). Tt follows that K is a compact neighbourhood of some point z € G, and yz 'K
is then a compact neighbourhood of y for y € G i.e. G is locally compact. This observation
explains why the material of the remainder of the course will almost exclusively concern

locally compact topological groups.

Remark 4.5. Traces of Lemma [2.25| can seen through applications of the triangle inequality
which are useful to us: For f e C(X) and € > 0 there is an open cover U of X such that if
Uel and x,y € U then |f(z) — f(y)| <e.
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To see this just let U := {f 1 (2 + (—€¢/2,¢/2)) : 2 € C} so that if U e Y and x,y € U then
there is some z € C such that |f(z) — 2| < ¢/2 and |f(y) — 2| < €/2 whence by the triangle
inequality

[f(2) = fW)l < |f(2) = 2| + |z = fy)| < e

Remark 4.6. Tt is worth recalling the algebra of continuous functions: if f, g € C'(X) then f+
g, fg € C(X). The first of these uses that addition on C is jointly continuous (coupled with
the fact that X — C%* x — (f(z),g(z)) is continuous) and the second that multiplication
is jointly continuous. /NThe first here is part of the statement that C under addition is a
topological group, while the second is not since C is not a group under multiplication.

AQuotientS of continuous functions behave a little differently: if f, g € C'(X) then the
support of g is open and there is a continuous function A : supp g — C such that f = gh,
but in general this needﬂ not have a continuous extension to the whole of X. However, if
f,g € C.(X) and supp f < supp g then there is h € C,(X) such that f = gh.

We do not yet actually know that there are any continuous functions besides the constant
functions, and of course for indiscrete topological groups there need not be. Nevertheless the
following theorem will be very useful for generating such functions and shows that indiscrete

topological groups are the only groups without non-constant continuous functions to C. (See

Example 4.11})

Theorem 4.7. Suppose that G is a topological group, A is a compact set and B is an open
set containing A. Then there is a continuous function g : G — [0,1] such that g(x) = 0

on for all x € A and g(x) = 1 for all x ¢ B. Similarly, there is a continuous function

f: G —[0,1] such that f(xz) =1 for all x € A and supp f < B.

Proof. The proof of this theorem is really a more sophisticated version of the proof of
Corollary . As in the proof there we apply Lemma to the open cover {B} to get
a symmetric open neighbourhood of the identity V' such that AV < B. We may apply
Lemma twice to get a symmetric open neighbourhood of the identity V, such thatﬂ
V3 < V, and continue iteratively in this manner producing symmetric open neighbourhoods
V; with V3, < V; for all i € Ny. In particular, note that V;;; < V; since all the V;s are
neighbourhoods of the identity.

We shall ‘divide up the space between A and B’ in a way that will be indexed by
dyadic rationals, that is rationals whose denominator is a power of 2. For i € Ny we write
D; :={q€e[0,1] : 2'g € Z}, so D := | J;—, D; is the set of dyadic rationals in [0,1]. Note,

in particular, that Dy € Dy < ... and every element of D;,1\D; can be written uniquely

8Consider, for example, the functions f(z) = z and g(x) = 2% in C(R). Then h(x) = 1/z for all x € supp g

but A has no continuous extension to R.
9Since 1¢ € Vp we certainly have V@ < (V#)2.
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in the form %(q + ¢') where ¢ < ¢’ are consecutive elements of D;. Furthermore, in any two
consecutive elements of D;,1, one of them will be an element of D; and one of D;,1\D;.
For each ¢ € D we define an open set U, such that if ¢ < ¢’ are consecutive elements of
D; for some i then U,V; = U,. We proceed inductively on i € Ny. First, Dy = {0,1}; let
Uy := AV which is open by Lemma and U; := B which is open by definition of B.
Then by Lemma 70\/0 = AVyVy < AVyVy 'V < AV < B = U as required.
Suppose U, has been defined with the required property for all ¢ € D;. For ¢ < ¢

consecutive elements of D; we define U1 = @V}H which is open by Lemma [2.12] and

Ja+q) 17 -
furthermore by Lemma [2.18 we have U%(Hq,)ViH c UqViHV;jV;H c U,V; € Uy. Now,
if ¢ < ¢ are consecutive elements of D,,; then either ¢ € D;, ¢" := q + 2" € D; and

¢ =3%q+qd)ordeD;, ¢ =q¢—2"€D;and ¢ = (¢ + ¢"). In either case, by design
we have U, Vi, < Uy.

We now forget about the Vjs: for each ¢ € D we have an open set U, such that (by
nesting) whenever ¢ < ¢’ are elements of D we have Fq c Uy. Moreover, A c U, and
U, < B. Define a function g : G — [0, 1] by

g(x):=inf{ge D:xe Uy} if x € Uy and g(x) = 1 if x ¢ Uj.

First note that this is well-defined and really does map into [0, 1]. Then, since U; < B we
have g(x) = 1 for all x ¢ B; and since A c U, for all z € A we have g(x) =0 for x € A.

It remains to establish that ¢ is continuous. Since all open subsets of [0, 1] are (possibly
empty) unions of finite intersections of sets of the form [0, ) and («, 1] for a € (0,1), we
shall show that ¢ is continuous by showing that preimages of sets of this form are open,
and we shall do this by showing that every point in the preimage is contained in an open
neighbourhood.

First, if z € g71([0, @)) then g(z) < o and so x € U; and by the approximation property
for infima there is some ¢ € D such that g(z) < ¢ < a. But then g(z) < ¢ < a forall z € U,
and so g~ '([0, «)) contains the open neighbourhood U, of z as required.

Secondly, if € g~ '((a,1]) then since D is dense in [0,1] there are ¢,¢ € D with
a < q<dq < g(x). Hence z ¢ Uy, but Vq < Uy by nesting and so x € ch. Moreover, if
2 €U, then z ¢ U, and so (either z ¢ U; and g(2) = 1 > a or) g(z) = ¢ > a and g~ ((a, 1])
contains the open neighbourhood ch of x as required.

The first part is proved. For the second put f := 1 — g which is continuous and maps
into [0, 1]. By design f(x) =1 for all x € A and supp f < B. O

Remark 4.8. A topological space X is said to be completely regular if for every z € X and
closed set A not containing z there is a continuous function f : X — R such that f(z) =1
and f(a) = 0 for all @ € A. Theorem shows that every topological group is completely
regular since {x} is compact and contained in the open set A¢, so that the Theorem applies
to give a continuous function f with f(xz) =1 and f(y) = 0 for all y € (A°)° = A.
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ACompletely regular spaces need not be Hausdorff (they may not have any non-trivial
closed sets). A completely regular Hausdorff space is also called a Tychonoff space or a T3,

space.

Remark 4.9. Theorem is very closely related to Urysohn’s Lemma which says that if a
topological space X is norma]m meaning any disjoint closed sets A and C' are contained in
disjoint open sets, then there is a continuous function f : X — [0, 1] such that f(z) =1
for all z € A and f(z) = 0 for all z € C. Exercise [I.7]is about showing that a wide class of
topological groups are normal, while in Exercise [[.§] an example of a topological group that
is not normal is developed.

/\ As with completely regular spaces, normal spaces need not be Hausdorff. A normal

Hausdorff space is also called a T} space.

Remark 4.10. /N Theorem does not assume that G is Hausdorff, so there may not be

any non-trivial open sets.

Example 4.11. If G is a topological group that is not indiscrete then G supports a non-
constant continuous function into C: Since G is indiscrete there is a non-empty open set U
with non-empty complement. Let z € U. Then {z} is compact and contained in U and so by
Theorem there is a continuous function f : G — C such that supp f < U and f(x) = 1.
Since the complement of U is non-empty there is some y € G such that f(y) =0 # 1 = f(x)

and we conclude that f is non-constant.

For us Theorem [4.7]will be crucial in providing a supply of compactly supported functions

in locally compact topological groups.

Corollary 4.12. Suppose that G is a locally compact topological group and K < G is
compact. Then there is a continuous compactly supported f : G — [0, 1] such that f(x) =1
forallz e K.

