
B6.3 Integer Programming

Prof. Raphael Hauser
Oxford Mathematical Institute

October 17, 2021

1

TABLE OF CONTENTS B6.3 MT 2021, Oxf. Math. Inst.

Table of Contents

1 Lecture 1: Modelling 4

1.1 What is integer programming? 4

1.2 Complexity . 6

1.3 Introductory Examples . 6

2 Lecture 2: Linear Programming Primal 15

2.1 LP Relaxation . 15

2.2 Introductory Example . 17

2.3 The Simplex Method . 19

2.4 Tableau Format of the Simplex Method 21

2.5 Phase I of the Simplex Algorithm 23

3 Lecture 3: Linear Programming Duality 25

3.1 Bounding LPs . 25

3.2 Weak Duality . 27

3.3 Strong Duality . 28

3.4 Linear Complementarity . 30

4 Lecture 4: Dual Simplex Algorithm, Alternative IP Formulations 32

4.1 The Dual Simplex Algorithm . 32

4.2 Polyhedra and Polytopes . 33

4.3 Alternative Formulations of IP Problems 36

5 Lecture 5: Total Unimodularity 40

5.1 Totally Unimodular Matrices . 40

5.2 Total Unimodularity Theory . 40

5.3 Practical Tools to Recognise TU matrices 43

5.4 Another Sufficient Condition for TU 44

5.5 Application to Graph Problems 45

6 Lecture 6: Submodularity 51

6.1 The Maximum Weight Forest Problem 51

6.2 Submodular functions . 52

1

TABLE OF CONTENTS B6.3 MT 2021, Oxf. Math. Inst.

6.3 Submodular Optimisation . 53

6.4 Submodular Rank Functions . 55

7 Lecture 7: Matroids 57

7.1 Submodular Rank Functions Continued 57

7.2 Matroids . 57

7.3 The MISP . 59

7.4 Lovasz Extension . 60

8 Lecture 8: Branch and Bound 63

8.1 Branch-and-Bound: A Divide and Conquer Strategy 63

8.2 Introductory Example . 64

9 Lecture 9: More on Branch and Bound 70

9.1 General Branch-and-Bound Principles 70

9.2 The General Branch & Bound Framework 73

9.3 LP Based Branch and Bound . 74

9.4 Adaptation to Specific Problems 75

9.4.1 Choice of Algorithm to Compute Dual Bounds 75

9.4.2 Heuristics to Compute Primal Bounds 77

9.4.3 Branching Rules . 78

9.4.4 Node Selection . 79

10 Lecture 10: Delayed Column Generation 80

10.1 The Dantzig-Wolfe Reformulation 80

10.2 LP Master Problem . 83

10.3 Delayed Column Generation . 85

11 Lecture 11: Branch and Price 88

11.1 Recap on Delayed Column Generation 88

11.2 The Branch & Price Algorithm . 89

11.3 The Cutting Stock Problem . 90

12 Lecture 12: Lagrangian Relaxation 95

12.1 Introductory Example: Uncapacitated Facility Location 95

2

TABLE OF CONTENTS B6.3 MT 2021, Oxf. Math. Inst.

12.2 Generalisation . 98

12.3 Lagrangian Relaxation of STSP 99

12.4 The Lagrangian Dual Problem . 101

13 Lecture 13: Lagrangian Dual 103

13.1 The Strength of the Lagrangian Dual 103

13.2 Choosing a Lagrangian Dual . 104

13.3 Subgradients . 105

13.4 Solving the Lagrangian Dual . 106

13.5 Practical Subgradient Algorithm 108

13.6 An Example . 109

14 Lecture 14: Cutting Planes 112

14.1 LP Preprocessing . 112

14.2 IP Preprocessing . 113

14.3 The Cutting Plane Algorithm . 114

14.4 Chvàtal Cuts . 116

14.5 Chvàtal Closures . 117

15 Lecture 15: Gomoroy Cuts 119

15.1 Gomoroy Cuts . 119

15.2 Cutting Planes with Gomoroy Cuts 120

15.3 An Example . 121

16 Lecture 16: Branch and Cut 125

16.1 The Branch & Cut Framework . 125

16.2 Algorithm Design Steps . 126

16.3 Cover Inequalities . 130

16.4 Lifted Cover Inequalities . 131

3

B6.3 MT 2021, Oxf. Math. Inst.

