
Topological Groups, 2020–2021

Tom Sanders

We begin with the course overview as described on https://courses.maths.ox.ac.

uk/node/51770.

Course Overview:

Groups like the integers, the circle, and general linear groups (over R or C) share a number

of properties naturally captured by the notion of a topological group. Providing a unified

framework for these groups and properties was an important achievement of 20th century

mathematics, and in this course we shall develop this framework.

Highlights will include the existence and uniqueness of Haar integrals for locally compact

topological groups, the topology of dual groups, and the existence of characters in locally

compact Hausdorff Abelian topological groups. Throughout, the course will use the tools

of analysis to tie together the topology and algebra, getting at superficially more algebraic

facts by analytic means.

References

There are some references which may be of use: [Fol95, Kör08, Kra17, Meg17] and [Rud90].

Teaching

The lectures and these notes will appear online as they are produced. They will be supple-

mented by some tutorial-style teaching where we can discuss the course and also exercises

from the sheets. Once I have a list of the MFoCS students attending I shall be in touch to

arrange these.

Contact details and feedback

The current circumstances mean this course is appearing in a different way to normal. In

particular, there will inevitably be less audience response so I encourage you to get in touch

at tom.sanders@maths.ox.ac.uk if you have any questions or feedback.

Last updated : 7th April, 2021.
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General prerequisites

The course is designed to be pretty self-contained. We assume basic familiarity with groups

as covered in Prelims Groups and Group Actions (see e.g. [Ear14]). We shall also assume

familiarity with Prelims Linear Algebra (see e.g. [May20]), though it is only in §7 that we use

anything of substance; and Part A: Metric Spaces and Complex Analysis (see e.g. [McG20])

for material on normed spaces.

Familiarity with topology is essential, though not much is required. What we use (and

more) is covered in Part A: Topology (see e.g. [DL18]), with the exception of Tychonoff’s

Theorem. This can be informally summarised as saying that a non-empty product of non-

empty compact spaces is compact, and there is no harm in taking it as a black box for the

course. Those interested in more detail may wish to consult Part C: Analytic Topology (see

e.g. [Kni18]).

The Axiom of Choice is sometimes formulated as saying that an arbitrary product of

non-empty sets is non-empty, and this perhaps makes it less surprising that it can be used

to prove Tychonoff’s Theorem. It turns out that the converse is also true, i.e. Tychonoff’s

Theorem and the other axioms of Zermelo–Fraenkel set theory can be used to prove the

Axiom of Choice, and both are equivalent to Zorn’s Lemma1. We shall make use of Zorn’s

Lemma once at the very end of the course (literally the last lemma – Lemma 7.22).

Finally no familiarity with functional analysis is assumed, though there are clear simi-

larities and parallels for those who do have some. Those interested may consult [Pri17] and

[Whi19].

1 Introduction

In this course we are interested in the interaction between group structure and a ‘compatible’

topological structure.

Suppose that G is a group written multiplicatively, by which we mean the binary op-

eration of the group is denoted G2 Ñ G; px, yq ÞÑ xy; with inversion is denoted G Ñ

G;x ÞÑ x´1; and the identity is denoted 1G. Suppose additionally that G is a topological

space with topology τ . We say that the group operation is jointly continuous if the map

G2 Ñ G; px, yq ÞÑ xy is continuous, where G2 is equipped with the product topology (from

the topology τ on each factor of G). If inversion is continuous and the group operation is

jointly continuous then G is said to be a topological group.

Example 1.1 (Indiscrete groups). Any group G endowed with the indiscrete topology is a

topological group since any map into an indiscrete space is continuous.

1Those unfamiliar and looking for a reference may wish to consult the notes [Pil20] or [Con].
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Example 1.2 (Discrete groups). Any group G endowed with the discrete topology is a

topological group since the product of two copies of the discrete topology is discrete – so

both the topological spaces G and G2 are discrete – and any map from a discrete space is

continuous.

The reals under addition may be endowed with the discrete or indiscrete topologies to

make them into a topological group as above, however, there are other topologies on R
which are of interest.

Example 1.3 (The real line). The group R (the operation is addition) endowed with its

usual topology is a topological group. The relevant continuity is just the algebra of limits: in

particular, if xn Ñ x0 then ´pxnq “ p´1qxn Ñ p´1qx0 “ ´x0; and if additionally yn Ñ y0,

then xn ` yn Ñ x0 ` y0.

Remark 1.4. The reals illustrate some important general features for which we need a little

terminology. A neighbourhood base of a point x in a topological space X is a family

B “ pBiqiPI of neighbourhoods of x such that if U is an open set containing x then there is

some i P I such that Bi Ă U .

A topological space is said to be first countable if every element of the space has

a countable neighbourhood base (meaning every x has a a neighbourhood base Bpxq “

pBnpxqq
8
n“1).

First countable spaces are important because matters of convergence may be resolved

just by considering sequences and not more general nets. In particular, a function f is

sequentially continuous if fpxnq Ñ fpx0q whenever xn Ñ x0, and it is easy enough to

check that a continuous function is sequentially continuous (see e.g. [DL18, Proposition

1.24]); if the domain is first countable then2 sequential continuity implies continuity.

Example 1.5 (The real line, revisited). The group R endowed with its usual topology has

px ` p´1{n, 1{nqq8n“1 as a countable neighbourhood base for each x P R. In fact this is

in some sense just the neighbourhood base pp´1{n, 1{nqq8n“1 for 0 translated around the

group. This will be a general phenomenon of topological groups – they all have a (not

necessarily countable) neighbourhood basis of the identity which can be translated to give

a neighbourhood basis for any other point.

Example 1.6 (Normed spaces). The additive group of a normed space X with the topology

induced by the norm is a topological group.

The topology induced by the norm is the weakest topology such that x ÞÑ }x} is contin-

uous. For each x P X, px ` ty P X : }y} ă 1{nuq8n“1 is a countable neighbourhood base for

2In general this is proved using the Axiom of Countable Choice, though there are interesting cases where

this is not necessary.
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this topology so X is first countable. Moreover, the product of two first countable spaces is

first countable and hence to show that X is a topological group it is enough to note from

homogeneity that if xn Ñ x0 then ´xn Ñ ´x0; and from the triangle inequality that if

xn Ñ x0 and yn Ñ y0 then xn ` yn Ñ x0 ` y0.

Remark 1.7. The above is essentially the same argument as in Example 1.3, but in particular

gives the more general fact that Rn and Cn are topological groups under addition.

Remark 1.8. A topological vector space over R (resp. C) is a vector space over R
(resp. C) with a topology such that addition of vectors is jointly continuous, and scalar

multiplication is jointly continuous. It can be shown similarly to the above that any normed

space is a topological vector space, and a theory can be developed as in, for example, [Bou87].

This parallels many of our developments here but we shall not say more about it.

Given a normed space X we write BpXq for the set of continuous linear maps X Ñ X,

and GLpXq for the set of linear homeomorphisms. GLpXq is a group under composition

and it can be profitably viewed as inheriting topologies from BpXq.

Example 1.9 (GLpXq with the operator norm topology). GLpXq may be endowed with

the subspace topology inherited from BpXq with the operator norm topology. With this

topology GLpXq is a topological group.

If Sn Ñ S0 and Tn Ñ T0 then }Tn} ď 2}T0} for all sufficiently large n and hence

}SnTn ´ S0T0} ď }Sn ´ S0}}Tn} ` }S0}}Tn ´ T0} Ñ 0

since the operator norm is sub-multiplicative; hence SnTn Ñ S0T0. BpXq is a normed space

so as in Example 1.6 the topology is first countable, whence so is the topology on GLpXq

and on GLpXq ˆGLpXq. Hence multiplication is continuous.

Now suppose that Tn Ñ T0, and let N P N be such that for n ě N we have }Tn ´ T0} ď

1{p2}T´10 }q. Now for all n we have

}T´1n ´ T´10 } “ }T´1n pT0 ´ TnqT
´1
0 } ď }T´1n }}Tn ´ T0}}T

´1
0 }, (1.1)

and so if n ě N then }T´1n } ď 2}T´10 } by the triangle inequality. Inserting this bound back

into (1.1) we have

}T´1n ´ T´10 } ď }Tn ´ T0}2}T
´1
0 }

2,

for n ě N , and so T´1n Ñ T´10 as required.

Remark 1.10. In particular C˚ (which we may identify with GLpCq) is a topological group

under multiplication.

The above example is our first example where showing continuity of inversion is a little

more involved. The multiplicative group C˚ already gives a glimpse as to why: despite being

continuous, the inversion map C˚ Ñ C˚; z ÞÑ z´1 is not uniformly continuous.
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Remark 1.11. There are other natural topologies on GLpXq, for example the strong and

weak operator topology, which are the same as the operator norm topology when X is

finite dimensional but different for infinite dimensional normed spaces. Though they are

important we shall not dwell on these.

Remark 1.12. In particular the matrix groups GLnpRq and GLnpCq are topological groups.

2 Some basics of the interplay of algebra and topology

Suppose that G is a group (written multiplicative) and S, T Ă G. We write

S´1 :“ ts´1 : s P Su and ST :“ tst : s P S, t P T u.

For n P N0 we define Sn inductively by S0 :“ t1Gu and Sn`1 :“ SnS, and S´n :“ pS´1qn.

It will also be convenient to write xS :“ txuS and Sx :“ Stxu for x P G.

Remark 2.1. The notation xS (and Sx) generalises the usual coset notation for when S ď G.

!4In general SS´1 ‰ S0 and S2 ‰ ts2 : s P Su.

!4Gn denotes the n-fold Cartesian product Gˆ ¨ ¨ ¨ ˆG not the product defined above

which is just G.

We write xSy for the group generated by S, that is
Ş

tH ď G : S Ă Hu, the intersection

of all the subgroups of G containing S.

We call S Ă G symmetric if S “ S´1.

Remark 2.2. If S and T are symmetric then S X T is symmetric.

Remark 2.3. If S is symmetric then xSy “
Ť

nPN0
Sn by the subgroup test.

We say that an Abelian group G is written additively to mean that the binary operation

of the group is denoted G2 Ñ G; px, yq ÞÑ x ` y; the inversion is denoted G Ñ G;x ÞÑ ´x;

and the identity is denoted 0G. The preceding notation changes in the obvious way, so we

write S ` T instead of ST etc. above.

Remark 2.4. The reals in Example 1.3, and more generally the additive group of normed

spaces (Example 1.6) are examples of Abelian groups written additively. While, for example,

C˚ (as described in Remark 1.10), is an Abelian group written multiplicatively.

Suppose that G is a group written multiplicatively. To understand the interplay of

algebra and topology in topological groups it is useful to have a further definition: We say

that the group operation on G is separately continuous if the maps GÑ G;x ÞÑ xy and

GÑ G;x ÞÑ yx are continuous for all y P G.

Remark 2.5. Separate continuity of the group operation is exactly equivalent to saying that

xU and Ux are open (resp. closed) whenever U is open (resp. closed) and x P G.
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Remark 2.6. The maps GÑ G2;x ÞÑ px, yq (and GÑ G2;x ÞÑ py, xq) are continuous for all

y P G and so joint continuity of the group operation implies separate continuity.

A group G with a separately continuous group operation is called a semitopological

group; and if, additionally, inversion is continuous then we call it a quasitopological

group.

These two definitions will only really be important to us in the present section, and then

primarily for illustrating how powerful joint continuity is compared with separate continuity.

Remark 2.7. In view of Remark 2.6, every topological group is a quasitopological group,

and of course every quasitopological group is a semitopological group.

Example 2.8 (Reals with the right order topology). The reals R (with the operation of

addition) and with topology tpa,8q : a P Ru Y tH,Ru is a semitopological group since the

translate of any interval of the form pa,8q is also of this form; we denote it RRO. This is

not a quasitopological group since p´8,´aq is not open (whatever a).

Example 2.9. A group G endowed with the cofinite topology, that is the topology in which

the closed sets are the finite sets (and the whole of G), is a quasitopological group since U´1

is finite if U is finite (so inversion is continuous), and xU and Ux are finite if U is finite (so

multiplication is separately continuous).

If G is finite then the cofinite topology is the same as the discrete topology and G is a

topological group (as in Example 1.2). On the other hand, we shall see in Remark 2.26 that

it is not always a topological group.

Example 2.10. A group G endowed with the cocountable topology, that is the topology

in which the closed sets are the countable sets (and the whole of G), is a quasitopological

group by the same argument as in Example 2.9 with finite replaced by countable.

Now, if G is countable again we recover a discrete group; we shall be interested in the

case when G is uncountable.

Remark 2.11. There is also a notion of paratopological group, which is a group with

a jointly continuous group operation, but no continuity of the inverse is assumed. This

notion will not even be of illustrative importance to us. Exercise I.1 gives an example of a

paratopological group that is not a topological group.

There are a few key lemmas (Lemmas 2.12, 2.14, 2.18,2.23, 2.25, and 2.28) which capture

how the group operations interact with the topology of a (semi)topological group and while

these are not the main results we use later on, we highlight them in red because they each

capture a crucial technique or idea.

Lemma 2.12 (Key Lemma I). Suppose that G is a semitopological group, U is open and V

is any set. Then UV and V U are open, and U is a neighbourhood of x if and only if x´1U

(or Ux´1) is a neighbourhood of the identity.
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Proof. First, UV “
Ť

vPV Uv which is a union of open sets by the first part and hence open.

Similarly V U is a union of open sets and so open. Finally, if U is a neighbourhood of x

then there is an open set Ux Ă U containing x. Hence x´1Ux is an open set containing 1G

and contained in x´1U , which is to say x´1U is a neighbourhood of the identity. Similarly

if x´1U is a neighbourhood of the identity then U is a neighbourhood of x, and the same

two arguments also work for Ux´1.

In a similar vein we can say something about separation in semitopological groups:

A topological space X is Fréchet (or T1) if every singleton in X is closed. (The other

separation axioms we shall touch on in increasing order of strength are T2, just before

Remark 2.32, T3 in Remark 2.34,T31{2 in Remark 4.8, and T4 in Remark 4.9.)

Lemma 2.13. Suppose that G is a semitopological group. Then G is Fréchet if and only if

t1Gu is closed.

Proof. Immediate from separate continuity.

Lemma 2.14 (Key Lemma II). Suppose that G is a quasitopological group. If U is a

neighbourhood of 1G then U contains a symmetric open neighbourhood of the identity. If K

is a compact set then K is contained in a compact symmetric set.

Proof. If U is a neighbourhood of 1G then U contains an open neighbourhood V of 1G. Put

S :“ V XV ´1 which is open and contains 1G (since 1´1G “ 1G) and moreover S “ S´1 so that

S is a symmetric open neighbourhood of 1G contained in U . Since inversion is continuous

and K is compact, K´1 is compact and since the union of compact sets is compact we

conclude that K YK´1 is a compact symmetric set.

Remark 2.15. We did not actually use separate continuity of multiplication above.

Remark 2.16. !4Intersections of compact sets in topological groups are not necessarily

compact. See Exercise I.6.

Remark 2.17. A symmetric set S in a quasitopological group has symmetric closure: In-

version is continuous and self-inverse so S
´1

is closed and contains S´1 “ S. It follows

that S Ă S
´1

. But inversion is an involution3 so this tells us S
´1
Ă pS

´1
q´1 “ S, and we

conclude that S
´1
“ S.

The next lemma captures an important nesting of open and closed sets.

Lemma 2.18 (Key Lemma III). Suppose that G is a semitopological group, and S is a set

and V is an open neighbourhood of the identity. Then SV Ă SV V ´1.