Proof. Since G is locally compact it contains a compact neighbourhood of the identity L;
let H < L be an open neighbourhood of the identity, and C' = H a closed neighbourhood of
the identity (possible by Corollary . K H is open by Lemma and apply Theorem
[1.7 to get a continuous f : G — [0,1] with f(z) = 1for all z € K and supp f « KH < KL
which is compact by Lemma [2.23] O

Furthermore, we can product continuous partitions of unity:

Corollary 4.13. Suppose that G is a (locally compact) topological group, F: G — [0,1]
15 continuous, K is a compact set containing the support of F', and U is an open cover of

K. Then there is some n € N and continuous compactly supported functions fi,..., fn :

10We shall avoid this terminology because of the potential for confusion with normal subgroups.
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G — [0,1] such that F = f1 + -+ + fu; and for each 1 < i < n there is U; € U such that
supp f; < U;.

Proof. Since U is an open cover of K, for each x € K there is an open neighbourhood of z,
call it U, € U, and by Corollary there is a closed neighbourhood V, < U, of z. Since
each V, is a neighbourhood and {V, : x € K} is a cover of K, compactness tells us that there
are elements x4, ...,z, suchthat K <V, u--- UV, . By Lemma? is compact and so
for each 7 the set V, N K is a closed subset of a compact set and so compact. Apply Theorem
to V,, n K < U,, to get a continuous function g; : G — [0, 1] such that g;(z) = 1 for all
reV,, nK and suppg; c U,,.

Since the sets V,,,...,V,, are closed, K c Ve, - UV, . and so since the g;s are

non-negative we have
suppFc Kc (Vy,nK)u---u(Vy, nK)csupp(gr + -+ + gn).

Thus (see Remark there is h € C.(G) such that F' = h(g; + -+ - + g,) and since F' maps
into [0,1] and gy(z) + -+ + gn(z) = 1 on the support of F', we conclude that h maps into
[0,1]; for 1 <i < nput f; = g;h.

It remains to check the properties of the f;s. First, f; is a continuous function G — [0, 1]
by design of h and g;. Secondly, F' = f; + --- + f, by design. Finally, supp f; < suppyg; <
U, € U. Moreover, since the f;s are non-negative supp f; < K so f; has compact support.

The result is proved. [

Remark 4.14. Although we have not required G to be locally compact in the above, if F' is

not identically 0 then G is necessarily locally compact whence the parenthetical inclusion.

(c.f. Remark [4.4])

Integrals of continuous functions

Given a topological space X if f,g € C.(X) are both real-valued then we write f > g if
f(z) = g(z) for all z € X and CF(X) for the set of f € C.(G) such that f > 0, where 0 is
the constant 0 function — in words f is non-negative.

Remark 4.15. The functions C - R;z — Rez, C - R; 2z — Im z, R — Ry; x — max{z, 0}
and R — Rog; 2 — max{—=z,0} are continuous and so any f € C.(X) can be written as
f=fi— fotifs—ify for f1,fo, f3, f1 € CF(X), and this decomposition is unique. We
shall frequently have call to understand elements of C.(X) through this linear combination

of elements of C'}(X).

We shall be interested in linear functionals § : C.(X) — C that are non-negative which
means that if f € CF(X) then § f > 0.
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Remark 4.16. If f,g € C.(X) are real-valued with f > ¢ and { is a non-negative linear
functional C.(X) — C then § f > {g; and if f € C.(G) then |{ f| < {|f].

Remark 4.17. The decomposition in Remark can be used to show that if § is a non-
negative linear functional then S_f = { f for all fe C.(X).

Remark 4.18. We think of non-negative linear functionals as integrals and in fact the Riesz-
Markov-Kakutani Representation Theorem actually tells us that every non-negative linear

map C.(X) — C arises as an integral against a suitably well-behaved measure on X.

Given F' : X? —» C and x € X we write Sy F(z,y) for the functional { applied to
the function X — C;y — F(x,y) (assuming this function is continuous and compactly
supported), and similarly for y € X and SI F(z,y). It will be crucial for us that the order

of integration can be interchanged and this is what the next result concerns:

Theorem 4.19 (Fubini’s Theorem for continuous functions). Suppose that G is a locally
compact topological group, § and S/ are non-negative linear functionals C.(G) — C, and
F € C.(G?*). Then the map x — S; F(z,y) is continuous and compactly supported, so that
S, S; F(x,y) exists. Similarly y — §_F(x,y) is continuous and compactly supported, so that

S; §, F(x,y) exists and moreover

LLN%@=LLN%W

Proof. In view of the decomposition in Remark and linearity of { and S/ it is enough to
establish the result for F' non-negative.

Since F € CF(G?) has support contained in a compact set K, and since the coordinate
projection maps G? — G are continuous (and the union of two compact sets is compact)
there is a compact set L such that K < L x L. It follows that the maps x — F(x,y) for
y € G and y — F(x,y) for z € G are continuous and have support in the compact set L.

We also need an auxiliary ‘dominating function’ which is a compactly supported con-
tinuous function on whose support all of the ‘action’” happens. For those familiar with the
theory of integration, the Dominated Convergence Theorem may come to mind. Concretely,
by Corollary there is a continuous function f : G — [0,1] with f(z) = 1 for allz € L
supported in a compact set M.

For € > 0 (by Remark[4.5]) let &/ be an open cover of G x G such that |F(z,y)—F(',y)| <
e for all (z,y),(2',y') € U e U. M x M is compact and so by Lemma there is a
symmetric open neighbourhood of the identity U in G such that U’ := {aU x yU : x,y € M}
is a refinement of U (as a cover of M x M not of G x ). First, the support of S; F(z,y)is
contained in the (compact) set L and if ' € zU then by design and non-negativity of S/ we

have ,

JF(m’,y)=f

Y Y

/ /

Pz’ y) fy) < f

Y

wmm+oﬂw:£me+gff
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Since U is symmetric we have x € 2’U and similarly S; F(z,y) < S; F(2',y) + e{ f and
hence |S; F(x')y) — S; F(z,y)| < el f. Since ¢ is arbitrary (and {' f does not depend on
€) it follows that = — S; F(x,y) is continuous (and compactly supported) and similarly for
y—§, F(z,y).

By Corollary applied to f supported on the compact set M with the open cover
{zU : x € M}, there are continuous compactly supported fi,..., f, : G — [0, 1] such that
fi+-+ fo=f and supp f; < x;U for some z; € M. Now, F(x,y) = F(x,y)f(z)f(y) and

fmfit ot f s
n n

F(z,y) =YY F(a,y)fi(z)f;(y) for all 2,y € G.

i=1j=1

By design of U" and U, for 1 < i,j < n there is \; ; = 0 such that |F(z,y) — A ;| < € for all
(x,y) € supp f; x supp f;. We conclude that

n n

X A (0) S0 iZ N+ F@) ().

Since { and S/ are non-negative linear functionals, we conclude that

i SEK
L/LF(x,y)—giAi,jJﬁffj ggfff'f.

The result is proved by the triangle inequality since € is arbitrary (and { f and S' f do not

n

/F(%y)—;i)\i,jjfiffj <

and

depend on €). O

5 The Haar integral

We now turn to one of the most beautiful aspects of the theory of topological groups. This
describes the way the topology and the algebra naturally conspire to produce an integral.

Given a topological group G and a function f € C(G) we write
Ae(f)(2) := f(z7'2) for all 2,z € G.

Remark 5.1. A\, (f) € C(G) for all f € C(G) and z € G (since left multiplication is continuous
and the composition of continuous functions is continuous), and A is a left action meaning
Aay(f) = Aa(Ay(f)) for all z,y € G and A\,(f) = f, and the maps A, are linear on the
vector space C'(G).

/N Without inversion this is naturally a right action.
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Remark 5.2. For a topological group G, A restricts to an action on the space C.(G) and this

action is isometric with respect to | - | .. |Ax(f)]lw = | f]oo for all z € G.

Lemma 5.3. Suppose that G is a topological group and f € C.(G). Then G — C.(G);x —

A (f) is continuous.

Proof. Let U < C.(G) be open and x € G have \,(f) € U. Since U is open there is ¢ > 0
such that A\/(f) € U whenever ||Ay(f) — Aa(f)]0 < €.

Let K be a compact set containing the support of f. As in Remark let U be an
open cover of G such that |f(z) — f(y)| < efor all z,y € U e U. Then {U~!: U e U} is an
open cover of K1, Since inversion is continuous and K is compact, K~ ! is compact and
so by Lemma there is a symmetric open neighbourhood of the identity V' such that
{yV :ye K} refines {U™' : U € U} (as a cover of K1), and hence {V~ly:ye K} is a
refinement of U (as a cover of K).