1 Lecture 1: Modelling

1.1 What is integer programming?

Consider the following decision problem,

max
x1,x2,x3∈R

3.4x1 − 2x2 +
√

5x3

subject to −7x1 + x3 ≤ 5,

2x2 + x3 = 6,

x1 ≥ 0

x1, x2, x3 ∈ Z.

It consists of the following parts.

• Decision variables: the variables x1, x2, x3 whose values we are allowed
to choose.

• An objective function f(x1, x2, x3) = 3.4x1 − 2x2 +
√

5x3 that we want to
optimise (minimise or maximise).

• Linear constraints of the form p(x) ≤ c or p(x) = c, where p is a polyno-
mial of degree 1 in the decision variables and c a constant.

• Integrality constraints xi ∈ Z for at least some of the decision variables.

Mathematical problems of this form are called integer programming (IP) prob-
lems if all decision variables are integrality constrained, or mixed integer pro-
gramming problems if only some of the variables are are integrality constrained.

More generally, an IP is of the form

max
x∈Rn

cTx

s.t. Ax ≤ b, (componentwise)
x ≥ 0, (componentwise)
x ∈ Zn,

where A is a m × n matrix for some m,n ∈ N, and where c ∈ Rn and b ∈ Rm
are vectors.

A problem such as

max
x∈Rn

cTx

subject to Ax ≤ b, x ≥ 0, x ∈ Zn

refers to the maximum objective value achievable among the feasible points x,
that is, by decision vectors that satisfy the constraints.

4

1.1 What is integer programming? B6.3 MT 2021, Oxf. Math. Inst.

Often we are interested in the maximising values x∗ of the decision variables
themselves. In this case we write

x∗ = arg max
x∈Rn

cTx

s.t. Ax ≤ b, x ≥ 0, x ∈ Zn.

This also makes it easy to solve minimisation problems as maximisation prob-
lems, since the same values x∗ also satisfy

x∗ = arg min
x∈Rn

− cTx

s.t. Ax ≤ b, x ≥ 0, x ∈ Zn.

In the same vein, any problem with equality constraints

max
x∈Rn

cTx

s.t. Ax = b, x ≥ 0, x ∈ Zn

can be reformulated as a problem with inequality constraints

max
x∈Rn

cTx

s.t.
[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0, x ∈ Zn,

since Ax = b if and only if Ax ≤ b and −Ax ≤ −b.
A type of IP that often occurs uses binary variables to indicate whether or

not a particular feature is switched on. For example, if we have to choose 2 out
of 4 objects worth c1, . . . , c4 respectively and aim to maximise the total value,
we would have to solve the following problem,

max
x∈R4

cTx

subject to x1 + x2 + x3 + x4 = 2,

0 ≤ xi ≤ 1 (i = 1, . . . , 4), x ∈ Zn.

The constraints 0 ≤ xi ≤ 1, xi ∈ Z force xi ∈ B = {0, 1}. Equivalently, we could
replace this by xi(1 − xi) = 0, but this would no longer be a linear constraint
and the problem could no longer be treated by the algorithms discussed in this
course.

From this last example we learn that, while two mathematical formulations
of an optimisation problem may be equivalent in terms of defining the same
optimal values for the decision variables, the two formulations are generally
not equivalent as far as their algorithmic treatment is concerned! This implies
that finding a good formulation must be seen as part of the algorithmic solution
of the problem, a theme we shall revisit over and over again in this course.

5

1.2 Complexity B6.3 MT 2021, Oxf. Math. Inst.

1.2 Complexity

• Often the coefficients of A, b, c are rational numbers, in which case the
problem size D can be defined as the number of bits required to represent
the problem data in reduced form.

• Generally, problems of larger size require more binary number opera-
tions to solve computationally on a computer, and the rate of growth in
the required operations and memory as a function of problem size yields
a notion of problem complexity.

• The best algorithms for linear optimisation problems without integrality
constraints (LPs) have complexity bounded by C ·Dq for some fixed con-
stants C, q, that is, such problems are polynomial time solvable.

• It is believed that there does not exist a polynomial time algorithm for
solving general IP problems, and that the complexity of even the best
algorithms grows exponentially in D : IPs belong to the class of NP hard
optimisation problems. That is, IP problems are hard to solve, due to the
integrality constraints.

• Further details can be found in specialised courses or books on complex-
ity theory. This theory will not be used in a substantial way in this course.
Instead, we will focus on methods for solving IPs by iteratively solving
much simpler sub-problems that increasingly better approximate the IP.
Often the subproblems are LPs or special subclasses of IPs that are poly-
nomial time solvable.

