Topological Groups Sheet I — TT21

- I.1. Let \mathbb{R}_2 be the additive group of reals with topology defined by letting the open sets be those open sets U in \mathbb{R} (with its usual topology) for which there is some $a \in \mathbb{R}$ with $x \in U$ whenever x > a. Show that negation is not continuous, but that addition is continuous on \mathbb{R}_2 . Show that \mathbb{R}_2 is Fréchet. Is it Hausdorff?
- I.2. Let \mathbb{R}_1 be the additive group of reals with topology defined by letting the open sets be those open sets U in \mathbb{R} for which there is some $a \in \mathbb{R}$ with $x \in U$ whenever |x| > a. Show that \mathbb{R}_1 is a quasiitopological group but *not* topological group.
- I.3. Give an example of two compact sets A and B in the quasitopological group \mathbb{R}_1 (from Exercise I.2) such that A + B is not compact.
- I.4. Suppose that G is a locally compact Abelian group and $H, K \leq G$ are closed. Is it necessarily the case that H + K is closed?
- I.5. Give an example of a non-Abelian topological group G with a dense Abelian subgroup. Can the topology on G be Hausdorff?
- I.6. Give an example of a topological group G and compact sets $A,B \subset G$ with $A \cap B$ not compact.
- I.7. Suppose that G is a compactly generated topological group. Show that for any pair of disjoint closed sets A_0, A_1 there are disjoint open sets U_0, U_1 with $A_0 \subset U_0$ and $A_1 \subset U_1$. What if G is merely assumed to be locally compact?
- I.8. View the elements of the topological group $\mathbb{Z}^{\mathbb{R}}$ as functions $\mathbb{R} \to \mathbb{Z}$, and let A_i be the set of $f \in \mathbb{Z}^{\mathbb{R}}$ such that f is injective on $\{x \in \mathbb{R} : f(x) \neq i\}$. Show that A_0 and A_1 are disjoint and closed and that there are no disjoint open sets U_0 and U_1 with $A_0 \subset U_0$ and $A_1 \subset U_1$. Is $\mathbb{Z}^{\mathbb{R}}$ locally compact?

[Hint: It may help to note that the sets $U(g) \coloneqq \{f \in \mathbb{Z}^{\mathbb{R}} : f(s) = g(s) \text{ for all } s \in \text{supp } f\}$ where $S \subset \mathbb{R}$ is finite and $g : S \to \mathbb{Z}$ form a base for the topology on $\mathbb{Z}^{\mathbb{R}}$, and that $\mathbb{Z}^{\mathbb{R}}$ has a countable dense subset D. (An example of such a D is the set of maps $\mathbb{R} \to \mathbb{Z}; x \mapsto \lfloor p(x) \rfloor$ where p is a polynomial with rational coefficients and $\lfloor z \rfloor$ is largest integer less than or equal to z.)]