Suppose that v € V and y € G is such that \,(f)(y) — f(y) # 0. Then either f(y) # 0
so y € K, but then V~!y is a subset of an element of & and so |\,(f)(y) — f(y)| < € or
Mo(f)(y) # 0 so vty € K, but then V(v™'y) = V' (v71y) is a subset of an element of U
and so again |\, (f)(y) — f(y)| < €. Since A\,(f) — f is continuous and compactly supported
it attains its bounds so | A,(f) — f|o < €. Finally, since A is an action, the map A, is linear,
and this action is isometric (Remark we have

H)‘xv(f) - )‘x(f)HOO = H)‘:c(/\v(f) - f)HOO = ”)‘v(f) - fHDO < €.

By Lemma [2.12| V' is an open neighbourhood of = and by design it is contained in the
preimage of U. Since z was an arbitrary element of the preimage of U it follows this

preimage is open as required. 0

Given a topological group G we say that § : C.(G) — C is a (left) Haar integral on G

if { is a non-trivial (meaning not identically zero) non-negative linear map with

J)\x(f) = Jf for all z € G and f € C.(G).

We sometimes call this last property (left) translation invariance.

Remark 5.4. Our definition of Haar integral requires C.(G) to be non-trivial and hence (c.f.
Remark for G to support a Haar integral it must be locally compact. It will turn out
in Theorem that this is enough to guarantee that there is a Haar integral.

Remark 5.5. There is an analogous notion of right Haar integral which we shall not pursue

here.

Example 5.6. If GG is a discrete group then it supports a left Haar integral:

[RCHERET S WiE

zeG

Page 27



Remark 5.7. /N Note that this definition does not work for non-discrete groups. See Exercise

LT

The integral of a non-negative continuous function that is not identically 0 is positive,
and this already follows from the axioms of a Haar integral. To establish this we begin with

a lemma on the comparability of functions:

Lemma 5.8. Suppose that G is a topological group, f,g € CH(G) and f is not identically

zero. Then there ism e N, ¢1,...,¢, =0 and yy,...,y, € G such that

g(x) < Zn: cidy, (f)(x) for all z € G.
i—1

Proof. Since f % 0 there is some g € G such that f(zg) > 0 and hence (by Lemma [2.12)
an open neighbourhood of the identity U such that f(xoy) > f(x0)/2 for all y € U. Let K
be compact containing the support of g. Then {zU : z € K} is an open cover of K and so

there are elements x4, ..., x, such that x1U,...,x,U covers K. But then
9(x) < 2f(x0) gl X flxow; " x) = 2f(20) " glow Y Ay (f) () for all z € G,
i=1 i=1

and the result is proved. O

Corollary 5.9. Suppose that G is a topological group, § is a left Haar integral on G, and
feCHG) has§ f=0. Then f=0.

Proof. Suppose that g € CJf (G) so by Lemmalp.8lwe have g < 37| ¢; Ay, (f) forey, ..., ¢, =0

and vy, ..., ¥y, € G. Then by linearity, non-negativity, and translation invariance of the Haar

f9<écif/\yi(f) Zicsz=0-

Since g = 0, non-negativity of the Haar integral implies { g > 0, and hence {g = 0.
Now, in view of Remark we have that {h = 0 for all h € C.(G) i.e. { is identically

0 contradicting the non-triviality of the Haar integral. The lemma follows. O]

integral

Existence of a Haar Integral

Our first main aim is to establish the following.

Theorem 5.10 (Existence of a Haar integral). Suppose that G is a locally compact topolog-

ical group. Then there is a left Haar integral on G.
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We begin by defining a sort of approximation: for f, ¢ € CF(G) with ¢ not identically 0
put

(f;0) :=inf{20j:neN;cl,...,cn>O;y1,...,yneG; and f < ch/\yjl(gb)}. (5.1)

J=1 J=1

We think of this as a sort of ‘covering number’ and begin with some basic properties:
Lemma 5.11. Suppose that f,g,¢,1 € CF(G) with ¢ and < are not identically 0. Then
(i) (f; ) is well-defined;
(ii) (¢:0) < 1;
(iii) (f; ) < (g;0) whenever f < g;
(w) (f+g:0) < (f;0) + (9:9);
(v) (uf; @) = p(f; @) for n=0;
(vi) (Xe(f);0) = (f10) for all z e G;
(vii) (f;¢) < (f;0)(¢5¢).

Proof. Lemma shows that the set on the right of is non-empty; it has 0 as a lower
bound. |(i)| follows immediately. For note that ¢ < 1.)\151(¢) so that (¢;¢) < 1. |(iii)}
, , and are all immediate. Finally, for suppose ¢y, ..., c, = 0 are such that
f<>i cj)\yj—l(gzﬁ), so that by |(iii)} |(iv)} W, and |(vi)| we have (f;¢) < 2.7, ¢;(¢;4). The

result follows on taking infima. O]

To make use of (-;-) we need to fix a non-zero reference function fy € Cf(G) and for

¢ € CH(G) not identically zero we put

(f; )
(f0;¢)

where the inequality follows from Lemma [(viD)]
Many of the properties of Lemma translate into properties of /4. In particular, we
have I,(f1 + fa) < I(f1) + Is(f2); for suitable ¢ we also have the following converse.

Io(f) = < (f fo), (5.2)

Lemma 5.12. Suppose that G is a locally compact topological group, fi, fo € CH(G) and
e > 0. Then there is a symmetric open neighbourhood of the identity V such that if ¢ €
CI(G) is not identically O and has support in V' then I,(f1) + Is(f2) < Is(fi + f2) + €.

1 As it happens it is easy to prove equality here but we do not need it.
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Proof. Let K be a compact closed set containing the support of both f; and fy (possible
since the union of two compact sets is compact and the closure of a compact set is compact
by Lemma and apply Corollary to get F' : G — [0,1] continuous, compactly
supported, and with F(z) =1 for all z € K.

For j € {1,2} let g; be continuous such that (f; + f2 + €F)g; = f; (possible in view of
Remark and use that supp f; ¢ K < supp F). By Remark (and the fact that the
intersection of two open covers is an open cover) there is an open cover U of G such that if
x,y € U €U then |g;(z) — g;(y)| < e for j € {1,2}. K is compact; apply Lemma [2.28 to
to get a symmetric open neighbourhood of the identity V' such that {yV : y € K} refines U
(as a cover of K).

Now suppose that ¢ € CF(G) is not identically 0 and has support in V', and that
C1,-..,¢, = 0and y,...,y, € G are such that

f1(@) + fo() + eF(z) < ) i) for all € G.
i=1
If ¢(y;ix)g;(x) # 0 then z € K and y; e 2V (using V = V~1), by 2V is a subset of a set in
U so g;(x) < g;(y; ") + € and hence

n n

filz) < Z cid(yixr)g;(z) < Z ci(gi(y; ') + €)d(yiz) for all z € G, j € {1,2}.

i=1 =1

By Lemma [5.11][W)][GGid)}, [(iv)l[(v)] & we have

(fi;9) Zcz gj (y; 1) +¢) for all j e {1,2},
i=1

but g1 (y™1) + g2(y™!) < 1 for all y € G, so

n

(f1:0) + (f250) < Zci(l + 2¢).

i=1

Taking infima and then applying Lemma and and the inequality in (5.2)) we
get

Io(f1) + 1s(f2) < (1 +2€)1s(f1 + fo + €F)
< (14 26)(I(f1 + f2) + elp(F))
< Ly(fi + fo) + 2(f1 + fo5 fo) + (F; fo) + 2€(F; fo) )e.

The result follows since € > 0 was arbitrary and F', fi, fo and fy do not depend on e. [

With these lemmas we can turn to the main argument.
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Proof of Theorem[5.1(. By Corollary (applied with K = {lg}) there is fy € CHG)
with fo # 0. Write F for the set of functions [ : Cf(G) — Rso with I(f) < (f; fo) for
all f € CH(G) endowed with the product topology i.e. the weakest topology such that the
maps F' — [0, (f; fo)]; I — I(f) are continuous for all f € CF(G). Since the closed interval
[0, (f; fo)] is compact, F' is a product of compact spaces and so compact. Let X be the set
of I € F such that

I(fo) =1 (5.3)
I(pf) = pI(f) for all p =0, f € CH(Q), (5.4)

and
IN(f)) =I(f) for all z € G, f € CF(G). (5.5)

The set X is closed as an intersection of the preimage of closed sets. Moreover, by Lemma
I, € X for any ¢ € C}(G) that is not identically zero: the fact that I(f) € [0, (f; fo)]
follows from the inequality in ; by design; by and by .