3An involution is a map f : X Ñ X on a set that is self-inverse i.e. such that f2pxq “ x for all x P X.
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Proof. Let A :“ GzpSV V ´1q, which is closed since V is open and so SV V ´1 is open by

Lemma 2.12; and B :“ GzpAV q which is closed since AV is open again by Lemma 2.12. If

x P SV and x P AV then there is some v P V such that xv´1 P A, so xv´1 R SV V ´1, a

contradiction. Hence SV Ă B and since B is closed SV Ă B. Now if x P B then x R AV

and so in particular x R A (since 1G P V ) and hence x P SV V ´1 as claimed.

The next result is, perhaps, a little surprising.

Corollary 2.19. Suppose that G is a semitopological group and H ď G. If H is a neigh-

bourhood in G then H is open in G; and if H is open in G then H is closed in G.

Proof. If H is a neighbourhood of some x P G then by Lemma 2.12 there is an open set

U such that x´1U is an open set containing the identity. Now H “ HU is open, again by

Lemma 2.12.

For the second part, if H is open then by Lemma 2.18 H Ă HH´1 “ H and so H is

closed.

Remark 2.20. If U is a neighbourhood in a semitopological group G then by Corollary 2.19

xUy is closed so U Ă xUy and hence xUy “ xUy. !4This need not be true if U is not a

neighbourhood, for example U “ Q in R with its usual topology.

As it happens subgroup of a semitopological (resp. quasitopological) group with the sub-

space topology is itself a semitopological (resp. quasitopological) group, but more important

to us is the following:

Proposition 2.21. Suppose that G is a topological group and H ď G. Then H is a topo-

logical group when endowed with the subspace topology.

Proof. Suppose U is an open set in H, and let W be an open subset of G such that U “

W XH. Then U´1 “ pW XHq´1 “ W´1 XH´1 “ W´1 XH, but W´1 is open in G and so

U´1 is open in H i.e. inversion is continuous.

For multiplication, let V :“ tpx, yq P G2 : xy P W u so that V XH2 “ tpx, yq P H2 : xy P

Uu. Since multiplication on G is continuous, by definition of the product topology there are

sets S and T of open subsets of G such that

V “
ď

tS ˆ T : S P S, T P T u.

Now pS ˆ T q X H2 “ pS X Hq ˆ pT X Hq, and so the preimage of U under multiplication

on H is open in the product of the subspace topology on H with itself. That is to say,

multiplication is continuous on H and the result is proved.

Example 2.22. S1 :“ tz P C˚ : |z| “ 1u is a subgroup of C˚ and so it is a topological

group. In this case it is closed, but in general we are not making the assumption that any

subgroups we are considering are (topologically) closed.
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We now turn to a couple of key lemmas which (like Proposition 2.21) make essential use

of joint continuity in topological groups.

Lemma 2.23 (Key Lemma IV). Suppose that G is a topological group and K1, . . . , Kn are

compact subsets of G. Then K1 ¨ ¨ ¨Kn is compact. In particular, if K is compact then Kn

is compact for all4 n P N0.

Proof. The (topological) product of two compact sets is compact so if K1 ¨ ¨ ¨Kn´1 is compact

and Kn is compact then pK1 ¨ ¨ ¨Kn´1q ˆKn is compact. But then the continuous image of

a compact set is compact and so K1 ¨ ¨ ¨Kn “ pK1 ¨ ¨ ¨Kn´1qKn is compact and the result

follows by induction on n.

Remark 2.24. Exercise I.3 gives an example of a quasitopological group where the conclusion

above does not hold.

Lemma 2.25 (Key Lemma V). Suppose that G is a topological group and X is a neigh-

bourhood of z. Then there is a symmetric open neighbourhood of the identity V such that

zV 2 Ă X.

Proof. Let U Ă X be an open neighbourhood of z. The map px, yq ÞÑ xy is continuous and

so tpx, yq : xy P Uu is an open subset of GˆG. By definition of the product topology there

are sets S and T of open subsets of G such that

tpx, yq : xy P Uu “
ď

tS ˆ T : S P S, T P T u.

Since z1G “ z P U , there is some S P S and T P T such that pz, 1Gq P S ˆ T . Thus S is

an open neighbourhood of z and T is an open neighbourhood of the identity, so by Lemma

2.12 pz´1Sq X T is an open neighbourhood of the identity, which by Lemma 2.14 contains a

symmetric open neighbourhood of the identity V . Now zV Ă S and V Ă T and so zV 2 Ă U

as required.

Remark 2.26. Endow Z with the cofinite topology as in Example 2.9 so that if V Ă Z is open

and non-empty then there is some a P N0 such that x,´x P V for all x ě a (since ZzV is

finite). It follows that if n P N0 then a`n, a,´a,´a´n P V and so n “ pa`nq`p´aq P V `V

and ´n “ a`p´a´nq P V `V , whence V `V “ Z. In particular, then, U :“ Zztwu which

is a neighbourhood of every z ‰ w does not contain z ` V ` V for any non-empty open set

V .

In view of Lemma 2.25, Z with the cofinite topology is not a topological group, and since

we know from Example 2.9 that it is a quasitopological group it follows that the hypothesis

of Lemma 2.25 cannot be relaxed to apply to quasitopological groups.

4Note that K0 “ t1Gu by definition and so is compact since it is finite.
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Lemma 2.25 can be used to establish some uniformity in open covers of compact sets. A

cover U is a refinement of a cover V of a set X if U is a cover of X and each set in U is

contained in some set in V .

Remark 2.27. Refinements are transitive meaning that if W is a refinement of V and V is a

refinement of U then W is a refinement of U .

Lemma 2.28 (Key Lemma VI). Suppose that G is a topological group and K Ă Gn is

compact for some n P N, and U is an open cover of K. Then there is a symmetric open

neighbourhood of the identity U Ă G such that tx1U ˆ ¨ ¨ ¨ ˆ xnU : x P Ku is a refinement of

U .

Proof. First, the structure of the product topology (and Lemma 2.12) means that we can

pass to a refinement of U where for each x P K there are open neighbourhoods of the identity

U
pxq
1 , . . . , U

pxq
n (our notation is a little clumsy here to make the x-dependence explicit) such

that x1U
pxq
1 ˆ¨ ¨ ¨ˆxnU

pxq
n is in the refinement. The set

Şn
i“1 U

pxq
i is an open neighbourhood of

the identity and so by Lemma 2.25 there is a symmetric open neighbourhood of the identity

Ux such that U2
x Ă U

pxq
i for all 1 ď i ď n. In particular, V :“ tx1Ux ˆ ¨ ¨ ¨ ˆ xnUx : x P Ku is

an open cover of K and a refinement of U .

By compactness of K there is a finite set F Ă K such that W :“ tx11Ux1 ˆ ¨ ¨ ¨ ˆ x1nUx1 :

x1 P F u is a cover of K. Let U :“
Ş

x1PF Ux1 which is a finite intersection of symmetric open

neighbourhoods of the identity and so a symmetric open neighbourhood of the identity. Since

W is a cover of K, for each x P K there is some x1 P F such that x P x11Ux1 ˆ ¨ ¨ ¨ ˆ x1nUx1 ,

and hence

x1U ˆ ¨ ¨ ¨ ˆ xnU Ă x11Ux1U ˆ ¨ ¨ ¨ ˆ x
1
nUx1U

Ă x11U
2
x1 ˆ ¨ ¨ ¨ ˆ x

1
nU

2
x1 Ă x11U

px1q
1 ˆ ¨ ¨ ¨ ˆ x1nU

px1q
n

so that tx1U ˆ ¨ ¨ ¨ ˆ xnU : x P Ku is a refinement of V which in turn is a refinement of U
as required.

Remark 2.29. The lemma above is not unrelated to the Generalised Tube Lemma from

topology (see e.g. [Mun00, Lemma 26.8]), which is also known as Wallace’s Theorem.

This proposition highlights an important interplay of compactness and the group struc-

ture and has content even in seemingly simple cases:

Corollary 2.30. Suppose that G is a topological group, A is a compact set and B is an open

set containing A. Then there is a symmetric open neighbourhood of the identity U such that

AU Ă B. In particular, every neighbourhood of x contains a closed neighbourhood of x.
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Proof. Apply Lemma 2.28 with n “ 1 to the open cover tBu of A to get an open neigh-

bourhood of the identity, V , such that AV Ă B. By Lemma 2.25 there is a symmetric

open neighbourhood of the identity U such that UU´1 “ U2 Ă V , and so by Lemma 2.18

AU Ă AUU´1 Ă AV Ă B as required.

The last part follows immediately since the given neighbourhood contains an open neigh-

bourhood B of x. The set txu is compact and so there is an open neighbourhood of the

identity U with xU Ă B as required.

A topological space is said to be regular if for any closed set A and x R A there are

open sets U and V such that A Ă U and x P V .

Remark 2.31. Since finite sets (and in particular singletons) are compact Corollary 2.30

implies that every topological group is regular, and in particular that every neighbourhood

contains a closed neighbourhood. On the other hand an infinite group (e.g. Z) endowed with

the cofinite topology (as in Example 2.9) shows that this does not hold in quasitopological

groups since any non-empty open set there is infinite, while the only infinite closed set is

the whole group.

A topological space is said to be Hausdorff (or T2) if for any x ‰ y there are disjoint

open sets U and V such that x P U and y P V .

Remark 2.32. A topological space has unique limits (for nets) if and only if it is Hausdorff,

so this is a pretty uncontroversial axiom to want.

Remark 2.33. A subspace of a Hausdorff topological space is Hausdorff, so if H is a subgroup

of a Hausdorff topological group G then H is a Hausdorff topological group when equipped

with the subspace topology.

Remark 2.34. !4At first glance it may look as if regularity is a stronger condition than

being Hausdorff, and to make matters worse it is sometimes called separation axiom T3,

but in fact while we noted in Remark 2.31 that all topological groups are regular, there

are topological groups that are not Hausdorff e.g. a non-trivial group with the indiscrete

topology. More usually T3 space means regular Hausdorff.

Corollary 2.35. Suppose that G is a topological group. Then G is Hausdorff if and only if

t1Gu is closed (equivalently5 if and only if G is Fréchet).

Proof. First, if G is Hausdorff then for each x ‰ 1G there is an open set Ux containing x

and not containing 1G. Hence Gzt1Gu “
Ť

xPG Ux is open as required.

Conversely, if t1Gu is closed then G is Fréchet and so for all x ‰ y, txu is closed and tyu

is compact (since it is finite) so G is Hausdorff by Corollary 2.30.

5By Lemma 2.13.
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Remark 2.36. Compact subsets of Hausdorff topological spaces are closed. Conversely, the

Corollary 2.35 tells us that a topological group G is Hausdorff if the compact set t1Gu is

closed and a fortiori if every compact set is closed.

!4An uncountable group (e.g. R) endowed with the cocountable topology (as in Example

2.10) has no infinite compact set: if K is infinite then there is (by the Axiom of Countable

Choice!) a countably infinite set S Ă K, but then tSc Y tsu : s P Su is an open cover of

K with no finite subcover i.e. K is not compact. Since every finite set is closed in this

topology, we conclude that we have a quasitopological group in which every compact set is

closed. It is not, however, Hausdorff since any two non-empty open sets have a non-trivial

intersection.

To some extent the situation in non-Hausdorff topological groups can be recovered by

the following lemma.

Lemma 2.37. Suppose that G is a topological group and K is a compact subset of G. Then

K is compact.

Proof. Suppose U is an open cover of K then by for each x P K there is an open neighbour-

hood of x in U , call it Ux. By Corollary 2.30 applied to the compact set txu in the open set

Ux there is an open neighbourhood of x, call it Vx, such that Vx Ă Ux. The set tVx : x P Ku

is an open cover of K and so by compactness has a finite subcover, say K Ă Vx1 Y ¨ ¨ ¨ Y Vxk
and hence K Ă Ux1 Y ¨ ¨ ¨ Y Uxk . Thus U has a finite subcover of K, and the result is

proved.

Remark 2.38. The reals with the right order topology (RRO from Example 2.8) have t0u as

a compact subset (since it is finite), but t0u “ p´8, 0s which is not compact since the open

cover tpa,8q : a P Ru has no finite subcover. In particular, we cannot relax the requirement

that G be a topological group to semitopological group in Lemma 2.37.

A topological space X is locally compact if every point has a compact neighbourhood.

Example 2.39. Q is a subgroup of R (with its usual topology) and so by Proposition 2.21

is a topological group with the subspace topology. However, while R is locally compact, Q is

not locally compact. In particular, unlike the situation in Remark 2.33, locally compactness

is not preserved on passing to subgroups.

Remark 2.40. We shall mostly be interested in locally compact topologies and this is one

of the reasons we do not concern ourselves overly with semitopological and quasitopological

groups: there is a theorem of Ellis [Ell57, Theorem 2] which says that any locally compact

Hausdorff semitopological group is a topological group.

We shall think of a locally compact topological group is a group that is ‘locally’ not

too large – every point has a neighbourhood that is compact – but it might otherwise be

massive, for example any group with the discrete topology is locally compact.
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Lemma 2.41. Suppose that G is a locally compact topological group and K is a compact set.

Then there is a symmetric open neighbourhood of the identity containing K whose closure is

compact. In particular, G has a symmetric open neighbourhood of the identity with compact

closure.

Proof. Since G is locally compact there is a compact neighbourhood of the identity L, and

hence by Lemma 2.14 there is a symmetric open neighbourhood of the identity V Ă L. The

union of two compact sets is compact so KYt1Gu is compact and so by Lemma 2.14 there is

a symmetric compact set M containing KYt1Gu. Now, U :“ VMV is open by Lemma 2.12;

it contains the identity since V and M do; it contains K since V contains the identity and M

contains K; and it is symmetric since pVMV q´1 “ V ´1pVMq´1 “ V ´1M´1V ´1 “ VMV .

Finally, U Ă LML which is compact by Lemma 2.23, and hence U Ă LML is compact by

Lemma 2.37.

We say that G is compactly generated to mean that there is a symmetric open neigh-

bourhood of the identity S with compact closure such that G “ xSy.

Remark 2.42. !4A topological space is said to be compactly generated if A is closed if and

only if AXK is closed for all compact subsets K. This is a distinct notion – for example a

discrete group that is not finitely generated is compactly generated in this sense but not in

our sense – which we shall not use.

We think of compactly generated groups as ‘globally’ not too large, a bit like being

finitely generated.

Corollary 2.43. Suppose that G is a locally compact topological group. Then there is a

compactly generated open subgroup of G.

Proof. Apply Lemma 2.41 to get a symmetric open neighbourhood of the identity S with

compact closure. Then xSy is a compactly generated subgroup of G, and it is open by

Corollary 2.19.

Proposition 2.44. Suppose that G is a topological group and U is a symmetric neighbour-

hood of the identity with compact closure. Then there is a finite set T such that xUy “ xT yU .

Proof. Let V Ă U be open and note that ttV : t P U
2
u is an open cover of U

2
. The latter

is compact by Lemma 2.23 and so there is a finite set T such that ttV : t P T u is a cover

of U
2
. It follows that U2 Ă U

2
Ă TV Ă TU . Now by induction Un Ă T n´1U Ă xT yU for

n P N, and so since U is symmetric and contains the identity,
Ť

nPN U
n is a subgroup by the

subgroup test. We conclude that xUy Ă xT yU .

Since U is a neighbourhood, xUy is closed by Corollary 2.19 and so U Ă xUy, and

by algebraic closure T Ă U
2
Ă xUy. We conclude that xT yU Ă xUy, and the result is

proved.
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3 The structure-preserving maps

A map θ : GÑ H is a homomorphism of topological groups if it is a continuous group

homomorphism between topological groups.

