Topological Groups Sheet II — TT21

- II.1. Suppose that G is a topological group and $H \leq G$ is compact. Show that the quotient map $q: G \to G/H$ is closed.
- II.2. Show that the only continuous homomorphisms $\mathbb{R} \to \mathbb{R}$ (where \mathbb{R} has its usual topology) are of the form $\mathbb{R} \to \mathbb{R}$; $x \mapsto \alpha x$ where $\alpha \in \mathbb{R}$.
- II.3. Let $\mathbb{Q}_{>0}$ (resp. $\mathbb{R}_{>0}$) be the multiplicative group of positive rationals (resp. reals) with the subspace topology inherited from \mathbb{R} . Show that if $\phi : \mathbb{Q}_{>0} \to \mathbb{Q}_{>0}$ is a continuous homomorphism then there is a continuous homomorphism $\widetilde{\phi} : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ with $\widetilde{\phi}(q) = \phi(q)$ for all $q \in \mathbb{Q}_{>0}$.
- II.4. Suppose that α is a real irrational. Show that the map

$$\psi : \mathbb{R} \to S^1 \times S^1; t \mapsto (\exp(2\pi i t), \exp(2\pi i \alpha t))$$

is a continuous injective homomorphism, but that the restriction $\tilde{\psi} : \mathbb{R} \to \operatorname{Im} \psi; t \mapsto \psi(t)$ is *not* a topological isomorphism.

- II.5. A topological group is said to be σ -compact if it is a countable union of compact sets. Give an example of a σ -compact group that is not compactly generated. Are σ -compact groups necessarily locally compact? Show that if G is σ -compact, H is a locally compact Hausdorff topological group, and $\phi : G \to H$ is a continuous surjective homomorphism then ϕ is an open map.
- II.6. Suppose that G is a locally compact topological group. Show that there is a locally compact Hausdorff topological group H such that $C_c(G)$ is isometrically isomorphic (as a normed space) to $C_c(H)$.
- II.7. Given a compact metric space T with metric d write Isom(T) for the set of isometries of T, that is maps $g: T \to T$ with d(g(x), g(y)) = d(x, y) for all $x, y \in T$, and define a metric on Isom(T) by $d_{\infty}(g, h) \coloneqq \sup\{d(g(x), h(x)) : x \in T\}$. Show that Isom(T) is a compact topological group when endowed with the topology induced by the metric d_{∞} .
- II.8. Given an example of a compact metric space T, a group G (which need not have a topology), and a transitive faithful isometric action of G on T where G is not a compact subspace of Isom(T). (It may help to recall that an action of G on T is transitive if for every $x, y \in T$ there is $g \in G$ such that gx = y, and it is faithful if gx = x for all $x \in T$ implies $g = 1_G$.)