This almost gives us a Haar integral (on non-negative functions) except that in general
the elements of X are not additive, meaning we do not in general have I(f+f") = I(f)+I(f').
To get this we introduce some further sets: for € > 0 and f, f' € C}(G) define

B(f, fe) :={le X [I(f+ [)—I(f) = I(f)| < e}.

As with X, the sets B(f, f’;¢) are closed. We shall show that any finite intersection of
such sets is non-empty: For any fi, fi, fo, f5, -, fu, [, € CH(G) and €y,...,¢, > 0, by
Lemma there are symmetric open neighbourhoods of the identity Vi, ..., V), such that
if ¢ € CH(Q) is not identically 0 and is supported in V; then

Lo (fi + fi) = 1s(fi) — Lo(fi)] < €. (5.6)

Since G is locally compact by Lemma there is a symmetric open neighbourhood of
the identity H with compact closure; set V := H n (), V; which is also a symmetric
open neighbourhood of the identity and by Theorem there is ¢ € C*(G) that is not
identically 0 with support contained in V, and hence in the compact set H which is to say
it has compact support. I, enjoys for all 1 < < n, and we noted before that I, € X,
hence I, € (", B(fi, f{, ;). We conclude that {B(f, f';¢€) : f, f' € C(G),e > 0} is a set of
closed subsets of I’ with the finite intersection property, but F' is compact and so there is
some [ in all of these sets. Such an I is additive since |[I(f + f') — I(f) — I(f’)| < € for all
f.f and € > 0. It remains to define { : C.(G) — C by putting

ff = I(f1) = I(f2) +il(f3) —il(fs) where f = f1 — fo+ifs—ifs for fi, fo, f3, fa € CT(G).

This decomposition of functions in C.(G) is unique (noted in Remark [4.15)) and so this is
well-defined. Moreover, | is linear since I is additive and enjoys (5.4); it is non-negative since
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I is non-negative (and I(0) = 0); it is translation invariant by (5.5)); and it is non-trivial by
(5.3). The result is proved. O

Uniqueness of the Haar integral

Our second main aim is to establish the following result.

Theorem 5.13 (Uniqueness of the Haar Integral). Suppose that G is a locally compact

topological group and § and S/ are left Haar integrals on G. Then there is some X\ > 0 such
that § = .

For this we introduce a little more notation: Given a topological group G and f € C.(G)

~

we write f(z) = f(z71).

Remark 5.14. ¥ is a conjugate-linear multiplicative involution® on C.(G), since complex

1

conjugation and x — z~' are both continuous (and continuous images of compact sets are

compact).

Remark 5.15. The reason for making ~ conjugate-linear is to make it compatible with a later
inner product. (See Remark [7.8])

Proof of Theorem [5.13. Suppose that fy, f1 € CF(G) are not identically 0 and write K for a
compact set containing the support of fy and f; (which exists since finite unions of compact
sets are compact). By Lemma there is a symmetric open neighbourhood of the identity,
H, with compact closure.

First, by Corollary there is a continuous compactly supported function F : G —
[0,1] with F(z) = 1 for all x € KH (this set is compact by Lemma , and hence the
corollary applies).

Now, suppose € > 0 and use Remark (and the fact that intersections of open covers
are open covers) to get an open cover U of G such that if z,y € U € U then |f;(x)— fi(y)| < €
for i € {0,1}. By Lemma applied to I and the compact set K H there is a symmetric
open neighbourhood of the identity V such that {#V : x € KH} is a refinement of U (as
a cover of KH), and by Theorem there is a continuous function h : G — [0, 1] that is
not identically zero and is supported in V' n H, and in particular supported in H so it has

compact support.
For z € G, translation invariance of S/ (and Remark ) tells us that

Lﬂy%ﬂ=£§@:5=£ﬁ@”w=£ﬁ@%=fﬁ

For i € {0,1}, the map = — S; fi(x)h(y~tz) = fi(x) S,Z is continuous and is supported in K

and so is compactly supported and §_ Sly fi(z)h(y ') exists and equals § f; g’ﬁ (by linearity
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of ). On the other hand the map (z,y) — fi(z)h(y 'z) is continuous and supported on
K x H and so is compactly supported and hence by Fubini’s Theorem (Theorem [4.19),

y — §_ fi(x)h(y ') exists, and (using translation invariance of {) we have

[a[7-] f Fi(@)h(y ) = j [ sty - f e

Since {yV :y € K} refines U (as a cover of K H) we have |f;(yx) — fi(y)| < € for x € V and
y e KH; and for z € H and fi(yx) # 0 or fi(y) # 0 we have y € KH whence F(y) = 1. It
follows that

fiy)h(x) = eF(y)h(z) < filyr)h(z) < fi(y)h(z) + €F(y)h(z) for all 2,y € G,

and so by non-negativity and linearity of { and {" we have

L/sz’(y)h(x)—L/LeF(y) ”fyx ”f ”L/Le””

It follows (using linearity of §) that |{" f; (A —§ £ { h\ ¢ {' F { h, and hence by the triangle
inequality (and division, which is valid since { fo, { f1 # 0 by Corollary [5.9 m as fo and f; are

not identically zero) that
! 1 1
J Fl—+—].
TR vARG KA Cras v

Since € was arbitrary (and in particular fy, fi, and F' do not depend on it) it follows that

RU NS

§ fo Sh

ReAs
T Sh| S

S/ f/§ f is a constant X for all f € CF(G) not identically zero. This constant must be non-
zero since S/ is non-trivial, and it must be positive since S/ and { are non-negative. The result
follows from the usual decomposition (Remark 4.15)), and the fact that {0, { 0 = 0. O

6 The dual group

Suppose that G is a topological group. We write G for the set of continuous homomorphisms
G — S' (where S! is as in Example [2.22)), and call the elements of G characters.

Remark 6.1. The choice of S* here may seem a bit mysterious. In fact in this generality
it makes more sense to consider continuous group homomorphisms into groups of unitary

matrices. We have made the choice above to ensure that G has a group structure (see
Proposition :
Remark 6.2. /\'While characters are (by definition) elements of C'(G), they are not in C.(G)

unless G is compact.
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We endow the set G with the compact-open topology, that is the topology generated
by the sets yU (K, €) where

U(K,e):={yeG:|y(x) -1 <eforal ze K}
and € > 0 and K is a compact subset of G.

Proposition 6.3. Suppose that G is a topological group. Then G is a Hausdorff Abelian

topological group with multiplication and inversion defined by

(v.7) = (&= (@)y(2) and v — (z — y(2)),
and identity the character taking the constant value 1. Moreover, (U(K,J)) as K ranges
compact subsets of G and 6 > 0 is a neighbourhood base of the identity.

Proof. The fact that G is an Abelian group is an easy check since S! is an Abelian group

1

under multiplication and z=! = Z when z € S*.

Since |y(z) — 1] = |y(z) — 1| the inversion is certainly continuous. Now suppose that
YA € pU(K, €) for some p € G. Since YA is continuous and K is compact |YATi — 1| achieves
its bounds on K and hence there is some ¢ > 0 such that [(yAm)(z) — 1| < e — 0 for all

x € K. But then if v € yU(K,/2) and N € \U(K, §/2) we have

(YNE)(@) — 1] < [(NE) @) — GXE@)] + [GNE) @) — (AR + (A @) — 1)
<d/24+0/24+e—F=¢.

It follows that v\ € pU (K, €) and so the preimage of YA contains a neighbourhood of (v, \)
in G x G ie. multiplication is jointly continuous. Finally, the topology is Hausdorff since if
v # A then there is some x € G such that y(x) # A(z); put € := |y(x) — A(x)|/2 and note
that YU ({z},€) and AU ({x}, €) are disjoint open sets containing vy and A respectively. [

We call the group G endowed with the compact-open topology the dual group of G, so
that the above proposition tells us that if G is a topological group then its dual group is a
Hausdorff Abelian topological group.