Example 3.1. The map θ : RÑ S1;x ÞÑ expp2πixq is a (surjective) continuous homomor-

phism.

Example 3.2. Suppose that G is a group and θ : G Ñ G is the identity map. If the

domain is endowed with the discrete topology then θ is a homomorphism of topological

groups whatever the topology on the codomain, and if the codomain is endowed with the

indiscrete topology then similarly.

This example may seem trivial but leads to a number of counter-examples.

Example 3.3. Suppose that θ : QÑ Q is the identity map, with the domain discrete and

the codomain the usual subspace topology inherited from R (as in Example 2.39). Then the

domain is locally compact but the codomain is not, so local compactness is not preserved

by surjective topological group homomorphisms.

Example 3.4. Suppose that θ : R Ñ R is the identity map, with the domain the usual

topology on R and the codomain the indiscrete topology. Then the domain is Hausdorff

and the codomain is not, so being Hausdorff is not preserved by surjective topological group

homomorphisms.

Remark 3.5. This being said, if there is a surjective topological group homomorphism from

a compact topological group G to a topological group H then H is compact. (Of course,

this fact is purely topological.)

The group structure makes checking continuity and openness a little easier:

Lemma 3.6. Suppose that G and H are semitopological groups and B “ pBiqiPI is a neigh-

bourhood base6 of the identity in H. Then a homomorphism θ : G Ñ H is continuous if

(and only if) θ´1pBiq is a neighbourhood of the identity for all i P I; and a homomorphism

θ : H Ñ G is open if (and only if) θpBiq is a neighbourhood of the identity for all i P I.

Proof. Suppose that U Ă H is open and θpyq P U . By Lemma 2.12 there is an open

neighbourhood of the identity Vy such that θpyqVy Ă U . Since B is a neighbourhood base

of the identity there is i P I such that Bi Ă Vy and hence θ´1pBiq Ă θ´1pVyq so yθ´1pBiq Ă

θ´1pUq (using that θ is a homomorphism) and hence θ´1pUq contains a neighbourhood of

y i.e. θ´1pUq is open. In the other direction, since Bi is a neighbourhood of the identity it

contains an open neighbourhood of the identity which has an open set as a preimage and the

6Defined in Remark 1.4.
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identity in this preimage (since homomorphisms map the identity to the identity), whence

it is an open neighbourhood of the identity and θ´1pBiq is a neighbourhood of the identity.

Now suppose that U Ă H is open and x P θpUq so that there is some y P U such that

x “ θpyq. Since U is open, by Lemma 2.12 there is an open neighbourhood of the identity

Vy such that yVy Ă U . Since B is a neighbourhood base of the identity there is i P I such

that Bi Ă Vy and hence xθpBiq “ θpyBiq Ă θpUq (using that θ is a homomorphism). But

xθpBiq is open by hypothesis, so θpUq is open as required. In the other direction since Bi is

a neighbourhood of the identity it contains an open set containing the identity which has an

open image containing the identity (since homomorphisms map the identity to the identity),

and hence the image of Bi is a neighbourhood of the identity.

Topological groups G and H are isomorphic as topological groups if there are con-

tinuous homomorphisms θ : G Ñ H and ψ : H Ñ G such that θ ˝ ψ “ ιH and ψ ˝ θ “ ιG

where ιH and ιG are the identity maps on H and G respectively.

Example 3.7 (Conjugation). For a topological group G, the map G ˆ G Ñ G; pa, xq ÞÑ

axa´1 is a left action of G on G – it is called conjugation– and it is (jointly) continuous

(as it is a composition of continuous maps).

In particular, for fixed a P G the map G Ñ G;x ÞÑ axa´1 is a continuous map with a

continuous inverse G Ñ G;x ÞÑ a´1xa, and hence a topological isomorphism. !4The joint

continuity says more than just this last fact however.

Some useful examples of topological groups and homomorphisms between them arise

through products.

Proposition 3.8. Suppose that pGiqiPI is a family of topological groups. Then the direct

product of the groups,
ś

iPI Gi, with the product topology is a topological group and the

projection maps pj :
ś

iPI Gi Ñ Gj;x ÞÑ xj for each j P I are continuous open maps.

Proof. The key to this is recalling the fact that the open sets in
ś

iPI Gi are unions of sets

of the form
ź

iPI

Ui where

$

&

%

Ui “ Gi for all i P IzJ

Ui is open in Gi for all i P J
(3.1)

where J ranges all finite subsets of I. The image of a set like this under the projection

pj is open and so pj is an open map, and if Uj Ă Gj is open then p´1j pUjq “
ś

iPI Ui

where Ui “ Gi for i ‰ j, is open, so the pjs are continuous. If
ś

iPI Ui is as in (3.1) then

p
ś

iPI Uiq
´1 “

ś

iPI U
´1
i is also open and hence inversion is continuous, and similarly for

multiplication.

Remark 3.9. We call the topological group above the topological direct product of the

groups pGiqiPI .
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Quotient groups

Given a topological group G and a subgroup H the quotient map q : G Ñ G{H;x ÞÑ xH

naturally induces a topology on G{H – the weakest topology making the quotient map

continuous or, more concretely, U Ă G{H is open if and only if
Ť

U is open in G.

Proposition 3.10. Suppose that G is a topological group and H is a normal subgroup of G.

Then G{H is a topological group when endowed with the quotient topology and the quotient

map q : GÑ G{H is (continuous and) open.

Proof. The quotient map is continuous by definition; to show it is open it suffices to note

that if U is open in G then UH is open by Lemma 2.12 and qpUq “ tuH : u P Uu so that
Ť

qpUq “ UH. Thus
Ť

qpUq is open in G, and hence qpUq is open by definition.

Suppose that U Ă G{H is open. First we show that inversion is continuous on G{H:

ď

U´1 “
ď

 

pxHq´1 : xH P U
(

“

!

x´1 : x P
ď

U
)

“

´

ď

U
¯´1

and so U´1 is open in G{H by definition since
Ť

U is open in G and inversion is continuous

on G. Second, define

W :“
 

pzH,wHq P pG{Hq2 : pzHqpwHq P U
(

and V :“
!

pz, wq P G2 : zw P
ď

U
)

.

Suppose that pxH, yHq P W . Then xy P pxHqpyHq Ă
Ť

U so px, yq P V and since V is open

there are open sets S, T Ă G such that x P S, y P T , and S ˆ T Ă V . If s P S and t P T ,

then st P
Ť

U , and since the latter is a union of cosets of H we have pstqH Ă
Ť

U . Since

H is normal we have psHqptHq “ pstqH Ă
Ť

U , and so SH ˆ TH Ă V .

By Lemma 2.12, SH and TH are open sets, and so the sets S 1 :“ tsH : s P Su and

T 1 :“ ttH : t P T u are open in G{H; xH P S 1 and yH P T 1; and S 1 ˆ T 1 Ă W . It follows

that W is open as required.

Remark 3.11. If G is a (locally) compact topological group and H is a normal subgroup of

G then G{H is (locally) compact. In the case of compactness this is just that the quotient

map is continuous and the continuous image of a compact space is compact. In the locally

compact case since the quotient map is open it maps neighbourhoods to neighbourhoods so

a compact neighbourhood of the identity in G (which exists by local compatness) is mapped

to a compact neighbourhood of the identity in G{H as required.

Example 3.12. The topological group R has a (normal) subgroup Z and R{Z is a topolog-

ical group – it is the reals modulo 1. Moreover, the map R{ZÑ S1;x` nZ ÞÑ expp2πixq is

an isomorphism of topological groups.

Remark 3.13. !4The adjunction space formed by taking the topological space R and iden-

tifying all the elements of Z considered as a topological subspace of R is also sometimes

denoted R{Z though this is quite a different object; we shall have no call to refer to it.
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Example 3.14. The group Q is a subgroup of R with its usual topology, and so R{Q is a

topological group. If U Ă R{Q is open then
Ť

U is open in R and so if it is non-empty it

contains an interval I. However,
Ť

U is a union of cosets of Q so
Ť

U “
Ť

U`Q Ą I`Q “
R. It follows that R{Q is indiscrete.

!4Note that the quotient map q : RÑ R{Q is not closed since e.g. qpt0uq “ tQu is not

closed in R{Q. This is by way of contrast with the fact that every quotient map between

topological groups is open.

Topological closure preserves algebraic structure in a useful way:

Lemma 3.15. Suppose that G is a topological group and H ď G. Then H is a subgroup of

G. If G is compact then so is H; if G is locally compact then so is H; and if H is normal

then so is H.

Proof. Suppose that px, yq P G2 is such that xy´1 R H. Then since pz, wq ÞÑ zw´1 is

continuous, there are open sets S, T Ă G such that x P S, y P T and ST´1 XH “ H. Since

H Ą H, and H is a subgroup, if S XH ‰ H then T XH “ H, and hence H Ă GzT so that

T XH “ H. Similarly, if S XH “ H then S XH “ H. It follows that x R H or y R H and

so H is a group.

Closed subsets of compact sets are compact so if G is compact then so is H; and if G is

locally compact then G has a compact neighbourhood of the identity N and hence N XH

is a compact neighbourhood of the identity in H and so H is locally compact.

Finally, assume that H is normal. Conjugation is continuous and hence a´1Ha is closed

for all a P G, and contains a´1Ha “ H. Hence it contains the closure of H and so applying

the map x ÞÑ axa´1 we get aHa´1 Ă H i.e. H is normal.

Taking quotients gives us a way of introducing the Hausdorff property in topological

groups.

Proposition 3.16. Suppose that G is a topological group and H is a normal subgroup of

G. Then H is a closed normal subgroup of G and G{H is a Hausdorff topological group.

Proof. H is a closed normal subgroup by Lemma 3.15. By Corollary 2.35, G{H is Hausdorff

if and only if tHu is closed in G{H which, by definition of the quotient topology, is true

since H is closed in G.

Since t1Gu is a normal subgroup of any topological group (and it is compact) we have

the following corollary (with Lemma 2.37 for compactness).

Corollary 3.17. Suppose that G is a topological group. Then t1Gu is a compact normal

subgroup and G{t1Gu is a Hausdorff topological group.
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As well as the ‘small’ normal subgroup t1Gu (which in some cases is the whole of G!),

open subgroups in compact topological groups create large normal subgroups. To establish

this we begin with a lemma.

Lemma 3.18. Suppose that G is a semitopological group and H is a closed subgroup of G

of finite index. Then H is open in G and there is an open (and so closed7) normal subgroup

of G contained in H.

Proof. Since H has finite index in G there are elements x1, . . . , xm P G such that G{H “

tx1H, . . . , xmHu. The sets xiH are all closed and so
Ť

txiH : H ‰ xiHu is a finite union

of closed sets and so closed. Since G{H is a partition of G it follows that we have Hc “
Ť

txiH : H ‰ xiHu and hence H is open.

Let N :“
Şm
i“1 xiHx

´1
i which is a finite intersection of open subgroups and so an open

subgroup. On the other hand, if x P G then for each 1 ď j ď m there is some 1 ď i ď m

(depending on j and x) such that xxiH “ xjH. But then pHx´1i qx
´1 “ Hx´1j and so

xpxiHx
´1
i qx

´1 Ă xjHx
´1
j , whence xNx´1 Ă xjHx

´1
j . However, j was arbitrary and so

xNx´1 Ă N , and N is normal as required. The result is proved.

Remark 3.19. This result almost deserves the status of one of the ‘Key Lemma’s we marked

in red in §2. The reason we omit it is because we do not make very much use of it restricting

ourselves to the next corollary.

Corollary 3.20. Suppose that G is a compact semitopological group and H is an open

subgroup of G. Then H has finite index in G and there is an open (and so closed) normal

subgroup of G contained in H.

Proof. Since H is open the set of left cosets – G{H – is an open over of G. Since G is

compact, there is a finite subset of G{H that covers G and since the cosets in G{H are

disjoint this must be the whole of G{H so that G{H is finite i.e. H has finite index in G.

Thus by Lemma 3.18, H contains an open normal subgroup of G.

The open mapping theorem

Example 3.2 shows that there are continuous bijective group homomorphisms that are not

isomorphisms of topological groups. This is by contrast with the purely algebraic situation

where any bijective group homomorphism is a group isomorphism (i.e. has an inverse that

is a homomorphism), but in alignment with the topological situation where continuous

bijections need not be homeomorphisms. With a few mild conditions on the topology we

can recover with algebraic situation:

7By Corollary 2.19.
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Theorem 3.21. Suppose that G is a compactly generated topological group, H is a locally

compact Hausdorff topological group, and π : G Ñ H is a continuous bijective homomor-

phism. Then π is an isomorphism of topological groups.

Proof. Since the inverse of a bijective group homomorphism is a group homomorphism, it

suffices to show that πpCq is closed whenever C is closed in G. Let K be the compact closure

of the symmetric open neighbourhood generating G. Then K is symmetric (Remark 2.17)

and G “
Ť

nPN0
Kn (Remark 2.3).

Claim. There is some n P N such that πpKnq is a neighbourhood.

Proof. For those familiar with the Baire Category Theorem this is particularly straightfor-

ward. We shall proceed directly by what is essentially the proof of the BCT for locally

compact Hausdorff spaces.

By Lemma 2.23, for each n P N the set Kn is compact and so πpKnq is compact. Since H

is Hausdorff the sets πpKnq are therefore closed. We construct a nested sequence of closed

neighbourhoods inductively: Let U0 be a compact (and so closed since H is Hausdorff)

neighbourhood in H, and for n P N let Un Ă πpKnqc X Un´1 be a closed neighbourhood.

This is possible since (by the inductive hypothesis) Un´1 is a neighbourhood and so

contains an open neighbourhood Vn´1. But then πpKnqc X Vn´1 is open and non-empty

since otherwise πpKnq contains a neighbourhood. It follows that πpKnqcXUn´1 contains an

open neighbourhood and so it contains a closed neighbourhood by Corollary 2.30.

Now by the finite intersection property of the compact space U0, the set
Ş

n Un is non-

empty. This contradicts surjectivity of π since G “
Ť

nPN0
Kn and the claim is proved.

Claim. If X Ă H is compact then π´1pXq is compact.

Proof. Suppose X is compact. By the previous claim πpKnq contains a neighbourhood

and the set txπpKnq : x P Hu covers X, so there are elements x1, . . . , xm such that

X Ă
Ťm
i“1 xiπpK

nq and hence π´1pXq Ă
Ťm
i“1 π

´1pxiqK
n (by injectivity of π). π´1pxiqK

n

is compact by Lemma 2.23 (and the fact that the continuous image of a compact set is

compact), and since a finite union of compact sets is compact it follows that π´1pXq is

contained in a compact set. Finally, X is closed so π´1pXq is closed and H is Hausdorff so

a closed a subset of a compact set is compact we have the claim.

Finally, suppose that C Ă G is closed, and y is a limit point of πpCq. H is locally

compact so y has a compact neighbourhood X. Now π´1pXq is compact and so π´1pXqXC

is compact. But then X X πpCq is compact since π is continuous, and hence closed since H

is Hausdorff. But by design y P X X πpCq “ X X πpCq Ă πpCq.
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Remark 3.22. The Open Mapping Theorem in functional analysis is the result that if A :

X Ñ Y is a surjective continuous linear operator between Banach spaces X and Y then

A is an open mapping. The connection between this and the above result is spelt out in

Exercise II.5.

4 Continuous complex-valued functions

Given a topological space X the support of a (not necessarily continuous) function f :

X Ñ C, denoted supp f , is the set of x P X such that fpxq ‰ 0; f is said to be compactly

supported if its support is contained in a compact set.