We call the identity, denoted 14, the trivial character.

Example 6.4. When G is a group with the indiscrete topology the only continuous functions
are constant and so G is the trivial group with one character taking the constant value 1
(and there is only one topology on a set with one element) so that we have completely

determined the topological group G.
The topology on G and G are quite closely related:

Proposition 6.5. Suppose that G is a compact topological group. Then G is discrete.
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Proof. Suppose that v # 15 so there is € G such that y(x) # 1. Let y € G be such that
|7(y) — 1| is maximal (which exists since G is compact and x — |y(z) — 1| is continuous)

and note that by assumption this is positive. If |y(y) — 1| < 1 then we have

() =1 = v (@)?* = 1] =2+ (v(y) — )y (y) — 1]
= (2-v() = WD) =1 > |v(y) —1].

This is a contradiction, whence v ¢ U(G,1) and {14} is open so the topology is discrete. [
Remark 6.6. Conversely if G is discrete then it turns out G is compact. (See Exercise )

Example 6.7 (Finite cyclic groups with the discrete topology). Suppose that G is a finite
cyclic group endowed with the discrete topology. Since G is cyclic it is generated by some

element x; consider the map
¢:G— Gia" (G — S'; 2! v exp(2mirl/|G))).

This map is a well-defined homomorphism since " = 2™ (resp. 2! = 2) only if |G| | r — ¢/

(resp.|G| | 1 =1'),
exp(2mi(r + r")l/|G|) = exp(2mirl/|G|) exp(2wir'l/|G])

and
exp(2mir(l + 1) /|G|) = exp(2mwirl/|G|) exp(2mirl /|G|).

¢ is injective since if exp(2mirl/|G|) = 1 for all | then |G| | r so 2" = 1. Finally, ¢ is
surjective since if v : G — S is a homomorphism then v(z)/! = 1 so y(z) = exp(27ir/|G|)
for some r € Z, and v = ¢(z").

We conclude that ¢ : G — Gis a bijective group homomorphism and hence ¢! is a
group homomorphism. Since G is discrete ¢ is continuous; since G is finite it is compact
and so G is discrete by Proposition and hence ¢! is continuous, so ¢ is an isomorphism

of topological groups.

Example gave topological reasons for the dual group being trivial, but there can also

be algebraic reasons:

Example 6.8 (Non-Abelian finite simple groups). Suppose that G is a non-Abelian finite
simple{ﬂ topological group.
Suppose that v : G — S* is a homomorphism. Since G is non-Abelian there are elements

x,y € G with zy # yx, but then zyz~'y~! # 15 while

Y(wyr 'y = y(@)y(y)v(e) yy) T =1

12Tt may help to recall that a simple group is a group whose only normal subgroups are the trivial group
and the whole group e.g. A,,, the alternating group on n elements, when n > 5. (The Abelian finite simple

groups are the cyclic groups of prime order and their dual groups are described in Example )
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since S' is Abelian. We conclude that the kernel of ~ is non-trivial, but all kernels are
normal subgroups and since G is simple it follows that kerv = G i.e. v is trivial. In other
words G = {1a}.

The process of passing from a topological group to its dual group has a corresponding

process for continuous homomorphisms:

Proposition 6.9. Suppose that G and H are topological groups and ¢ : G — H is a con-
tinuous homomorphism. Then the map ¢* : H— CA;;V — v o ¢ is a well-defined continuous

homomorphism. If ¢ is surjective then ¢* is injective.

Proof. Certainly ¢* is well-defined as v o ¢ is a composition of continuous homomorphisms
and so a continuous homomorphisms. To see that ¢* is continuous be apply Lemma to
the observations that (¢*) ' (U(K,d)) = U(¢(K),d) and that if K < G is compact then
¢(K) is compact since ¢ is continuous. Finally, if ¢ is surjective and ¢*(y) = 15 then
v(¢(x)) =1 for all z € G and hence y(z) = 1 for all z € H i.e. v=15. O

Remark 6.10. If ¢ is the identity map on G then ¢* is the identity map on @, and if
¢: G — Hand ¢ : H - K are continuous homomorphisms then (¢ o 1)* = 1* o ¢*, so
that the map taking G to G and ¢ to ¢* is a contravariant functor from the category of
topological groups with continuous homomorphisms to the category of Hausdorff Abelian
topological groups with continuous homomorphisms.

In particular, since every Hausdorff Abelian topological group is, in particular, a topo-
logical group the category of Hausdorff Abelian topological groups is closed under taking

duals.

Example 6.11. Suppose that H is a finite non-Abelian simple group with the discrete
topology, then as described in Example we have that H is trivial. Since H is non-
Abelian it contains a non-identity element; let G be the subgroup of H generated by such
an element. The embedding j : G — H;x — =z is a continuous injective homomorphism,
and j* : H — G is the map taking the identity in H (which is the only element) to the
identity in G. Moreover, since G is cyclic, finite, and discrete, Example tells us that G
is topologically isomorphic to G and, since GG is non-trivial, G is non-trivial. In particular,

J* is not surjective despite j being injective. (c.f. the last part of Proposition )
An important application of our Haar integral is the following result.

Theorem 6.12. Suppose that G is a locally compact topological group. Then G is locally

compact.

Proof. Let § be a left Haar integral on G (which exists by Theorem [5.10). Since § is non-
trivial there is fo € C.F(G) such that { fo # 0 and we may rescale so that { fo = 1. Write K
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for a compact set containing the support of fy and U for a compact neighbourhood of the
identity.

UK is compact by Lemma [2.23] Apply Corollary to get a continuous compactly
supported F' : G — [0, 1] such that F(x) =1 for all x € UK. Define

—{yeG:|yx)—1|<1/dforall z € K},

so that V' certainly contains, U(K, 1/4), an open neighbourhood of the identity.

Claim. Suppose that k,0 > 0. Then there is an open neighbourhood of the identity Ls,
such that if ‘wa‘ K then |1 —~y(y)| < for all y € Ls,.

Proof. By Lemma there is an open neighbourhood of the identity Ls, (which we may
assume is contained in U since U is a neighbourhood and so contains an open neighbourhood
of the identity) such that |\, (fo)— folew < dk/§ F forally € Ls .. (Note { ' > 0 by Corollary
5.9) For y € Ls,, the support of \,(fo) — fo is contained in UK (since Ls,, < U) and so

| ) = ol < (o) = ol [ F < 3w

- UfoAy-m - wa
U (fo)y foV

Dividing by « gives the claim. [

Now, if y € Ls,, then

u—wwm<kww—0jnv

J|/\ fO f0| < K.

We write M for the set of maps G — S! endowed with the product topology (c.f. the set
I considered in the proof of Theorem so that M is compact. As sets G is contained
in M, but the compact-open topology on G is not, in general, the same as that induced on
G asa subspace of M. Our aim is to make use of the compactness on M to show that G is
locally compact in the compact-open topology.

First we restrict to homomorphisms: write H for the set of homomorphisms G — S,

which is a closed subset of M since it is the intersection over all pairs x,y € G of the set of

f € M such that f(xy) = f(x)f(y). Write

Ci= () {feH:|f(x)-1]<d}

6>0,CE€L573/4

which is also closed as an intersection of closed sets. By Lemma as sets we have C' = G
since the sets {z € S : |1 — z| < §} form a neighbourhood base of the identity in S', and if
feCthen f7'({z € S': |1 —z| <6}) D Lss/s which is a neighbourhood of the identity in
G.
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If v € V then ‘1 - Sfov} < § foll —~| < 1/4, so by the triangle inequality | { foy| = 3/4
and hence the claim tells us that v € C. Thus (as sets) V < C' ¢ G and so

V= {feC:|fx) -1 <1/4},

zeK

which is again a closed subset of M.

Our aim is to show that V' is compact in the compact-open topology on G. This follows
if every cover of the form U = {yU(K,,0,) : 7€ V} (where K, is compact and 6, > 0) has
a finite subcover. Write L., := L;. /21,2 and note that by compactness of K, there is a finite
set T, such that K, < T L,. Write

Uy,:={feM:|f(x)-1] <é,/2forall z e T}

which is an open set in M since T, is finite. Suppose that A € (yU,) n V. Then since
v, A € V', the triangle inequality gives

L= foaA < | foll=FA = | ol =7 +7 — 7|
o< | |
<jfo|1—v|+jfo|1—A\ <1/2

Hence ]S fo¥A| = 1/2 by the triangle inequality again. The claim gives [1 —~(y)A(y)| < 4,/2
for all y € L,. But 7\ € U, so we also have |1 —y(2)A(2)| < 6,/2 for all z € T,. Thus, if
x € K, then there is z € T, and y € L, such that z = zy and

1= (@) @)] < [1=7(2)AE)] + ()M ) =1 (29)A(29)]
= 1 =7+ 1 =7(w)Ay)| < 0,

We conclude that yU, n'V < yU(K,,d,) n' V. Finally {yU, : v € V'} is a cover of V by sets
that are open in M. M is compact and V' is closed as a subset of M so V' is compact as a
subset of M, and hence {yU, : v € V'} has a finite subcover which leads to a finite subcover

of our original cover Y. The result is proved. [

Remark 6.13. Following on from Remark [6.10] the above shows that the category of locally
compact Hausdorff Abelian topological groups is closed under taking duals. Pontryagin
duality is a strengthening of this showing that in this restricted category taking the dual
is a type of ‘equivalence’. A crucial part of establishing Pontryagin duality turns out to be
showing that characters separate points on these groups and this is the purpose of our next

and final section.
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7 Characters on locally compact Hausdorff Abelian
topological groups separate points

If we are able to distinguish topologically between two points of a topological group, meaning
if there exists an open set containing one and not the other, then Theorem can be used to
provide a continuous function into C bearing witness to this, by which we mean a continuous
function which taking different values at the two points. In this section we ask when these
topological witnesses can also be made to respect the group structure. Our first aim is the
following, which will be a key ingredient in the main result of the section: Theorem [7.19]

Theorem 7.1. Suppose that G is a compact Hausdorff Abelian topological group and x € G
15 not the identity. Then there is a character v € G such that v(z) # 1.

Remark 7.2. This result is sometimes called the Peter-Weyl Theorem (see e.g. [DS11], Corol-

lary 5.3]), though more often that name refers to a more general result.

To prove this we shall need some inner product structure afforded by Haar integrals.

First, given a Haar integral § on a topological group G we define

()= f 17 for all f,g € C.(G) and | f]? :=f|f2 — (f.f) forall f e C(G).  (7.1)

Remark 7.3. Although the notation (-, -) and |-| makes no mention of § it will always be clear
from context which Haar integral we are referring to. In any case in the light of Remark [5.4]
where we noted that Haar integrals can only exist for locally compact topological groups,
Theorem [5.13] tells us there is little choice.

Lemma 7.4 (Basic properties of the inner product). Suppose that § is a left Haar integral
on a topological group G. Then

(1) (-,-) is an inner product on C.(G);
(ii) for each x € G, A, is an isometrift¥] of C.(G) with the norm || - ||;
(i) and if G is compact then there is a constant C > 0 (depending on §) such that

f | < CIf| and |f] < C||flo for all f € C(G).

13Recall that an isometry ¢ of a (complex) inner product space actually preserves the inner product
(meaning {(o(f), d(g)) = {f, gy for all f, g) by the polarisation identity:

gy =3 (17 + 9l =15 =gl +ilf +igl* il — igl?) for al £,5.
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Proof. Linearity in the first argument and conjugate-symmetry follow in view of the defini-
tion of (-, -) and linearity of the Haar integral and Remark 4.17} {f, f) = 0 for all f € C.(G)
since { is non-negative and it is positive definite by Corollary . follows from the fact

that the Haar integral is left-invariant so

| 13- [ x50 = [ Ml for al .9« (@)

Finally, for since G is compact the constant function 1 and |f|? are both in C.(G),
and in particular we can put C' := |[1| > 0. By the Cauchy-Schwarz inequality (which holds

for all inner products) we have

f\f\ = @D < AN = ¢l f] for all fe C(G);

and by non-negativity of { we have

I = 19 < [1512 = €211 for all £ & €6,
The last inequality follows and the result is proved. O

Remark 7.5. The second inequality in in particular tells us that if G' is compact then

uniform convergence implies convergence in | - |.

Remark 7.6. /\The norm with respect to which ), is an isometry is different in than
in Remark 5.2

Remark 7.7. C.(G) has a completion as a Hilbert space which we shall not discuss explicitly
here. One way to construct this is to associate a measure p to the Haar integral { (as in
Remark 4.18) and then the completion can be identified with Lo(p).

Given a left Haar integral { it can be used to define an operation called convolution
(implicitly used in the proof of Theorem [5.13)) on C.(G) by

fw@%=fﬂwﬂf%%%ﬁM®» (7.2)

Remark 7.8. This definition is the reason for the complex conjugate in the definition of ~
before Remark [5.14]

Remark 7.9. If f,g € C.(G) are supported in A and B respectively, then f*g(x) # 0 implies
that there is some y with f(y) # 0 and g(y~'x) # 0 i.e. y€ Aand y 'z € Bso z € AB. In
other words, the support of f * g is contained in AB.

~

Remark 7.10. If f € C.(G) then f = f(1g) = | f|*

Lemma 7.11 (Basic properties of convolution operators). Suppose that S 1s a Haar integral

on a locally compact topological group G and f € C.(G). Then
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(i) Co(G) = C.(G); g — g = f is a well-defined linear map;
(1)) M(g=*[f)=N(g) = f forallt e G and g € C.(G);
(iii) {g* f,h)y = {g,h = [) for all g,h e C(G);

(iv) hx(g=f) = (h=g)=f for all g,h e C.(G);

() g = Floo < |glIf] for all g € Co(G).

Proof. By the first part of Fubini’s Theorem (Theorem the function g = f € C.(G)
since (x,y) — g(z)f(z 'y) is a continuous and compactly supported. Moreover, { is linear
and so it follows that g — ¢ * f is linear and (i)|is proved.

For [(ii)| note that A\(g * f)(z) = g * f(t72) = (g M-1o(F)) = (g A1 (M) =
O(9), Aa(F)) = Ae(g) = f(x) since A, is an isometry w.r.t. | - | (by Lemmal[7.4|[Gi)

For since the function (z,y) — g(z)f(z'y)h(y) is continuous and compactly sup-
ported, by Fubini’s Theorem (Theorem , linearity of the Haar integral, and Remark
we have

(o fihy= f | st it
- [ sta f Fa™ ) = | o f b)) = (o, h s P,

as required.
For we apply A, to the integrand z — g(2)f(z~'y~'x) using that {_is a left Haar
integral; then Fubini’s Theorem (Theorem [4.19) since (z,y) — h(y)g(y~'2)f(271z) is con-

tinuous; and finally linearity of Sy to see that

bl D) = |

Y

_ L hy) f oy o) f(= ) = J Uy h(y)g(y_lz)) f(7'2) = (hx g) » f(2)

h(y) f g(2)f(z7 'y )

as claimed.
Finally, follows by the Cauchy-Schwarz inequality and the fact that A\, is an isometry

for | | (Lemma [7.4][)): |g  f()] = [<g: ATV < lgl|Xe(F)| = |g]If]. The result is
proved. O

Remark 7.12. We call the linear operators in |(i)| convolution operators.

Remark 7.13. The linearity in and the inequality mean that convolution operators
map convergence in | - | to uniform convergence i.e. if g, — g in | - | then g, = f — g = f

uniformly.
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Before beginning our main argument we need one more tool that captures what is called
compactness of convolution operators. This is a notion from functional analysis, though

familiarity with it is not needed.

Proposition 7.14. Suppose that § is a left Haar integral on a compact topological group
G, f e CHG) and (gn)nen 15 a sequence of elements of C(G) with |g,| < 1 (the norm
corresponding to the inner product, not the uniform norm). Then there is a subsequence

(gn, )ien Such that g, = f converges uniformly to some element of C(G) as i — co.

Proof. For each j € N Remark gives us an open cover U; of G such that if z,y €
U € U; then |f(x) — f(y)| < 1/j. Since G is compact apply Lemma to get an open
neighbourhood of the identity U; such that {zU; : © € G} refines ;. Since G is compact
there is a finite cover {xy;Uj,..., 2 ;U;} which refines {2U; : * € G}. By Lemma
gn* f(z) € [=|IF], [ F]], and the latter is sequentially compact. A countable product of
sequentially compact spaces is sequentially compacﬁ so there is a subsequence (n;); such
that g, = f(zg;) converges, say to g(xy ), as i — oo for all 1 <k < k(j) and j € N.