We write CpXq for the complex vector space of continuous complex-valued functions

X Ñ C, and CcpXq for the subset of functions in CpXq that are compactly supported.

Remark 4.1. !4As we have defined it the support of a function f that is compactly sup-

ported need not actually be a compact set it is simply contained in one. Terminology in the

literature is not always completely clear on this point.

Remark 4.2. The set CcpXq is a subspace of CpXq since the union of two compact sets is

compact and the support of the sum of two functions is contained in the union of their

supports. More than this, the function

}f}8 :“ sup t|fpxq| : x P Xu

is a norm on CcpXq. It is well-defined since every continuous (complex-valued) function on

a compact set is bounded, and the axioms of a norm are easily checked.

!4In general } ¨ }8 is not a norm on CpXq since we are not assuming the elements of

CpXq are bounded.

!4In general CcpXq is not complete despite the fact that the uniform limit of continuous

functions is continuous since this limit function may not be compactly supported.

Remark 4.3. As a normed space CcpXq is, itself, a topological group (recall Example 1.6).

Remark 4.4. If G is a topological group and CcpGq contains a non-zero function then G is

locally compact: Indeed, if f P CcpGq is non-trivial then supp f ‰ H, but supp f is open

(since f is continuous), and supp f is contained in a compact set K (since f is compactly

supported). It follows that K is a compact neighbourhood of some point x P G, and yx´1K

is then a compact neighbourhood of y for y P G i.e. G is locally compact. This observation

explains why the material of the remainder of the course will almost exclusively concern

locally compact topological groups.

Remark 4.5. Traces of Lemma 2.25 can seen through applications of the triangle inequality

which are useful to us: For f P CpXq and ε ą 0 there is an open cover U of X such that if

U P U and x, y P U then |fpxq ´ fpyq| ă ε.
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To see this just let U :“ tf´1pz`p´ε{2, ε{2qq : z P Cu so that if U P U and x, y P U then

there is some z P C such that |fpxq ´ z| ă ε{2 and |fpyq ´ z| ă ε{2 whence by the triangle

inequality

|fpxq ´ fpyq| ď |fpxq ´ z| ` |z ´ fpyq| ă ε.

Remark 4.6. It is worth recalling the algebra of continuous functions: if f, g P CpXq then f`

g, fg P CpXq. The first of these uses that addition on C is jointly continuous (coupled with

the fact that X Ñ C2;x ÞÑ pfpxq, gpxqq is continuous) and the second that multiplication

is jointly continuous. !4The first here is part of the statement that C under addition is a

topological group, while the second is not since C is not a group under multiplication.

!4Quotients of continuous functions behave a little differently: if f, g P CpXq then the

support of g is open and there is a continuous function h : supp g Ñ C such that f “ gh,

but in general this need8 not have a continuous extension to the whole of X. However, if

f, g P CcpXq and supp f Ă supp g then there is h P CcpXq such that f “ gh.

We do not yet actually know that there are any continuous functions besides the constant

functions, and of course for indiscrete topological groups there need not be. Nevertheless the

following theorem will be very useful for generating such functions and shows that indiscrete

topological groups are the only groups without non-constant continuous functions to C. (See

Example 4.11.)

Theorem 4.7. Suppose that G is a topological group, A is a compact set and B is an open

set containing A. Then there is a continuous function g : G Ñ r0, 1s such that gpxq “ 0

on for all x P A and gpxq “ 1 for all x R B. Similarly, there is a continuous function

f : GÑ r0, 1s such that fpxq “ 1 for all x P A and supp f Ă B.

Proof. The proof of this theorem is really a more sophisticated version of the proof of

Corollary 2.30. As in the proof there we apply Lemma 2.28 to the open cover tBu to get

a symmetric open neighbourhood of the identity V such that AV Ă B. We may apply

Lemma 2.25 twice to get a symmetric open neighbourhood of the identity V0 such that9

V 3
0 Ă V , and continue iteratively in this manner producing symmetric open neighbourhoods

Vi with V 3
i`1 Ă Vi for all i P N0. In particular, note that Vi`1 Ă Vi since all the Vis are

neighbourhoods of the identity.

We shall ‘divide up the space between A and B’ in a way that will be indexed by

dyadic rationals, that is rationals whose denominator is a power of 2. For i P N0 we write

Di :“ tq P r0, 1s : 2iq P Zu, so D :“
Ť8

i“0Di is the set of dyadic rationals in r0, 1s. Note,

in particular, that D0 Ă D1 Ă . . . and every element of Di`1zDi can be written uniquely

8Consider, for example, the functions fpxq “ x and gpxq “ x2 in CpRq. Then hpxq “ 1{x for all x P supp g

but h has no continuous extension to R.
9Since 1G P V0 we certainly have V 3

0 Ă pV
2
0 q

2.
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in the form 1
2
pq ` q1q where q ă q1 are consecutive elements of Di. Furthermore, in any two

consecutive elements of Di`1, one of them will be an element of Di and one of Di`1zDi.

For each q P D we define an open set Uq such that if q ă q1 are consecutive elements of

Di for some i then UqVi Ă Uq1 . We proceed inductively on i P N0. First, D0 “ t0, 1u; let

U0 :“ AV0 which is open by Lemma 2.12 and U1 :“ B which is open by definition of B.

Then by Lemma 2.18 U0V0 “ AV0V0 Ă AV0V
´1
0 V0 Ă AV Ă B “ U1 as required.

Suppose Uq has been defined with the required property for all q P Di. For q ă q1

consecutive elements of Di we define U 1
2
pq`q1q :“ UqVi`1 which is open by Lemma 2.12, and

furthermore by Lemma 2.18 we have U 1
2
pq`q1qVi`1 Ă UqVi`1V

´1
i`1Vi`1 Ă UqVi Ă Uq1 . Now,

if q ă q1 are consecutive elements of Di`1 then either q P Di, q
2 :“ q ` 2i P Di and

q1 “ 1
2
pq ` q1q; or q1 P Di, q

2 :“ q1 ´ 2´i P Di and q “ 1
2
pq1 ` q2q. In either case, by design

we have UqVi`1 Ă Uq1 .

We now forget about the Vis: for each q P D we have an open set Uq such that (by

nesting) whenever q ă q1 are elements of D we have Uq Ă Uq1 . Moreover, A Ă U0 and

U1 Ă B. Define a function g : GÑ r0, 1s by

gpxq :“ inf tq P D : x P Uqu if x P U1 and gpxq “ 1 if x R U1.

First note that this is well-defined and really does map into r0, 1s. Then, since U1 Ă B we

have gpxq “ 1 for all x R B; and since A Ă U0 for all x P A we have gpxq “ 0 for x P A.

It remains to establish that g is continuous. Since all open subsets of r0, 1s are (possibly

empty) unions of finite intersections of sets of the form r0, αq and pα, 1s for α P p0, 1q, we

shall show that g is continuous by showing that preimages of sets of this form are open,

and we shall do this by showing that every point in the preimage is contained in an open

neighbourhood.

First, if x P g´1pr0, αqq then gpxq ă α and so x P U1 and by the approximation property

for infima there is some q P D such that gpxq ď q ă α. But then gpzq ď q ă α for all z P Uq,

and so g´1pr0, αqq contains the open neighbourhood Uq of x as required.

Secondly, if x P g´1ppα, 1sq then since D is dense in r0, 1s there are q, q1 P D with

α ă q ă q1 ă gpxq. Hence x R Uq1 , but Uq Ă Uq1 by nesting and so x P Uq
c
. Moreover, if

z P Uq
c

then z R Uq and so (either z R U1 and gpzq “ 1 ą α or) gpzq ě q ą α and g´1ppα, 1sq

contains the open neighbourhood Uq
c

of x as required.

The first part is proved. For the second put f :“ 1 ´ g which is continuous and maps

into r0, 1s. By design fpxq “ 1 for all x P A and supp f Ă B.

Remark 4.8. A topological space X is said to be completely regular if for every x P X and

closed set A not containing x there is a continuous function f : X Ñ R such that fpxq “ 1

and fpaq “ 0 for all a P A. Theorem 4.7 shows that every topological group is completely

regular since txu is compact and contained in the open set Ac, so that the Theorem applies

to give a continuous function f with fpxq “ 1 and fpyq “ 0 for all y P pAcqc “ A.
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!4Completely regular spaces need not be Hausdorff (they may not have any non-trivial

closed sets). A completely regular Hausdorff space is also called a Tychonoff space or a T31{2

space.

Remark 4.9. Theorem 4.7 is very closely related to Urysohn’s Lemma which says that if a

topological space X is normal10, meaning any disjoint closed sets A and C are contained in

disjoint open sets, then there is a continuous function f : X Ñ r0, 1s such that fpxq “ 1

for all x P A and fpxq “ 0 for all x P C. Exercise I.7 is about showing that a wide class of

topological groups are normal, while in Exercise I.8 an example of a topological group that

is not normal is developed.

!4As with completely regular spaces, normal spaces need not be Hausdorff. A normal

Hausdorff space is also called a T4 space.

Remark 4.10. !4Theorem 4.7 does not assume that G is Hausdorff, so there may not be

any non-trivial open sets.

Example 4.11. If G is a topological group that is not indiscrete then G supports a non-

constant continuous function into C: Since G is indiscrete there is a non-empty open set U

with non-empty complement. Let x P U . Then txu is compact and contained in U and so by

Theorem 4.7 there is a continuous function f : GÑ C such that supp f Ă U and fpxq “ 1.

Since the complement of U is non-empty there is some y P G such that fpyq “ 0 ‰ 1 “ fpxq

and we conclude that f is non-constant.

For us Theorem 4.7 will be crucial in providing a supply of compactly supported functions

in locally compact topological groups.

Corollary 4.12. Suppose that G is a locally compact topological group and K Ă G is

compact. Then there is a continuous compactly supported f : GÑ r0, 1s such that fpxq “ 1

for all x P K.

Proof. Since G is locally compact it contains a compact neighbourhood of the identity L;

let H Ă L be an open neighbourhood of the identity, and C Ă H a closed neighbourhood of

the identity (possible by Corollary 2.30). KH is open by Lemma 2.12 and apply Theorem

4.7 to get a continuous f : GÑ r0, 1s with fpxq “ 1 for all x P K and supp f Ă KH Ă KL

which is compact by Lemma 2.23.

Furthermore, we can product continuous partitions of unity:

Corollary 4.13. Suppose that G is a (locally compact) topological group, F : G Ñ r0, 1s

is continuous, K is a compact set containing the support of F , and U is an open cover of

K. Then there is some n P N and continuous compactly supported functions f1, . . . , fn :

10We shall avoid this terminology because of the potential for confusion with normal subgroups.
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G Ñ r0, 1s such that F “ f1 ` ¨ ¨ ¨ ` fn; and for each 1 ď i ď n there is Ui P U such that

supp fi Ă Ui.

Proof. Since U is an open cover of K, for each x P K there is an open neighbourhood of x,

call it Ux P U , and by Corollary 2.30 there is a closed neighbourhood Vx Ă Ux of x. Since

each Vx is a neighbourhood and tVx : x P Ku is a cover of K, compactness tells us that there

are elements x1, . . . , xn such that K Ă Vx1Y¨ ¨ ¨YVxn . By Lemma 2.37 K is compact and so

for each i the set VxiXK is a closed subset of a compact set and so compact. Apply Theorem

4.7 to Vxi XK Ă Uxi to get a continuous function gi : GÑ r0, 1s such that gipxq “ 1 for all

x P Vxi XK and supp gi Ă Uxi .

Since the sets Vx1 , . . . , Vxn are closed, K Ă Vx1 Y ¨ ¨ ¨ Y Vxn , and so since the gis are

non-negative we have

suppF Ă K Ă pVx1 XKq Y ¨ ¨ ¨ Y pVxn XKq Ă supppg1 ` ¨ ¨ ¨ ` gnq.

Thus (see Remark 4.6) there is h P CcpGq such that F “ hpg1 ` ¨ ¨ ¨ ` gnq and since F maps

into r0, 1s and g1pxq ` ¨ ¨ ¨ ` gnpxq ě 1 on the support of F , we conclude that h maps into

r0, 1s; for 1 ď i ď n put fi “ gih.

It remains to check the properties of the fis. First, fi is a continuous function GÑ r0, 1s

by design of h and gi. Secondly, F “ f1 ` ¨ ¨ ¨ ` fn by design. Finally, supp fi Ă supp gi Ă

Uxi P U . Moreover, since the fis are non-negative supp fi Ă K so fi has compact support.

The result is proved.

Remark 4.14. Although we have not required G to be locally compact in the above, if F is

not identically 0 then G is necessarily locally compact whence the parenthetical inclusion.

(c.f. Remark 4.4.)

Integrals of continuous functions

Given a topological space X if f, g P CcpXq are both real-valued then we write f ě g if

fpxq ě gpxq for all x P X and C`c pXq for the set of f P CcpGq such that f ě 0, where 0 is

the constant 0 function – in words f is non-negative.

Remark 4.15. The functions CÑ R; z ÞÑ Re z, CÑ R; z ÞÑ Im z, RÑ Rě0;x ÞÑ maxtx, 0u

and R Ñ Rě0;x ÞÑ maxt´x, 0u are continuous and so any f P CcpXq can be written as

f “ f1 ´ f2 ` if3 ´ if4 for f1, f2, f3, f4 P C
`
c pXq, and this decomposition is unique. We

shall frequently have call to understand elements of CcpXq through this linear combination

of elements of C`c pXq.

We shall be interested in linear functionals
ş

: CcpXq Ñ C that are non-negative which

means that if f P C`c pXq then
ş

f ě 0.
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Remark 4.16. If f, g P CcpXq are real-valued with f ě g and
ş

is a non-negative linear

functional CcpXq Ñ C then
ş

f ě
ş

g; and if f P CcpGq then
ˇ

ˇ

ş

f
ˇ

ˇ ď
ş

|f |.

Remark 4.17. The decomposition in Remark 4.15 can be used to show that if
ş

is a non-

negative linear functional then
ş

f “
ş

f for all f P CcpXq.

Remark 4.18. We think of non-negative linear functionals as integrals and in fact the Riesz-

Markov-Kakutani Representation Theorem actually tells us that every non-negative linear

map CcpXq Ñ C arises as an integral against a suitably well-behaved measure on X.

Given F : X2 Ñ C and x P X we write
ş

y
F px, yq for the functional

ş

applied to

the function X Ñ C; y ÞÑ F px, yq (assuming this function is continuous and compactly

supported), and similarly for y P X and
ş

x
F px, yq. It will be crucial for us that the order

of integration can be interchanged and this is what the next result concerns:

Theorem 4.19 (Fubini’s Theorem for continuous functions). Suppose that G is a locally

compact topological group,
ş

and
ş1

are non-negative linear functionals CcpGq Ñ C, and

F P CcpG
2q. Then the map x ÞÑ

ş1

y
F px, yq is continuous and compactly supported, so that

ş

x

ş1

y
F px, yq exists. Similarly y ÞÑ

ş

x
F px, yq is continuous and compactly supported, so that

ş1

y

ş

x
F px, yq exists and moreover

ż

x

ż 1

y

F px, yq “

ż 1

y

ż

x

F px, yq.

Proof. In view of the decomposition in Remark 4.15 and linearity of
ş

and
ş1

it is enough to

establish the result for F non-negative.

Since F P C`c pG
2q has support contained in a compact set K, and since the coordinate

projection maps G2 Ñ G are continuous (and the union of two compact sets is compact)

there is a compact set L such that K Ă L ˆ L. It follows that the maps x ÞÑ F px, yq for

y P G and y ÞÑ F px, yq for x P G are continuous and have support in the compact set L.

We also need an auxiliary ‘dominating function’ which is a compactly supported con-

tinuous function on whose support all of the ‘action’ happens. For those familiar with the

theory of integration, the Dominated Convergence Theorem may come to mind. Concretely,

by Corollary 4.12 there is a continuous function f : G Ñ r0, 1s with fpxq “ 1 for all x P L

supported in a compact set M .

For ε ą 0 (by Remark 4.5) let U be an open cover of GˆG such that |F px, yq´F px1, y1q| ă

ε for all px, yq, px1, y1q P U P U . M ˆ M is compact and so by Lemma 2.28 there is a

symmetric open neighbourhood of the identity U in G such that U 1 :“ txU ˆyU : x, y PMu

is a refinement of U (as a cover of M ˆM not of GˆG). First, the support of
ş1

y
F px, yq is

contained in the (compact) set L and if x1 P xU then by design and non-negativity of
ş1

we

have
ż 1

y

F px1, yq “

ż 1

y

F px1, yqfpyq ď

ż 1

y

pF px, yq ` εqfpyq “

ż 1

y

F px, yq ` ε

ż 1

f.
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Since U is symmetric we have x P x1U and similarly
ş1

y
F px, yq ď

ş1

y
F px1, yq ` ε

ş1
f and

hence |
ş1

y
F px1, yq ´

ş1

y
F px, yq| ď ε

ş1
f . Since ε is arbitrary (and

ş1
f does not depend on

ε) it follows that x ÞÑ
ş1

y
F px, yq is continuous (and compactly supported) and similarly for

y ÞÑ
ş

x
F px, yq.

By Corollary 4.13 applied to f supported on the compact set M with the open cover

txU : x P Mu, there are continuous compactly supported f1, . . . , fn : G Ñ r0, 1s such that

f1 ` ¨ ¨ ¨ ` fn “ f and supp fi Ă xiU for some xi PM . Now, F px, yq “ F px, yqfpxqfpyq and

f “ f1 ` ¨ ¨ ¨ ` fn, so

F px, yq “
n
ÿ

i“1

n
ÿ

j“1

F px, yqfipxqfjpyq for all x, y P G.

By design of U 1 and U , for 1 ď i, j ď n there is λi,j ě 0 such that |F px, yq ´ λi,j| ă ε for all

px, yq P supp fi ˆ supp fj. We conclude that

n
ÿ

i“1

n
ÿ

j“1

λi,jfipxqfjpyq ´ εfpxqfpyq ď F px, yq ď
n
ÿ

i“1

n
ÿ

j“1

λi,jfipxqfjpyq ` εfpxqfpyq.

Since
ş

and
ş1

are non-negative linear functionals, we conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

ż

x

ż 1

y

F px, yq ´
n
ÿ

i“1

n
ÿ

j“1

λi,j

ż

fi

ż 1

fj

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

ż

f

ż 1

f

and
ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

y

ż

x

F px, yq ´
n
ÿ

i“1

n
ÿ

j“1

λi,j

ż

fi

ż 1

fj

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

ż

f

ż 1

f.

The result is proved by the triangle inequality since ε is arbitrary (and
ş

f and
ş1
f do not

depend on ε).

5 The Haar integral

We now turn to one of the most beautiful aspects of the theory of topological groups. This

describes the way the topology and the algebra naturally conspire to produce an integral.

Given a topological group G and a function f P CpGq we write

λxpfqpzq :“ fpx´1zq for all x, z P G.

Remark 5.1. λxpfq P CpGq for all f P CpGq and x P G (since left multiplication is continuous

and the composition of continuous functions is continuous), and λ is a left action meaning

λxypfq “ λxpλypfqq for all x, y P G and λ1Gpfq “ f , and the maps λx are linear on the

vector space CpGq.

!4Without inversion this is naturally a right action.
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Remark 5.2. For a topological group G, λ restricts to an action on the space CcpGq and this

action is isometric with respect to } ¨ }8 i.e. }λxpfq}8 “ }f}8 for all x P G.

Lemma 5.3. Suppose that G is a topological group and f P CcpGq. Then GÑ CcpGq;x ÞÑ

λxpfq is continuous.

Proof. Let U Ă CcpGq be open and x P G have λxpfq P U . Since U is open there is ε ą 0

such that λx1pfq P U whenever }λx1pfq ´ λxpfq}8 ă ε.

Let K be a compact set containing the support of f . As in Remark 4.5 let U be an

open cover of G such that |fpxq ´ fpyq| ă ε for all x, y P U P U . Then tU´1 : U P Uu is an

open cover of K´1. Since inversion is continuous and K is compact, K´1 is compact and

so by Lemma 2.28 there is a symmetric open neighbourhood of the identity V such that

tyV : y P K´1u refines tU´1 : U P Uu (as a cover of K´1), and hence tV ´1y : y P Ku is a

refinement of U (as a cover of K).

Suppose that v P V and y P G is such that λvpfqpyq ´ fpyq ‰ 0. Then either fpyq ‰ 0

so y P K, but then V ´1y is a subset of an element of U and so |λvpfqpyq ´ fpyq| ă ε; or

λvpfqpyq ‰ 0 so v´1y P K, but then V pv´1yq “ V ´1pv´1yq is a subset of an element of U
and so again |λvpfqpyq ´ fpyq| ă ε. Since λvpfq ´ f is continuous and compactly supported

it attains its bounds so }λvpfq´ f}8 ă ε. Finally, since λ is an action, the map λx is linear,

and this action is isometric (Remark 5.2) we have

}λxvpfq ´ λxpfq}8 “ }λxpλvpfq ´ fq}8 “ }λvpfq ´ f}8 ă ε.

By Lemma 2.12 xV is an open neighbourhood of x and by design it is contained in the

preimage of U . Since x was an arbitrary element of the preimage of U it follows this

preimage is open as required.

Given a topological group G we say that
ş

: CcpGq Ñ C is a (left) Haar integral on G

if
ş

is a non-trivial (meaning not identically zero) non-negative linear map with
ż

λxpfq “

ż

f for all x P G and f P CcpGq.

We sometimes call this last property (left) translation invariance.

Remark 5.4. Our definition of Haar integral requires CcpGq to be non-trivial and hence (c.f.

Remark 4.4) for G to support a Haar integral it must be locally compact. It will turn out

in Theorem 5.10 that this is enough to guarantee that there is a Haar integral.

Remark 5.5. There is an analogous notion of right Haar integral which we shall not pursue

here.

Example 5.6. If G is a discrete group then it supports a left Haar integral:
ż

: C`c pGq Ñ C; f ÞÑ
ÿ

xPG

fpxq.
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Remark 5.7. !4Note that this definition does not work for non-discrete groups. See Exercise

III.1.

The integral of a non-negative continuous function that is not identically 0 is positive,

and this already follows from the axioms of a Haar integral. To establish this we begin with

a lemma on the comparability of functions:

Lemma 5.8. Suppose that G is a topological group, f, g P C`c pGq and f is not identically

zero. Then there is n P N, c1, . . . , cn ě 0 and y1, . . . , yn P G such that

gpxq ď
n
ÿ

i“1

ciλyipfqpxq for all x P G.

Proof. Since f ı 0 there is some x0 P G such that fpx0q ą 0 and hence (by Lemma 2.12)

an open neighbourhood of the identity U such that fpx0yq ą fpx0q{2 for all y P U . Let K

be compact containing the support of g. Then txU : x P Ku is an open cover of K and so

there are elements x1, . . . , xn such that x1U, . . . , xnU covers K. But then

gpxq ď 2fpx0q
´1
}g}8

n
ÿ

i“1

fpx0x
´1
i xq “ 2fpx0q

´1
}g}8

n
ÿ

i“1

λxix´1
0
pfqpxq for all x P G,

and the result is proved.

Corollary 5.9. Suppose that G is a topological group,
ş

is a left Haar integral on G, and

f P C`c pGq has
ş

f “ 0. Then f ” 0.

Proof. Suppose that g P C`c pGq so by Lemma 5.8 we have g ď
řn
i“1 ciλyipfq for c1, . . . , cn ě 0

and y1, . . . , yn P G. Then by linearity, non-negativity, and translation invariance of the Haar

integral
ż

g ď
n
ÿ

i“1

ci

ż

λyipfq “
n
ÿ

i“1

ci

ż

f “ 0.

Since g ě 0, non-negativity of the Haar integral implies
ş

g ě 0, and hence
ş

g “ 0.

Now, in view of Remark 4.15 we have that
ş

h “ 0 for all h P CcpGq i.e.
ş

is identically

0 contradicting the non-triviality of the Haar integral. The lemma follows.

Existence of a Haar Integral

Our first main aim is to establish the following.

Theorem 5.10 (Existence of a Haar integral). Suppose that G is a locally compact topolog-

ical group. Then there is a left Haar integral on G.
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We begin by defining a sort of approximation: for f, φ P C`c pGq with φ not identically 0

put

pf ;φq :“ inf

#

n
ÿ

j“1

cj : n P N; c1, . . . , cn ě 0; y1, . . . , yn P G; and f ď
n
ÿ

j“1

cjλy´1
j
pφq

+

. (5.1)

We think of this as a sort of ‘covering number’ and begin with some basic properties:

Lemma 5.11. Suppose that f, g, φ, ψ P C`c pGq with φ and ψ are not identically 0. Then

(i) pf ;φq is well-defined;

(ii) pφ;φq ď 1;

(iii) pf ;φq ď pg;φq whenever f ď g;

(iv) pf ` g;φq ď pf ;φq ` pg;φq;

(v) pµf ;φq “ µpf ;φq for µ ě 0;

(vi) pλxpfq;φq “ pf ;φq for all x P G;

(vii) pf ;ψq ď pf ;φqpφ;ψq.

Proof. Lemma 5.8 shows that the set on the right of (5.1) is non-empty; it has 0 as a lower

bound. (i) follows immediately. For (ii)11 note that φ ď 1.λ1´1
G
pφq so that pφ;φq ď 1. (iii),

(iv), (v), and (vi) are all immediate. Finally, for (vii) suppose c1, . . . , cn ě 0 are such that

f ď
řn
j“1 cjλy´1

j
pφq, so that by (iii), (iv), (v), and (vi) we have pf ;ψq ď

řn
j“1 cjpφ;ψq. The

result follows on taking infima.

To make use of p¨ ; ¨q we need to fix a non-zero reference function f0 P C
`
c pGq and for

φ P C`c pGq not identically zero we put

Iφpfq :“
pf ;φq

pf0;φq
ď pf ; f0q, (5.2)

where the inequality follows from Lemma 5.11 (vii).

Many of the properties of Lemma 5.11 translate into properties of Iφ. In particular, we

have Iφpf1 ` f2q ď Iφpf1q ` Iφpf2q; for suitable φ we also have the following converse.

Lemma 5.12. Suppose that G is a locally compact topological group, f1, f2 P C
`
c pGq and

ε ą 0. Then there is a symmetric open neighbourhood of the identity V such that if φ P

C`c pGq is not identically 0 and has support in V then Iφpf1q ` Iφpf2q ď Iφpf1 ` f2q ` ε.

11As it happens it is easy to prove equality here but we do not need it.
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Proof. Let K be a compact closed set containing the support of both f1 and f2 (possible

since the union of two compact sets is compact and the closure of a compact set is compact

by Lemma 2.37) and apply Corollary 4.12 to get F : G Ñ r0, 1s continuous, compactly

supported, and with F pxq “ 1 for all x P K.

For j P t1, 2u let gj be continuous such that pf1 ` f2 ` εF qgj “ fj (possible in view of

Remark 4.6 and use that supp fi Ă K Ă suppF ). By Remark 4.5 (and the fact that the

intersection of two open covers is an open cover) there is an open cover U of G such that if

x, y P U P U then |gjpxq ´ gjpyq| ă ε for j P t1, 2u. K is compact; apply Lemma 2.28 to U
to get a symmetric open neighbourhood of the identity V such that tyV : y P Ku refines U
(as a cover of K).

Now suppose that φ P C`c pGq is not identically 0 and has support in V , and that

c1, . . . , cn ě 0 and y1, . . . , yn P G are such that

f1pxq ` f2pxq ` εF pxq ď
n
ÿ

i“1

ciφpyixq for all x P G.

If φpyixqgjpxq ‰ 0 then x P K and y´1i P xV (using V “ V ´1), by xV is a subset of a set in

U so gjpxq ď gjpy
´1
i q ` ε and hence

fjpxq ď
n
ÿ

i“1

ciφpyixqgjpxq ď
n
ÿ

i“1

cipgjpy
´1
i q ` εqφpyixq for all x P G, j P t1, 2u.

By Lemma 5.11 (ii),(iii), (iv),(v) & (vi) we have

pfj;φq ď
n
ÿ

i“1

cipgjpy
´1
i q ` εq for all j P t1, 2u,

but g1py
´1q ` g2py

´1q ď 1 for all y P G, so

pf1;φq ` pf2;φq ď
n
ÿ

i“1

cip1` 2εq.

Taking infima and then applying Lemma 5.11 (iv) and (v) and the inequality in (5.2) we

get

Iφpf1q ` Iφpf2q ď p1` 2εqIφpf1 ` f2 ` εF q

ď p1` 2εqpIφpf1 ` f2q ` εIφpF qq

ď Iφpf1 ` f2q ` p2pf1 ` f2; f0q ` pF ; f0q ` 2εpF ; f0qqε.

The result follows since ε ą 0 was arbitrary and F , f1, f2 and f0 do not depend on ε.

With these lemmas we can turn to the main argument.
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Proof of Theorem 5.10. By Corollary 4.12 (applied with K “ t1Gu) there is f0 P C
`
c pGq

with f0 ı 0. Write F for the set of functions I : C`c pGq Ñ Rě0 with Ipfq ď pf ; f0q for

all f P C`c pGq endowed with the product topology i.e. the weakest topology such that the

maps F Ñ r0, pf ; f0qs; I ÞÑ Ipfq are continuous for all f P C`c pGq. Since the closed interval

r0, pf ; f0qs is compact, F is a product of compact spaces and so compact. Let X be the set

of I P F such that

Ipf0q “ 1 (5.3)

Ipµfq “ µIpfq for all µ ě 0, f P C`c pGq, (5.4)

and

Ipλxpfqq “ Ipfq for all x P G, f P C`c pGq. (5.5)

The set X is closed as an intersection of the preimage of closed sets. Moreover, by Lemma

5.11 Iφ P X for any φ P C`c pGq that is not identically zero: the fact that Ipfq P r0, pf ; f0qs

follows from the inequality in (5.2); (5.3) by design; (5.4) by (v); and (5.5) by (vi).

This almost gives us a Haar integral (on non-negative functions) except that in general

the elements ofX are not additive, meaning we do not in general have Ipf`f 1q “ Ipfq`Ipf 1q.

To get this we introduce some further sets: for ε ą 0 and f, f 1 P C`c pGq define

Bpf, f 1; εq :“ tI P X : |Ipf ` f 1q ´ Ipfq ´ Ipf 1q| ď εu.