Suppose € > 0 and let j := [3¢7'C] (where C is as in Lemma . Forall 1 <k <
k(j) let M, be such that |g,, = f(zx;) — g(zk;)| < €/6 for all i = My; let M := max{M, :
1 <k < k(j)} and suppose that 7,7’ = M.

For z € G there is some 1 < k < k(j) such that = € x;, ;U; and hence for all y € G we have
y~rr,y tay ;€ y~lay,;U; which is a subset of an element of Uj, so |f(y'z) — f(y tay,)| <
1/4. Thus for g € C(G) with |g| < 1 we have (by Lemma

9+ £(2) = 9 F@s)| = Kou () = Ay (D)
< [0alP) =, (e [ 1o

< sup fy™'o) = fly a0 |Clgl < =C < ¢/3.
ye

.| =

In particular this holds for g = g,, and g = gy,,, so that

’gm * f(SU) — 9ny * f(l‘)| < ‘gni * f(x> — On; ¥ f(xkuﬂ + ‘gni * f(xk,j) - g<xk,j)|
+19(@rs) = Gny * F(@rg)] + 1Gny * [(@hg) = Gn, * f(2)] <€

Since x € G was arbitrary it follows that the sequence of functions (g,, * f); is uniformly

Cauchy and so converges to a continuous function on G. The result is proved. O]

Corollary 7.15. Suppose that § is a left Haar integral on a compact topological group G,
feCH @), and W is a space of eigenvectors of the convolution operator C(G) — C(G); g —
g = f all with eigenvalue A # 0. Then W is finite dimensional.

4The proof of this is just Cantor’s diagonal argument.
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Proof. Suppose that W is infinite dimensional. Then in particular there is an infinite se-
quence of linearly independent vectors in W and by the Gram-Schmidt procesﬂ there is
an orthonormal sequence of vectors ey, es,--- € W. Since every vector in W has eigenvalue
A # 0 we have e, = f = A\e,, and by Proposition there is a subsequence e,,, such that Ae,,
converges uniformly to some e € C(G). Since |e,,| = 1 and Ae,, — e uniformly, Remark
tells us that |e| = |A| # 0. Moreover,

> Kesen)

but [{e e, — |A| # 0 and so the left of (7.3 tends to infinity as & — oo. This is a

contradiction proving the corollary. ]

2

= [el?, (7.3)

k
2< ) Keenl” +
i=1

k
€— Z <€, eni>eni
=1

Remark 7.16. /\'We may have |en|loc — o0 as n — oo, despite the fact that |e,| = 1 for all
n e N.

Remark 7.17. The inequality in (7.3 for a general orthonormal sequence e,, and vector e is

sometimes called Bessel’s inequality.

Proof of Theorem[7.1]. First, by Theorem there is a left Haar integral on G; write (-,-)
and | - | for the corresponding inner product and norm as in ([7.1)).

We begin by defining an auxiliary function. Since G is Hausdorff and = # 14 there
is a neighbourhood T' of the identity that is disjoint from x. By Lemma there is a
symmetric open neighbourhood of the identity S such that S? < T, and by Theorem
with the compact set {15} contained in the open set S, there is an f € C*(G) with f(1g) =1
and which is supported in S. In particular f* f(x) =0 in view of Remark and the fact
that S™'S = 52 c T while z ¢ T.

To ensure that the homomorphism we construct does not have x in the kernel we shall

restrict attention to the subspace
Vi:={geC(G):{g,hy =0 for all he C(G) with h = A\,(h)}.

Suppose that g € V, h € C(G) has h = A,(h), and k € C(G). Then hek = M\y(h)k = Ay (h+k)

(by Lemma , and so 0 = (g, h+k) = (g+k,h) (by Lemma . Thus g«k eV,

and any convolution operator is a linear operator (by Lemma mapping V into V.

Let B := {ge V : |g| < 1} and note by Lemma that g = f| < |f] for all
g € B;let M :=sup{|g = f|| : g € B} which consequently exists. Note, in particular, that by

5Given vy, vs,. .. linearly independent, the Gram-Schmidt process defines
n—1
Up 1= Uy — (vp, exyer and ey, := uy/|un|,
k=1
and it can be shown by induction that ey, es,... is an orthonormal sequence.
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Lemma , the Cauchy-Schwarz inequality and the definition of M (since h * fe V)
we have
[P fI* = <hos fohos ) = {(hos ) = f,h) < M|[ho« f][|h]] for heV (7.4)
and so |h« f| < M|h| for he V.
Put go := f — Ay—1 (f) and suppose h € C(G) has h = A,(h). Then by Lemma

<90a h> = <f_ )‘m*1 (f)v h> = <.]?7 h> - <)‘ac(/\93*1 (f))7 /\:v(h)> = <f7 h> - <f7 /\a:(h)> = 0,

so go € V. Moreover,

go* f(la) = (f = At () * f(Le) = [ » f(1g) = f = f(z) = | f|* # 0

by Remark [7.10] and the design of f. Whence |go* f| # 0. Since the zero function is mapped
to the zero function by any convolution operator, we conclude that gy # 0 and by linearity
of the convolution operator we have that |(go/|go|) * f| # 0 so M > 0.

Let (gn)n be a sequence of elements in B such that |g, = f|| — M. By Proposition
there is a subsequence g,, and some h € C(G) such that g,, * f — h uniformly. Uniform

convergence implies convergence in |- | (Remark|[7.5)) and so V' is closed under uniform limits
(and hence h € V); {g,. = f,h) — |h]?; and |gn, * f| — || leading to |h|| = M. Combined

with (7.4) and Lemma [7.11][(iii)], gives

Hh * fN_ M2g’ni

2

P = b JI?P =200 Rech = fga) + M gn,
< M?|h|* — 2M? Reh, g, * )+ M* — 0

as i — c0. Hence M2g,, — h+ f in | - |, and since convergence in | - | is mapped to uniform
convergence by convolution operations (Remark we have M?g,, = f — (h = f) « f.
Uniqueness of limits then ensures M?h = (h = f) # f=h= (]?* f). (The last equality is the
associativity proved in Lemma )

Since h e V, A\;(h) # h since h # 0. Consider the subspace

W = {Zui)\ti(h):neN,ul,...,,unG(C,tl,...,tneG}
=1

which contains h. In view of the design of h, linearity of the convolution operator « :
C(G) — C(G);g— g+ (f+f) (Lemma , and Lemma , we have that every W
is an eigenvector of a with eigenvalue M2 # 0. Moreover, f « f € C*(G) (since f € C*(G))
and so by Corollary dim W < o0.

We call U < C(G) an invariant space if \;(u) € U for all u € U and all t € G. By
design W is an invariant space and moreover, it is finite dimensional and contains A # 0.

We think of the \;s as linear maps on W.
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Claim. If U is an invariant space and U’ < U is an eigenspace of \; as a linear map

U — U, then U’ is itself an invariant space.

Proof. By hypothesis there is some p such that U’ = {u € U : \y(u) = pu} for some u, and
so if u € U’, then since G is Abelianf® Ai(As(u)) = M5 (1) = Mgt (1) = As(Ae(u)) = As(pu) =
pAs(u) so that Ag(u) € U’ for all s € G. O

Since h € W and A, (h) # h the linear map A\, : W — W is not the identity and is
isometric (Lemma SOE| it has an eigenspace with eigenvalue distinct from 1. Let
U < W be an eigenspace corresponding to a value which is not 1, and which by the claim
is invariant.