As with X, the sets Bpf, f 1; εq are closed. We shall show that any finite intersection of

such sets is non-empty: For any f1, f
1
1, f2, f

1
2, . . . , fn, f

1
n P C`c pGq and ε1, . . . , εn ą 0, by

Lemma 5.12 there are symmetric open neighbourhoods of the identity V1, . . . , Vn such that

if φ P C`c pGq is not identically 0 and is supported in Vi then

|Iφpfi ` f
1
iq ´ Iφpfiq ´ Iφpf

1
iq| ă εi. (5.6)

Since G is locally compact by Lemma 2.41 there is a symmetric open neighbourhood of

the identity H with compact closure; set V :“ H X
Şn
i“1 Vi which is also a symmetric

open neighbourhood of the identity and by Theorem 4.7 there is φ P C`pGq that is not

identically 0 with support contained in V , and hence in the compact set H which is to say

it has compact support. Iφ enjoys (5.6) for all 1 ď i ď n, and we noted before that Iφ P X,

hence Iφ P
Şn
i“1Bpfi, f

1
i , εiq. We conclude that tBpf, f 1; εq : f, f 1 P C`c pGq, ε ą 0u is a set of

closed subsets of F with the finite intersection property, but F is compact and so there is

some I in all of these sets. Such an I is additive since |Ipf ` f 1q ´ Ipfq ´ Ipf 1q| ă ε for all

f, f 1 and ε ą 0. It remains to define
ş

: CcpGq Ñ C by putting
ż

f :“ Ipf1q´ Ipf2q` iIpf3q´ iIpf4q where f “ f1´ f2` if3´ if4 for f1, f2, f3, f4 P C
`
c pGq.

This decomposition of functions in CcpGq is unique (noted in Remark 4.15) and so this is

well-defined. Moreover,
ş

is linear since I is additive and enjoys (5.4); it is non-negative since

Page 31



I is non-negative (and Ip0q “ 0); it is translation invariant by (5.5); and it is non-trivial by

(5.3). The result is proved.

Uniqueness of the Haar integral

Our second main aim is to establish the following result.

Theorem 5.13 (Uniqueness of the Haar Integral). Suppose that G is a locally compact

topological group and
ş

and
ş1

are left Haar integrals on G. Then there is some λ ą 0 such

that
ş

“ λ
ş1

.

For this we introduce a little more notation: Given a topological group G and f P CcpGq

we write rfpxq “ fpx´1q.

Remark 5.14. r̈ is a conjugate-linear multiplicative involution3 on CcpGq, since complex

conjugation and x ÞÑ x´1 are both continuous (and continuous images of compact sets are

compact).

Remark 5.15. The reason for making r̈ conjugate-linear is to make it compatible with a later

inner product. (See Remark 7.8.)

Proof of Theorem 5.13. Suppose that f0, f1 P C
`
c pGq are not identically 0 and write K for a

compact set containing the support of f0 and f1 (which exists since finite unions of compact

sets are compact). By Lemma 2.41 there is a symmetric open neighbourhood of the identity,

H, with compact closure.

First, by Corollary 4.12 there is a continuous compactly supported function F : G Ñ

r0, 1s with F pxq “ 1 for all x P KH (this set is compact by Lemma 2.23, and hence the

corollary applies).

Now, suppose ε ą 0 and use Remark 4.5 (and the fact that intersections of open covers

are open covers) to get an open cover U of G such that if x, y P U P U then |fipxq´fipyq| ă ε

for i P t0, 1u. By Lemma 2.28 applied to U and the compact set KH there is a symmetric

open neighbourhood of the identity V such that txV : x P KHu is a refinement of U (as

a cover of KH), and by Theorem 4.7 there is a continuous function h : G Ñ r0, 1s that is

not identically zero and is supported in V XH, and in particular supported in H so it has

compact support.

For x P G, translation invariance of
ş1

(and Remark 4.17) tells us that

ż 1

y

hpy´1xq “

ż 1

y

rhpx´1yq “

ż 1

y

rhpx´1yq “

ż 1

y

rhpyq “

ż 1

rh.

For i P t0, 1u, the map x ÞÑ
ş1

y
fipxqhpy

´1xq “ fipxq
ş1
rh is continuous and is supported in K

and so is compactly supported and
ş

x

ş1

y
fipxqhpy

´1xq exists and equals
ş

fi
ş1
rh (by linearity
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of
ş

). On the other hand the map px, yq ÞÑ fipxqhpy
´1xq is continuous and supported on

K ˆ H and so is compactly supported and hence by Fubini’s Theorem (Theorem 4.19),

y ÞÑ
ş

x
fipxqhpy

´1xq exists, and (using translation invariance of
ş

) we have

ż

fi

ż 1

rh “

ż

x

ż 1

y

fipxqhpy
´1xq “

ż 1

y

ż

x

fipxqhpy
´1xq “

ż 1

y

ż

x

fipyxqhpxq.

Since tyV : y P Ku refines U (as a cover of KH) we have |fipyxq ´ fipyq| ă ε for x P V and

y P KH; and for x P H and fipyxq ‰ 0 or fipyq ‰ 0 we have y P KH whence F pyq “ 1. It

follows that

fipyqhpxq ´ εF pyqhpxq ď fipyxqhpxq ď fipyqhpxq ` εF pyqhpxq for all x, y P G,

and so by non-negativity and linearity of
ş

and
ş1

we have

ż 1

y

ż

x

fipyqhpxq ´

ż 1

y

ż

x

εF pyqhpxq ď

ż 1

y

ż

x

fipyxqhpxq ď

ż 1

y

ż

x

fipyqhpxq `

ż 1

y

ż

x

εF pyqhpxq.

It follows (using linearity of
ş

) that |
ş1
fi
ş

h´
ş

fi
ş1
rh| ď ε

ş1
F
ş

h, and hence by the triangle

inequality (and division, which is valid since
ş

f0,
ş

f1 ‰ 0 by Corollary 5.9 as f0 and f1 are

not identically zero) that

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
f0

ş

f0
´

ş1
f1

ş

f1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
f0

ş

f0
´

ş1
rh

ş

h

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
rh

ş

h
´

ş1
f1

ş

f1

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

ż 1

F

ˆ

1
ş

f0
`

1
ş

f1

˙

.

Since ε was arbitrary (and in particular f0, f1, and F do not depend on it) it follows that
ş1
f{

ş

f is a constant λ for all f P C`c pGq not identically zero. This constant must be non-

zero since
ş1

is non-trivial, and it must be positive since
ş1

and
ş

are non-negative. The result

follows from the usual decomposition (Remark 4.15), and the fact that
ş

0,
ş1

0 “ 0.

6 The dual group

Suppose that G is a topological group. We write pG for the set of continuous homomorphisms

GÑ S1 (where S1 is as in Example 2.22), and call the elements of pG characters.

Remark 6.1. The choice of S1 here may seem a bit mysterious. In fact in this generality

it makes more sense to consider continuous group homomorphisms into groups of unitary

matrices. We have made the choice above to ensure that pG has a group structure (see

Proposition 6.3).

Remark 6.2. !4While characters are (by definition) elements of CpGq, they are not in CcpGq

unless G is compact.
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We endow the set pG with the compact-open topology, that is the topology generated

by the sets γUpK, εq where

UpK, εq :“ tγ P pG : |γpxq ´ 1| ă ε for all x P Ku

and ε ą 0 and K is a compact subset of G.

Proposition 6.3. Suppose that G is a topological group. Then pG is a Hausdorff Abelian

topological group with multiplication and inversion defined by

pγ, γ1q ÞÑ px ÞÑ γpxqγ1pxqq and γ ÞÑ px ÞÑ γpxqq,

and identity the character taking the constant value 1. Moreover, pUpK, δqq as K ranges

compact subsets of G and δ ą 0 is a neighbourhood base of the identity.

Proof. The fact that pG is an Abelian group is an easy check since S1 is an Abelian group

under multiplication and z´1 “ z when z P S1.

Since |γpxq ´ 1| “ |γpxq ´ 1| the inversion is certainly continuous. Now suppose that

γλ P µUpK, εq for some µ P pG. Since γλµ is continuous and K is compact |γλµ´1| achieves

its bounds on K and hence there is some δ ą 0 such that |pγλµqpxq ´ 1| ă ε ´ δ for all

x P K. But then if γ1 P γUpK, δ{2q and λ1 P λUpK, δ{2q we have

|pγ1λ1µqpxq ´ 1| ď |pγ1λ1µqpxq ´ pγλ1µqpxq| ` |pγλ1µqpxq ´ pγλµqpxq| ` |pγλµqpxq ´ 1|

ă δ{2` δ{2` ε´ δ “ ε.

It follows that γ1λ1 P µUpK, εq and so the preimage of γλ contains a neighbourhood of pγ, λq

in pGˆ pG i.e. multiplication is jointly continuous. Finally, the topology is Hausdorff since if

γ ‰ λ then there is some x P G such that γpxq ‰ λpxq; put ε :“ |γpxq ´ λpxq|{2 and note

that γUptxu, εq and λUptxu, εq are disjoint open sets containing γ and λ respectively.

We call the group pG endowed with the compact-open topology the dual group of G, so

that the above proposition tells us that if G is a topological group then its dual group is a

Hausdorff Abelian topological group.

We call the identity, denoted 1
pG, the trivial character.

Example 6.4. WhenG is a group with the indiscrete topology the only continuous functions

are constant and so pG is the trivial group with one character taking the constant value 1

(and there is only one topology on a set with one element) so that we have completely

determined the topological group pG.

The topology on G and pG are quite closely related:

Proposition 6.5. Suppose that G is a compact topological group. Then pG is discrete.
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Proof. Suppose that γ ‰ 1
pG so there is x P G such that γpxq ‰ 1. Let y P G be such that

|γpyq ´ 1| is maximal (which exists since G is compact and x ÞÑ |γpxq ´ 1| is continuous)

and note that by assumption this is positive. If |γpyq ´ 1| ă 1 then we have

|γpy2q ´ 1| “ |γpyq2 ´ 1| “ |p2` pγpyq ´ 1qq||γpyq ´ 1|

ě p2´ |γpyq ´ 1|q|γpyq ´ 1| ą |γpyq ´ 1|.

This is a contradiction, whence γ R UpG, 1q and t1
pGu is open so the topology is discrete.

Remark 6.6. Conversely if G is discrete then it turns out pG is compact. (See Exercise IV.4.)

Example 6.7 (Finite cyclic groups with the discrete topology). Suppose that G is a finite

cyclic group endowed with the discrete topology. Since G is cyclic it is generated by some

element x; consider the map

φ : GÑ pG;xr ÞÑ pGÑ S1;xl ÞÑ expp2πirl{|G|qq.

This map is a well-defined homomorphism since xr “ xr
1

(resp. xl “ xl
1

) only if |G| � r´ r1

(resp.|G| � l ´ l1),

expp2πipr ` r1ql{|G|q “ expp2πirl{|G|q expp2πir1l{|G|q

and

expp2πirpl ` l1q{|G|q “ expp2πirl{|G|q expp2πirl1{|G|q.

φ is injective since if expp2πirl{|G|q “ 1 for all l then |G| � r so xr “ 1G. Finally, φ is

surjective since if γ : GÑ S1 is a homomorphism then γpxq|G| “ 1 so γpxq “ expp2πir{|G|q

for some r P Z, and γ “ φpxrq.

We conclude that φ : G Ñ pG is a bijective group homomorphism and hence φ´1 is a

group homomorphism. Since G is discrete φ is continuous; since G is finite it is compact

and so pG is discrete by Proposition 6.5 and hence φ´1 is continuous, so φ is an isomorphism

of topological groups.

Example 6.4 gave topological reasons for the dual group being trivial, but there can also

be algebraic reasons:

Example 6.8 (Non-Abelian finite simple groups). Suppose that G is a non-Abelian finite

simple12 topological group.

Suppose that γ : GÑ S1 is a homomorphism. Since G is non-Abelian there are elements

x, y P G with xy ‰ yx, but then xyx´1y´1 ‰ 1G while

γpxyx´1y´1q “ γpxqγpyqγpxq´1γpyq´1 “ 1

12It may help to recall that a simple group is a group whose only normal subgroups are the trivial group

and the whole group e.g. An, the alternating group on n elements, when n ě 5. (The Abelian finite simple

groups are the cyclic groups of prime order and their dual groups are described in Example 6.7.)
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since S1 is Abelian. We conclude that the kernel of γ is non-trivial, but all kernels are

normal subgroups and since G is simple it follows that ker γ “ G i.e. γ is trivial. In other

words pG “ t1
pGu.

The process of passing from a topological group to its dual group has a corresponding

process for continuous homomorphisms:

Proposition 6.9. Suppose that G and H are topological groups and φ : G Ñ H is a con-

tinuous homomorphism. Then the map φ˚ : pH Ñ pG; γ ÞÑ γ ˝ φ is a well-defined continuous

homomorphism. If φ is surjective then φ˚ is injective.

Proof. Certainly φ˚ is well-defined as γ ˝ φ is a composition of continuous homomorphisms

and so a continuous homomorphisms. To see that φ˚ is continuous be apply Lemma 3.6 to

the observations that pφ˚q´1pUpK, δqq “ UpφpKq, δq and that if K Ă G is compact then

φpKq is compact since φ is continuous. Finally, if φ is surjective and φ˚pγq “ 1
pG then

γpφpxqq “ 1 for all x P G and hence γpzq “ 1 for all z P H i.e. γ “ 1
pH .

Remark 6.10. If φ is the identity map on G then φ˚ is the identity map on pG, and if

φ : G Ñ H and ψ : H Ñ K are continuous homomorphisms then pφ ˝ ψq˚ “ ψ˚ ˝ φ˚, so

that the map taking G to pG and φ to φ˚ is a contravariant functor from the category of

topological groups with continuous homomorphisms to the category of Hausdorff Abelian

topological groups with continuous homomorphisms.

In particular, since every Hausdorff Abelian topological group is, in particular, a topo-

logical group the category of Hausdorff Abelian topological groups is closed under taking

duals.

Example 6.11. Suppose that H is a finite non-Abelian simple group with the discrete

topology, then as described in Example 6.8 we have that pH is trivial. Since H is non-

Abelian it contains a non-identity element; let G be the subgroup of H generated by such

an element. The embedding j : G Ñ H;x ÞÑ x is a continuous injective homomorphism,

and j˚ : pH Ñ pG is the map taking the identity in pH (which is the only element) to the

identity in pG. Moreover, since G is cyclic, finite, and discrete, Example 6.7 tells us that pG

is topologically isomorphic to G and, since G is non-trivial, pG is non-trivial. In particular,

j˚ is not surjective despite j being injective. (c.f. the last part of Proposition 6.9.)

An important application of our Haar integral is the following result.

Theorem 6.12. Suppose that G is a locally compact topological group. Then pG is locally

compact.

Proof. Let
ş

be a left Haar integral on G (which exists by Theorem 5.10). Since
ş

is non-

trivial there is f0 P C
`
c pGq such that

ş

f0 ‰ 0 and we may rescale so that
ş

f0 “ 1. Write K
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for a compact set containing the support of f0 and U for a compact neighbourhood of the

identity.

UK is compact by Lemma 2.23. Apply Corollary 4.12 to get a continuous compactly

supported F : GÑ r0, 1s such that F pxq “ 1 for all x P UK. Define

V :“ tγ P pG : |γpxq ´ 1| ď 1{4 for all x P Ku,

so that V certainly contains, UpK, 1{4q, an open neighbourhood of the identity.

Claim. Suppose that κ, δ ą 0. Then there is an open neighbourhood of the identity Lδ,κ

such that if
ˇ

ˇ

ş

f0γ
ˇ

ˇ ě κ then |1´ γpyq| ă δ for all y P Lδ,κ.

Proof. By Lemma 5.3 there is an open neighbourhood of the identity Lδ,κ (which we may

assume is contained in U since U is a neighbourhood and so contains an open neighbourhood

of the identity) such that }λypf0q´f0}8 ă δκ{
ş

F for all y P Lδ,κ. (Note
ş

F ą 0 by Corollary

5.9.) For y P Lδ,κ, the support of λypf0q ´ f0 is contained in UK (since Lδ,κ Ă U) and so

ż

|λypf0q ´ f0| ď }λypf0q ´ f0}8

ż

F ă δκ.

Now, if y P Lδ,κ then

|1´ γpyq|κ ď

ˇ

ˇ

ˇ

ˇ

pγpyq ´ 1q

ż

f0γ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

f0λy´1pγq ´

ż

f0γ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

λypf0qγ ´

ż

f0γ

ˇ

ˇ

ˇ

ˇ

ď

ż

|λypf0q ´ f0| ă δκ.

Dividing by κ gives the claim.

We write M for the set of maps GÑ S1 endowed with the product topology (c.f. the set

F considered in the proof of Theorem 5.10) so that M is compact. As sets pG is contained

in M , but the compact-open topology on pG is not, in general, the same as that induced on

pG as a subspace of M . Our aim is to make use of the compactness on M to show that pG is

locally compact in the compact-open topology.

First we restrict to homomorphisms: write H for the set of homomorphisms G Ñ S1,

which is a closed subset of M since it is the intersection over all pairs x, y P G of the set of

f PM such that fpxyq “ fpxqfpyq. Write

C :“
č

δą0,xPLδ,3{4

tf P H : |fpxq ´ 1| ď δu

which is also closed as an intersection of closed sets. By Lemma 3.6 as sets we have C Ă pG

since the sets tz P S1 : |1´ z| ď δu form a neighbourhood base of the identity in S1, and if

f P C then f´1ptz P S1 : |1 ´ z| ď δuq Ą Lδ,3{4 which is a neighbourhood of the identity in

G.
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If γ P V then
ˇ

ˇ1´
ş

f0γ
ˇ

ˇ ď
ş

f0|1´ γ| ď 1{4, so by the triangle inequality |
ş

f0γ| ě 3{4

and hence the claim tells us that γ P C. Thus (as sets) V Ă C Ă pG and so

V “
č

xPK

tf P C : |fpxq ´ 1| ď 1{4u,

which is again a closed subset of M .

Our aim is to show that V is compact in the compact-open topology on pG. This follows

if every cover of the form U “ tγUpKγ, δγq : γ P V u (where Kγ is compact and δγ ą 0) has

a finite subcover. Write Lγ :“ Lδγ{2,1{2 and note that by compactness of Kγ there is a finite

set Tγ such that Kγ Ă TγLγ. Write

Uγ :“ tf PM : |fpxq ´ 1| ă δγ{2 for all x P Tγu

which is an open set in M since Tγ is finite. Suppose that λ P pγUγq X V . Then since

γ, λ P V , the triangle inequality gives

ˇ

ˇ

ˇ

ˇ

1´

ż

f0γλ

ˇ

ˇ

ˇ

ˇ

ď

ż

f0|1´ γλ| “

ż

f0|1´ γ ` γ ´ γλ|

ď

ż

f0|1´ γ| `

ż

f0|1´ λ| ď 1{2.

Hence
ˇ

ˇ

ş

f0γλ
ˇ

ˇ ě 1{2 by the triangle inequality again. The claim gives |1´ γpyqλpyq| ă δγ{2

for all y P Lγ. But γλ P Uγ so we also have |1 ´ γpzqλpzq| ă δγ{2 for all z P Tγ. Thus, if

x P Kγ then there is z P Tγ and y P Lγ such that x “ zy and

|1´ γpxqλpxq| ď |1´ γpzqλpzq| ` |γpzqλpzq ´ γpzyqλpzyq|

“ |1´ γpzqλpzq| ` |1´ γpyqλpyq| ă δγ.

We conclude that γUγ X V Ă γUpKγ, δγq X V . Finally tγUγ : γ P V u is a cover of V by sets

that are open in M . M is compact and V is closed as a subset of M so V is compact as a

subset of M , and hence tγUγ : γ P V u has a finite subcover which leads to a finite subcover

of our original cover U . The result is proved.

Remark 6.13. Following on from Remark 6.10, the above shows that the category of locally

compact Hausdorff Abelian topological groups is closed under taking duals. Pontryagin

duality is a strengthening of this showing that in this restricted category taking the dual

is a type of ‘equivalence’. A crucial part of establishing Pontryagin duality turns out to be

showing that characters separate points on these groups and this is the purpose of our next

and final section.
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7 Characters on locally compact Hausdorff Abelian

topological groups separate points

If we are able to distinguish topologically between two points of a topological group, meaning

if there exists an open set containing one and not the other, then Theorem 4.7 can be used to

provide a continuous function into C bearing witness to this, by which we mean a continuous

function which taking different values at the two points. In this section we ask when these

topological witnesses can also be made to respect the group structure. Our first aim is the

following, which will be a key ingredient in the main result of the section: Theorem 7.19.

Theorem 7.1. Suppose that G is a compact Hausdorff Abelian topological group and x P G

is not the identity. Then there is a character γ P pG such that γpxq ‰ 1.

Remark 7.2. This result is sometimes called the Peter-Weyl Theorem (see e.g. [DS11, Corol-

lary 5.3]), though more often that name refers to a more general result.

To prove this we shall need some inner product structure afforded by Haar integrals.

First, given a Haar integral
ş

on a topological group G we define

xf, gy :“

ż

fg for all f, g P CcpGq and }f}2 :“

ż

|f |2 “ xf, fy for all f P CcpGq. (7.1)

Remark 7.3. Although the notation x¨, ¨y and }¨}makes no mention of
ş

it will always be clear

from context which Haar integral we are referring to. In any case in the light of Remark 5.4,

where we noted that Haar integrals can only exist for locally compact topological groups,

Theorem 5.13 tells us there is little choice.

Lemma 7.4 (Basic properties of the inner product). Suppose that
ş

is a left Haar integral

on a topological group G. Then

(i) x¨, ¨y is an inner product on CcpGq;

(ii) for each x P G, λx is an isometry13 of CcpGq with the norm } ¨ };

(iii) and if G is compact then there is a constant C ą 0 (depending on
ş

) such that

ż

|f | ď C}f} and }f} ď C}f}8 for all f P CpGq.

13Recall that an isometry φ of a (complex) inner product space actually preserves the inner product

(meaning xφpfq, φpgqy “ xf, gy for all f, g) by the polarisation identity:

xf, gy “
1

4

`

}f ` g}2 ´ }f ´ g}2 ` i}f ` ig}2 ´ i}f ´ ig}2
˘

for all f, g.
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Proof. Linearity in the first argument and conjugate-symmetry follow in view of the defini-

tion of x¨, ¨y and linearity of the Haar integral and Remark 4.17. xf, fy ě 0 for all f P CcpGq

since
ş

is non-negative and it is positive definite by Corollary 5.9. (ii) follows from the fact

that the Haar integral is left-invariant so
ż

fg “

ż

λxpfgq “

ż

λxpfqλxpgq for all f, g P CcpGq.

Finally, for (iii) since G is compact the constant function 1 and }f}28 are both in CcpGq,

and in particular we can put C :“ }1} ą 0. By the Cauchy-Schwarz inequality (which holds

for all inner products) we have
ż

|f | “ x1, |f |y ď }1}}|f |} “ C}f} for all f P CpGq;

and by non-negativity of
ş

we have

}f}2 “

ż

|f |2 ď

ż

}f}28 “ C2
}f}28 for all f P CpGq.

The last inequality follows and the result is proved.

Remark 7.5. The second inequality in (iii) in particular tells us that if G is compact then

uniform convergence implies convergence in } ¨ }.

Remark 7.6. !4The norm with respect to which λx is an isometry is different in (ii) than

in Remark 5.2.

Remark 7.7. CcpGq has a completion as a Hilbert space which we shall not discuss explicitly

here. One way to construct this is to associate a measure µ to the Haar integral
ş

(as in

Remark 4.18) and then the completion can be identified with L2pµq.

Given a left Haar integral
ş

it can be used to define an operation called convolution

(implicitly used in the proof of Theorem 5.13) on CcpGq by

f ˚ gpxq :“

ż

y

fpyqgpy´1xq “ xf, λxprgqy. (7.2)

Remark 7.8. This definition is the reason for the complex conjugate in the definition of r̈

before Remark 5.14.

Remark 7.9. If f, g P CcpGq are supported in A and B respectively, then f ˚gpxq ‰ 0 implies

that there is some y with fpyq ‰ 0 and gpy´1xq ‰ 0 i.e. y P A and y´1x P B so x P AB. In

other words, the support of f ˚ g is contained in AB.

Remark 7.10. If f P CcpGq then f ˚ rfp1Gq “ }f}
2.

Lemma 7.11 (Basic properties of convolution operators). Suppose that
ş

is a Haar integral

on a locally compact topological group G and f P CcpGq. Then
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(i) CcpGq Ñ CcpGq; g ÞÑ g ˚ f is a well-defined linear map;

(ii) λtpg ˚ fq “ λtpgq ˚ f for all t P G and g P CcpGq;

(iii) xg ˚ f, hy “ xg, h ˚ rfy for all g, h P CcpGq;

(iv) h ˚ pg ˚ fq “ ph ˚ gq ˚ f for all g, h P CcpGq;

(v) }g ˚ f}8 ď }g}} rf} for all g P CcpGq.

Proof. By the first part of Fubini’s Theorem (Theorem 4.19) the function g ˚ f P CcpGq

since px, yq ÞÑ gpxqfpx´1yq is a continuous and compactly supported. Moreover,
ş

is linear

and so it follows that g ÞÑ g ˚ f is linear and (i) is proved.

For (ii) note that λtpg ˚ fqpxq “ g ˚ fpt´1xq “ xg, λt´1xp
rfqy “ xg, λt´1pλxp rfqqy “

xλtpgq, λxp rfqy “ λtpgq ˚ fpxq since λt is an isometry w.r.t. } ¨ } (by Lemma 7.4 (ii).

For (iii), since the function px, yq ÞÑ gpxqfpx´1yqhpyq is continuous and compactly sup-

ported, by Fubini’s Theorem (Theorem 4.19), linearity of the Haar integral, and Remark

4.17 we have

xg ˚ f, hy “

ż

y

ż

x

gpxqfpx´1yqhpyq

“

ż

x

gpxq

ż

y

fpx´1yqhpyq “

ż

x

gpxq

ż

y

hpyq rfpy´1xq “ xg, h ˚ rfy,

as required.

For (iv) we apply λy to the integrand z ÞÑ gpzqfpz´1y´1xq using that
ş

z
is a left Haar

integral; then Fubini’s Theorem (Theorem 4.19) since pz, yq ÞÑ hpyqgpy´1zqfpz´1xq is con-

tinuous; and finally linearity of
ş

y
to see that

h ˚ pg ˚ fqpxq “

ż

y

hpyq

ż

z

gpzqfpz´1y´1xq

“

ż

y

hpyq

ż

z

gpy´1zqfpz´1xq “

ż

z

ˆ
ż

y

hpyqgpy´1zq

˙

fpz´1xq “ ph ˚ gq ˚ fpxq

as claimed.

Finally, (v) follows by the Cauchy-Schwarz inequality and the fact that λx is an isometry

for } ¨ } (Lemma 7.4 (ii)): |g ˚ fpxq| “ |xg, λxp rfqy| ď }g}}λxp rfq} “ }g}} rf}. The result is

proved.

Remark 7.12. We call the linear operators in (i) convolution operators.

Remark 7.13. The linearity in (i) and the inequality (v) mean that convolution operators

map convergence in } ¨ } to uniform convergence i.e. if gn Ñ g in } ¨ } then gn ˚ f Ñ g ˚ f

uniformly.
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Before beginning our main argument we need one more tool that captures what is called

compactness of convolution operators. This is a notion from functional analysis, though

familiarity with it is not needed.

Proposition 7.14. Suppose that
ş

is a left Haar integral on a compact topological group

G, f P C`pGq and pgnqnPN is a sequence of elements of CpGq with }gn} ď 1 (the norm

corresponding to the inner product, not the uniform norm). Then there is a subsequence

pgniqiPN such that gni ˚ f converges uniformly to some element of CpGq as iÑ 8.

Proof. For each j P N Remark 4.5 gives us an open cover Uj of G such that if x, y P

U P Uj then |fpxq ´ fpyq| ă 1{j. Since G is compact apply Lemma 2.28 to get an open

neighbourhood of the identity Uj such that txUj : x P Gu refines Uj. Since G is compact

there is a finite cover tx1,jUj, . . . , xkpjq,jUju which refines txUj : x P Gu. By Lemma 7.4

(v) gn ˚ fpxq P r´} rf}, } rf}s, and the latter is sequentially compact. A countable product of

sequentially compact spaces is sequentially compact14 so there is a subsequence pniqi such

that gni ˚ fpxk,jq converges, say to gpxk,jq, as iÑ 8 for all 1 ď k ď kpjq and j P N.

Suppose ε ą 0 and let j :“ r3ε´1Cs (where C is as in Lemma 7.4 (iii)). For all 1 ď k ď

kpjq let Mk be such that |gni ˚ fpxk,jq ´ gpxk,jq| ă ε{6 for all i ě Mk; let M :“ maxtMk :

1 ď k ď kpjqu and suppose that i, i1 ěM .

For x P G there is some 1 ď k ď kpjq such that x P xk,jUj and hence for all y P G we have

y´1x, y´1xk,j P y
´1xk,jUj which is a subset of an element of Uj, so |fpy´1xq ´ fpy´1xk,jq| ă

1{j. Thus for g P CpGq with }g} ď 1 we have (by Lemma 7.4 (iii))

|g ˚ fpxq ´ g ˚ fpxk,jq| “ |xg, λxp rfq ´ λxk,jp
rfqy|

ď }λxp rfq ´ λxk,jp
rfq}8 ¨

ż

|g|

ď sup
yPG

|fpy´1xq ´ fpy´1xj,kq|C}g} ď
1

j
C ď ε{3.

In particular this holds for g “ gni and g “ gni1 , so that

|gni ˚ fpxq ´ gni1 ˚ fpxq| ď |gni ˚ fpxq ´ gni ˚ fpxk,jq| ` |gni ˚ fpxk,jq ´ gpxk,jq|

` |gpxk,jq ´ gni1 ˚ fpxk,jq| ` |gni1 ˚ fpxk,jq ´ gni1 ˚ fpxq| ă ε.

Since x P G was arbitrary it follows that the sequence of functions pgni ˚ fqi is uniformly

Cauchy and so converges to a continuous function on G. The result is proved.

Corollary 7.15. Suppose that
ş

is a left Haar integral on a compact topological group G,

f P C`pGq, and W is a space of eigenvectors of the convolution operator CpGq Ñ CpGq; g ÞÑ

g ˚ f all with eigenvalue λ ‰ 0. Then W is finite dimensional.

14The proof of this is just Cantor’s diagonal argument.
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Proof. Suppose that W is infinite dimensional. Then in particular there is an infinite se-

quence of linearly independent vectors in W and by the Gram-Schmidt process15 there is

an orthonormal sequence of vectors e1, e2, ¨ ¨ ¨ P W . Since every vector in W has eigenvalue

λ ‰ 0 we have en ˚f “ λen and by Proposition 7.14 there is a subsequence eni such that λeni

converges uniformly to some e P CpGq. Since }eni} “ 1 and λeni Ñ e uniformly, Remark 7.5

tells us that }e} “ |λ| ‰ 0. Moreover,

k
ÿ

i“1

|xe, eniy|
2
ď

k
ÿ

i“1

|xe, eniy|
2
`

›

›

›

›

›

e´
k
ÿ

i“1

xe, eniyeni

›

›

›

›

›

2

“ }e}2, (7.3)

but |xe, eniy| Ñ |λ| ‰ 0 and so the left of (7.3) tends to infinity as k Ñ 8. This is a

contradiction proving the corollary.