Let U’ < U be a non-trivial invariant subspace of smallest dimension. Since U’ is finite
dimensional (as a subspace of W) \; has an eigenvalue, call it y(¢), and since U’ has a
smallest dimension the corresponding eigenspace, which is an invariant space by the claim,
must be the whole of U’. In particular A\;(u) = v(¢t)u for all w € U" and t € G; and there is
u e U with u # 0. Then:

e \(u) € U’ by invariance and so As(A(u)) = v(s)A\(u) = vy(s)y(t)u, but on the other
hand As(A¢(w)) = Ase(u) = y(st)u. Since u # 0 we may divide and y(st) = v(s)y(t).

e )\, is isometric so |y(s)||ul| = [y(s)u] = |As(u)| = |lu| for all s € G. Since u # 0 we

have |y(s)| = 1 and in particular v is a homomorphism into S.

e Again, since u # 0, for € > 0 we have
{teG:|y(t) -1 <e}={teG:|Nu)—ul|o < e|u]eo}

The latter set is open since the map G — C(G);t — A (u) is continuous by Lemma
5.3l The sets {z € S : |z — 1| < €} form a neighbourhood base of the identity in S*
(c.f. the proof of Theorem [6.12)) and hence + is continuous by Lemma |3.6]

e Finally v(z) # 1 since U' < U.
The result is proved. [

Remark 7.18. The invariant spaces described above are sometimes called unitary represen-

tations.

16This is the only place where we use that G is Abelian.
17This fact is more involved than the others here as it relies on the fact that A, on W is isometric and so

corresponds to a unitary matrix which can be diagonalised.
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Bootstrapping separating characters in compact Hausdorff Abelian
topological groups to locally compact Hausdorff Abelian topologi-

cal groups
Finally we turn to the full separation theorem:

Theorem 7.19. Suppose that G is a locally compact Hausdorff Abelian topological group
and x € G is not the identity. Then there is a character v € G such that v(x) # 1.

We shall prove this by finding an open subgroup with a compact quotient that does not
identify x with the identity and then applying the result for compact groups. To begin we

need a lemma which is sometimes called Weil’s Lemma.

Lemma 7.20. Suppose that G is a topological group, U < G is a symmetric open neigh-
bourhood of the identity with compact closure, and x € G is such that |(x) " U| = 0. Then

@ 18 compact.

Proof. There is no loss in assuming that G = (z). Let Z := () = {2* : z € Z} and
N := {2" : n € Z,n = 1}. The hypothesis is that Z n U is infinite so 2™ € U for some
sequence of integers n; with |n;| — oo. Hence for o € Z then there is some ¢ such that
a + |n;| € N, whence 2@ = zo*+ilg=Inil ¢ N(U U U™') = NU i.e. Z ¢ NU and similarly
Z < N7'U.

Since U is a neighbourhood of the identity and G = Z, for all z € G there is a € Z such
that % € zU and hence G < ZU™' = ZU. Since Z < NU it follows that G = NU?, so for
each z € G we may let n(z) > 1 be minimal such that z € 2"*)U2.

U” is compact by Lemma and (since Z ¢ N7'U we also have) G = N7'U?, so there

is some ngy = 1 such that
—2
UPcU c{z o2 ... o ™U~

Coupling this with the definition of n(z) we conclude that there is 1 < i < mg such that
+7"2) 2 e 27U?, whence z € 272, By minimality of n(z) it follows that n(z) —4i < 0
and so n(z) < ng. Hence G < {x, 2%, ..., 2™}U? < {x,2?%, ... ,x”O}UQ. Thus G is a finite

union of compact spaces, and so compact proving the result. O

The next result makes considerable use of the fact the underlying group is Abelian and
while our proof of Theorem adapts reasonably easily to give a non-Abelian analogue,

the following proposition is much harder to modify.

Proposition 7.21. Suppose that G is a locally compact Abelian topological group and xo € G
s not the identity. Then there is an open subgroup H of G and a closed subgroup L < H
such that H/L is compact and xq € H\L.

Page 46



Proof. Lemma applied with the compact set {xo} gives us U, a symmetric open neigh-
bourhood of the identity in G containing {zo} with compact closure. Let H := (U) which
is an open subgroup of G by Corollary [2.19. By Proposition there is a finite set T" such
that H = (T)U.

Let S < T be maximal (possibly empty) so that there is n € N¥, a vector of non-zero
natural numbers indexed by S, such that L := (s"s : s € S) is U-separated meaning that
if tU nyU # & and x,y € L then x = y. This immediately tells us that L is closed since if
z is a limit point of L then there must be x # y with x,y € L with x,y € Uz which cannot
happen in view of the separation property. Moreover, since xg, 1¢ € U and xy # 1 we have
xo ¢ L.

Let ¢ : H — H/L be the quotient map which is continuous and open by Proposition
3.10l Since ¢ is a homomorphism ¢(U?) is a symmetric set containing the identity; it is
open since ¢ is open. q(UQ) is a continuous image of a compact (by Lemma set and so
compact and hence has compact closure by Lemma . Since q(U?) < q(U2) we conclude
that ¢(U?) has compact closure.

Suppose that ¢ € T and suppose that ¢(t) does not have finite order in H/L. Then t ¢ S
since ¢(s) has order dividing n, for s € S since ¢(s)™ = 1y, by design of L and the fact ¢
is a homomorphism. If {q(t)) n q(U?) were finite then there would be n; > 1 such that if
q(t)* € q(U?) and z € Z then z = 0. But then if L/ := (s" : s € SU{t}), and 2/, € L’ has
2’Uny'U # &, then since G is Abelian there are z,w € Z and x,y € L such that 2’ = t*™x
and y' = t*™y. It follows that y~ 1t~y € U? so (since G is Abelian) ¢(t)*=2)" € ¢(U?)
and hence z = w, but then zU n yU # ¢ and so x = y by design of L. We conclude that
' =1y i.e. L' is U-separated, but this contradicts the maximality of S (since we could just
have added t). Thus we conclude that {q(t)) n ¢(U?) is infinite, and hence by Lemma
{q(t)) is contained in a compact set K.

Note that if ¢ € T has finite order then (¢(t)) is finite and so is also (contained in) a
compact set, which we shall denote K;. Again, since G is Abelian and ¢ is a homomorphism
we have ¢((T)) = [ [, <q(t)) < | |,er K (note the product here is the group operation not
the Cartesian product) and so by Lemma we have ¢({(T)) is contained in a compact
set. Finally, ¢ is continuous and so ¢(U) is compact and q(H) = ¢({(T))q(U) is contained in
a compact setby Lemma again. Finally, H is open and so ¢(H) is open (Proposition
, and a subgroup so closed (Corollary . It follows that ¢(H) is a closed subset of

a compact set and hence compact. The result is proved. O

Lemma 7.22. Suppose that G is an Abelian topological group and H is an open subgroup
of G. Then for every ~ € H there is A€ G such that My =7.

Proof. The argument here is a typical Zorn’s Lemma argument. We begin with the engine
for H< K <G
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Claim. Suppose that v € }A(, x € G\K, and K’ is the group generated by x and K. Then
there is some A€ K' such that Ak =7.

Proof. Let k € Ny be minimal (when Ny is partially ordered by divisibility) such that z* € K
(i.e. k is the order of xK as an element of G/K with the convention that infinite order is
denoted 0), and let w be a kth root of v(z*) (with the convention that it is 1 if k = 0);
define A(z*h) := w*y(h) for all z € Z and h € K. We need to check this is well-defined so
that if 2°h = 2*'h/ then 2% = Wh™' e K and so k | z — 2’ (meaning z = 2’ if k = 0, and
hence h = h') whence w?y(h) = w”y(z**)y(h) = w”y(R') as required. X is also visibly a
homomorphism and the claim is proved since K is open in K’, and so A is continuous since

~v is continuous and K'/K is discrete. ]

Let £ be the set of pairs (K, \) such that H < K < G and A e K has Ay = . This set
is partially ordered by (K,\) < (K',XN) if K < K" and A = XN|k. If C is a chain in £ then
K* = | J{K : (K,)\) € C} is a group containing H and all K with (K,\) € C, and we can
define \*(z) for all z € K* by setting A*(x) = A(z) whenever (K,\) € C and x € K. (\* is
certainly continuous.)

Thus by Zorn’s Lemma £ has a maximal element (K, \) and by the claim if x € G\K

then £ would contain a larger element. This contradiction proves the result. O]

Proof of Theorem[7.19. Apply Proposition to get an open subgroup H < G, and a
closed subgroup L < H such that H/L is compact and = € H\L. Write ¢ : H — H/L
for the usual quotient map. Since L is closed H/L is Hausdorff by Proposition and
q(x) # 1y since x ¢ L. By Theorem there is A\ € ]7—/2 such that A(zL) # 1, so then
Aogqe€ H has Ao q(z) # 1. Finally, apply Lemma to this to get a character v € G such
that v(x) # 1. The result is proved. O
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