Remark 7.16. !4We may have }en}8 Ñ 8 as nÑ 8, despite the fact that }en} “ 1 for all

n P N.

Remark 7.17. The inequality in (7.3) for a general orthonormal sequence eni and vector e is

sometimes called Bessel’s inequality.

Proof of Theorem 7.1. First, by Theorem 5.10 there is a left Haar integral on G; write x¨, ¨y

and } ¨ } for the corresponding inner product and norm as in (7.1).

We begin by defining an auxiliary function. Since G is Hausdorff and x ‰ 1G there

is a neighbourhood T of the identity that is disjoint from x. By Lemma 2.25 there is a

symmetric open neighbourhood of the identity S such that S2 Ă T , and by Theorem 4.7

with the compact set t1Gu contained in the open set S, there is an f P C`pGq with fp1Gq “ 1

and which is supported in S. In particular rf ˚ fpxq “ 0 in view of Remark 7.9 and the fact

that S´1S “ S2 Ă T while x R T .

To ensure that the homomorphism we construct does not have x in the kernel we shall

restrict attention to the subspace

V :“ tg P CpGq : xg, hy “ 0 for all h P CpGq with h “ λxphqu.

Suppose that g P V , h P CpGq has h “ λxphq, and k P CpGq. Then h˚rk “ λxphq˚rk “ λxph˚rkq

(by Lemma 7.11 (ii)), and so 0 “ xg, h ˚rky “ xg ˚k, hy (by Lemma 7.11 (iii). Thus g ˚k P V ,

and any convolution operator is a linear operator (by Lemma 7.11 (i)) mapping V into V .

Let B :“ tg P V : }g} ď 1u and note by Lemma 7.11 (v) that }g ˚ f} ď } rf} for all

g P B; let M :“ sup t}g ˚ f} : g P Bu which consequently exists. Note, in particular, that by

15Given v1, v2, . . . linearly independent, the Gram-Schmidt process defines

un :“ vn ´
n´1
ÿ

k“1

xvn, ekyek and en :“ un{}un},

and it can be shown by induction that e1, e2, . . . is an orthonormal sequence.
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Lemma 7.11 (iii), the Cauchy-Schwarz inequality and the definition of M (since h ˚ rf P V )

we have

}h ˚ rf}2 “ xh ˚ rf, h ˚ rfy “ xph ˚ rfq ˚ f, hy ďM}h ˚ rf}}h} for h P V (7.4)

and so }h ˚ rf} ďM}h} for h P V .

Put g0 :“ rf ´ λx´1p rfq and suppose h P CpGq has h “ λxphq. Then by Lemma 7.4 (ii)

xg0, hy “ x rf ´ λx´1p rfq, hy “ x rf, hy ´ xλxpλx´1p rfqq, λxphqy “ x rf, hy ´ x rf, λxphqy “ 0,

so g0 P V . Moreover,

g0 ˚ fp1Gq “ p rf ´ λx´1p rfqq ˚ fp1Gq “ rf ˚ fp1Gq ´ rf ˚ fpxq “ }f}2 ‰ 0

by Remark 7.10 and the design of f . Whence }g0 ˚f} ‰ 0. Since the zero function is mapped

to the zero function by any convolution operator, we conclude that g0 ‰ 0 and by linearity

of the convolution operator we have that }pg0{}g0}q ˚ f} ‰ 0 so M ą 0.

Let pgnqn be a sequence of elements in B such that }gn ˚ f} Ñ M . By Proposition 7.14

there is a subsequence gni and some h P CpGq such that gni ˚ f Ñ h uniformly. Uniform

convergence implies convergence in }¨} (Remark 7.5) and so V is closed under uniform limits

(and hence h P V ); xgni ˚ f, hy Ñ }h}2; and }gni ˚ f} Ñ }h} leading to }h} “ M . Combined

with (7.4) and Lemma 7.11 (iii), gives

}h ˚ rf ´M2gni}
2
“ }h ˚ rf}2 ´ 2M2 Rexh ˚ rf, gniy `M

4
}gni}

2

ďM2
}h}2 ´ 2M2 Rexh, gni ˚ fy `M

4
Ñ 0

as iÑ 8. Hence M2gni Ñ h ˚ rf in } ¨ }, and since convergence in } ¨ } is mapped to uniform

convergence by convolution operations (Remark 7.13) we have M2gni ˚ f Ñ ph ˚ rfq ˚ f .

Uniqueness of limits then ensures M2h “ ph ˚ rfq ˚ f “ h ˚ p rf ˚ fq. (The last equality is the

associativity proved in Lemma 7.11 (iv).)

Since h P V , λxphq ‰ h since h ‰ 0. Consider the subspace

W :“

#

n
ÿ

i“1

µiλtiphq : n P N, µ1, . . . , µn P C, t1, . . . , tn P G

+

which contains h. In view of the design of h, linearity of the convolution operator α :

CpGq Ñ CpGq; g ÞÑ g ˚p rf ˚fq (Lemma 7.11 (i)), and Lemma 7.11 (ii), we have that every W

is an eigenvector of α with eigenvalue M2 ‰ 0. Moreover, rf ˚ f P C`pGq (since f P C`pGq)

and so by Corollary 7.15 dimW ă 8.

We call U ď CpGq an invariant space if λtpuq P U for all u P U and all t P G. By

design W is an invariant space and moreover, it is finite dimensional and contains h ‰ 0.

We think of the λts as linear maps on W .
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Claim. If U is an invariant space and U 1 ď U is an eigenspace of λt as a linear map

U Ñ U , then U 1 is itself an invariant space.

Proof. By hypothesis there is some µ such that U 1 “ tu P U : λtpuq “ µuu for some µ, and

so if u P U 1, then since G is Abelian16, λtpλspuqq “ λtspuq “ λstpuq “ λspλtpuqq “ λspµuq “

µλspuq so that λspuq P U
1 for all s P G.

Since h P W and λxphq ‰ h the linear map λx : W Ñ W is not the identity and is

isometric (Lemma 7.4 (ii)) so17 it has an eigenspace with eigenvalue distinct from 1. Let

U ď W be an eigenspace corresponding to a value which is not 1, and which by the claim

is invariant.

Let U 1 ď U be a non-trivial invariant subspace of smallest dimension. Since U 1 is finite

dimensional (as a subspace of W ) λt has an eigenvalue, call it γptq, and since U 1 has a

smallest dimension the corresponding eigenspace, which is an invariant space by the claim,

must be the whole of U 1. In particular λtpuq “ γptqu for all u P U 1 and t P G; and there is

u P U 1 with u ‰ 0. Then:

• λtpuq P U
1 by invariance and so λspλtpuqq “ γpsqλtpuq “ γpsqγptqu, but on the other

hand λspλtpuqq “ λstpuq “ γpstqu. Since u ‰ 0 we may divide and γpstq “ γpsqγptq.

• λs is isometric so |γpsq|}u} “ }γpsqu} “ }λspuq} “ }u} for all s P G. Since u ‰ 0 we

have |γpsq| “ 1 and in particular γ is a homomorphism into S1.

• Again, since u ‰ 0, for ε ą 0 we have

tt P G : |γptq ´ 1| ă εu “ tt P G : }λtpuq ´ u}8 ă ε}u}8u.

The latter set is open since the map G Ñ CpGq; t ÞÑ λtpuq is continuous by Lemma

5.3. The sets tz P S1 : |z ´ 1| ă εu form a neighbourhood base of the identity in S1

(c.f. the proof of Theorem 6.12) and hence γ is continuous by Lemma 3.6.

• Finally γpxq ‰ 1 since U 1 ď U .

The result is proved.

Remark 7.18. The invariant spaces described above are sometimes called unitary represen-

tations.

16This is the only place where we use that G is Abelian.
17This fact is more involved than the others here as it relies on the fact that λx on W is isometric and so

corresponds to a unitary matrix which can be diagonalised.
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Bootstrapping separating characters in compact Hausdorff Abelian

topological groups to locally compact Hausdorff Abelian topologi-

cal groups

Finally we turn to the full separation theorem:

Theorem 7.19. Suppose that G is a locally compact Hausdorff Abelian topological group

and x P G is not the identity. Then there is a character γ P pG such that γpxq ‰ 1.

We shall prove this by finding an open subgroup with a compact quotient that does not

identify x with the identity and then applying the result for compact groups. To begin we

need a lemma which is sometimes called Weil’s Lemma.

Lemma 7.20. Suppose that G is a topological group, U Ă G is a symmetric open neigh-

bourhood of the identity with compact closure, and x P G is such that |xxy X U | “ 8. Then

xxy is compact.

Proof. There is no loss in assuming that G “ xxy. Let Z :“ xxy “ txz : z P Zu and

N :“ txn : n P Z, n ě 1u. The hypothesis is that Z X U is infinite so xni P U for some

sequence of integers ni with |ni| Ñ 8. Hence for α P Z then there is some i such that

α ` |ni| P N, whence xα “ xα`|ni|x´|ni| P NpU Y U´1q “ NU i.e. Z Ă NU and similarly

Z Ă N´1U .

Since U is a neighbourhood of the identity and G “ Z, for all z P G there is α P Z such

that xα P zU and hence G Ă ZU´1 “ ZU . Since Z Ă NU it follows that G Ă NU2, so for

each z P G we may let npzq ě 1 be minimal such that z P xnpzqU2.

U
2

is compact by Lemma 2.23 and (since Z Ă N´1U we also have) G Ă N´1U2, so there

is some n0 ě 1 such that

U2
Ă U

2
Ă tx´1, x´2, . . . , x´n0uU2.

Coupling this with the definition of npzq we conclude that there is 1 ď i ď n0 such that

x´npzqz P x´iU2, whence z P xnpzq´iU2. By minimality of npzq it follows that npzq ´ i ď 0

and so npzq ď n0. Hence G Ă tx, x2, . . . , xn0uU2 Ă tx, x2, . . . , xn0uU
2
. Thus G is a finite

union of compact spaces, and so compact proving the result.

The next result makes considerable use of the fact the underlying group is Abelian and

while our proof of Theorem 7.1 adapts reasonably easily to give a non-Abelian analogue,

the following proposition is much harder to modify.

Proposition 7.21. Suppose that G is a locally compact Abelian topological group and x0 P G

is not the identity. Then there is an open subgroup H of G and a closed subgroup L ď H

such that H{L is compact and x0 P HzL.
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Proof. Lemma 2.41 applied with the compact set tx0u gives us U , a symmetric open neigh-

bourhood of the identity in G containing tx0u with compact closure. Let H :“ xUy which

is an open subgroup of G by Corollary 2.19. By Proposition 2.44 there is a finite set T such

that H “ xT yU .

Let S Ă T be maximal (possibly empty) so that there is n P NS, a vector of non-zero

natural numbers indexed by S, such that L :“ xsns : s P Sy is U-separated meaning that

if xU X yU ‰ H and x, y P L then x “ y. This immediately tells us that L is closed since if

z is a limit point of L then there must be x ‰ y with x, y P L with x, y P Uz which cannot

happen in view of the separation property. Moreover, since x0, 1G P U and x0 ‰ 1G we have

x0 R L.

Let q : H Ñ H{L be the quotient map which is continuous and open by Proposition

3.10. Since q is a homomorphism qpU2q is a symmetric set containing the identity; it is

open since q is open. qpU
2
q is a continuous image of a compact (by Lemma 2.23) set and so

compact and hence has compact closure by Lemma 2.37. Since qpU2q Ă qpU
2
q we conclude

that qpU2q has compact closure.

Suppose that t P T and suppose that qptq does not have finite order in H{L. Then t R S

since qpsq has order dividing ns for s P S since qpsqns “ 1H{L by design of L and the fact q

is a homomorphism. If xqptqy X qpU2q were finite then there would be nt ě 1 such that if

qptqznt P qpU2q and z P Z then z “ 0. But then if L1 :“ xsns : s P SYttuy, and x1, y1 P L1 has

x1U X y1U ‰ H, then since G is Abelian there are z, w P Z and x, y P L such that x1 “ tzntx

and y1 “ twnty. It follows that y´1tpz´wqntx P U2 so (since G is Abelian) qptqpz´wqnt P qpU2q

and hence z “ w, but then xU X yU ‰ H and so x “ y by design of L. We conclude that

x1 “ y1 i.e. L1 is U -separated, but this contradicts the maximality of S (since we could just

have added t). Thus we conclude that xqptqy X qpU2q is infinite, and hence by Lemma 7.20

xqptqy is contained in a compact set Kt.

Note that if t P T has finite order then xqptqy is finite and so is also (contained in) a

compact set, which we shall denote Kt. Again, since G is Abelian and q is a homomorphism

we have qpxT yq “
ś

tPT xqptqy Ă
ś

tPT Kt (note the product here is the group operation not

the Cartesian product) and so by Lemma 2.23 we have qpxT yq is contained in a compact

set. Finally, q is continuous and so qpUq is compact and qpHq “ qpxT yqqpUq is contained in

a compact setby Lemma 2.23 again. Finally, H is open and so qpHq is open (Proposition

3.10), and a subgroup so closed (Corollary 2.19). It follows that qpHq is a closed subset of

a compact set and hence compact. The result is proved.

Lemma 7.22. Suppose that G is an Abelian topological group and H is an open subgroup

of G. Then for every γ P pH there is λ P pG such that λ|H “ γ.

Proof. The argument here is a typical Zorn’s Lemma argument. We begin with the engine

for H ď K ď G:

Page 47



Claim. Suppose that γ P pK, x P GzK, and K 1 is the group generated by x and K. Then

there is some λ P xK 1 such that λ|K “ γ.

Proof. Let k P N0 be minimal (when N0 is partially ordered by divisibility) such that xk P K

(i.e. k is the order of xK as an element of G{K with the convention that infinite order is

denoted 0), and let w be a kth root of γpxkq (with the convention that it is 1 if k “ 0);

define λpxzhq :“ wzγphq for all z P Z and h P K. We need to check this is well-defined so

that if xzh “ xz
1

h1 then xz´z
1

“ h1h´1 P K and so k � z ´ z1 (meaning z “ z1 if k “ 0, and

hence h “ h1) whence wzγphq “ wz
1

γpxz´z
1

qγphq “ wz
1

γph1q as required. λ is also visibly a

homomorphism and the claim is proved since K is open in K 1, and so λ is continuous since

γ is continuous and K 1{K is discrete.

Let L be the set of pairs pK,λq such that H ď K ď G and λ P pK has λ|H “ γ. This set

is partially ordered by pK,λq ď pK 1, λ1q if K ď K 1 and λ “ λ1|K . If C is a chain in L then

K˚ :“
Ť

tK : pK,λq P Cu is a group containing H and all K with pK,λq P C, and we can

define λ˚pxq for all x P K˚ by setting λ˚pxq “ λpxq whenever pK,λq P C and x P K. (λ˚ is

certainly continuous.)

Thus by Zorn’s Lemma L has a maximal element pK,λq and by the claim if x P GzK

then L would contain a larger element. This contradiction proves the result.

Proof of Theorem 7.19. Apply Proposition 7.21 to get an open subgroup H ď G, and a

closed subgroup L ď H such that H{L is compact and x P HzL. Write q : H Ñ H{L

for the usual quotient map. Since L is closed H{L is Hausdorff by Proposition 3.16 and

qpxq ‰ 1H{L since x R L. By Theorem 7.1 there is λ P zH{L such that λpxLq ‰ 1, so then

λ ˝ q P pH has λ ˝ qpxq ‰ 1. Finally, apply Lemma 7.22 to this to get a character γ P pG such

that γpxq ‰ 1. The result is proved.
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