1.3 Introductory Examples

Example 1.1 (The Assignment Problem). A work force of n different workers are
to carry out n different jobs. Each person can do any of the jobs in principle and must
be assigned exactly one job. Assigning person i to job j incurs a cost cij . Find an
assignment that minimises the total cost. See Figure 1 for an illustration.

Decision variables: For (i, j ∈ [1, n] := {1, . . . , n}),

xij =

{
1 if person i assigned to carry out job j,
0 otherwise.

Constraints:

• Each person does exactly one job:

n∑
j=1

xij = 1 (i ∈ [1, n])

6

1.3 Introductory Examples B6.3 MT 2021, Oxf. Math. Inst.

Figure 1: An illustration of the assignment problem.

• Each job is done by exactly one person:

n∑
i=1

xij = 1 (j ∈ [1, n])

• Variables are binary:

xij ∈ B := {0, 1}, (i, j ∈ [1, n]).

Objective function: the total cost
∑n
i=1

∑n
j=1 cijxij .

Model:

min
x∈Rn×n

n∑
i=1

n∑
j=1

cijxij

s.t.
n∑
j=1

xij = 1 for i = 1, . . . , n,

n∑
i=1

xij = 1 for j = 1, . . . , n,

xij ∈ B for i, j = 1, . . . , n.

Example 1.2 (The 0-1 Knapsack Problem). A knapsack of volume b has to be packed
with a selection of n items. Item i has volume ai and value ci, and we must pack the
knapsack selecting a set of items of maximal total value. See Figure 2 for an illustration.

7

1.3 Introductory Examples B6.3 MT 2021, Oxf. Math. Inst.

?

Figure 2: An illustration of the 0-1 knapsack problem.

Knapsack model:

max

n∑
i=1

cixi

s.t.
n∑
i=1

aixi ≤ b,

x ∈ Bn,

with decision variables are defined as follows,

xi =

{
1 if item i is selected,
0 otherwise.

Example 1.3 (The Travelling Salesman Problem (TSP)). A travelling salesman has
to visit each of n cities exactly once and then return to the starting point. For each pair
of cities i, j ∈ [1, n] there is a direct air link from i to j. The directed graph (digraph)
G = (V,E) in which the vertices are the cities and the directed edges are the air links
between them is assumed to be a complete graph. It takes cij hours to travel along edge
ij from city i to city j. In which order to visit the cities so as to minimise the total
travelling time? See Figure 3 for an illustration.

Note: it may be the case that cij 6= cji. If cij = cji for all i, j ∈ [1, n], then we speak
of the symmetric travelling salesman problem (STSP), and (V,E) is considered an
undirected graph.

Formulation as a BIP:

• Decision variables: for all i, j ∈ [1, n],

xij =

{
1 if the tour contains arc (i, j),

0 otherwise.

8

1.3 Introductory Examples B6.3 MT 2021, Oxf. Math. Inst.

Figure 3: An illustration of the travelling salesman problem.

• Constraints: the salesman leaves city i exactly once∑
j:j 6=i

xij = 1 (i = 1, . . . , n)

and arrives in city j exactly once∑
i:i 6=j

xij = 1 (j = 1, . . . , n).

To eliminate solutions with subtours, introduce cut-set constraints:∑
i∈S

∑
j /∈S

xij ≥ 1 ∀S ⊂ V, S 6= ∅.

See Figure 4 for an illustration of subtours.

9

1.3 Introductory Examples B6.3 MT 2021, Oxf. Math. Inst.

c

S

S

Figure 4: An illustration of subtours in the travelling salesman problem.

TSP model:

min
x

n∑
i=1

n∑
j=1

cijxij

s.t.
∑
j:j 6=i

xij = 1 (i ∈ [1, n]),

∑
i:i 6=j

xij = 1 (j ∈ [1, n]),

∑
i∈S

∑
j /∈S

xij ≥ 1 (S ⊂ V, S 6= ∅),

x ∈ Bn×n.

Example 1.4 (Uncapacitated Facility Location (UFL)). Potential sitesN = {1, . . . , n},
clients M = {1, . . . ,m} for building a new distribution warehouse have been identi-
fied. It costs cij for satisfying all of client i’s orders from warehouse j. Opening depot j
incurs a fixed cost fj > 0. Decide which warehouse to open and how to service clients
at minimal cost. See Figure 5 for an illustration.

Decision variables:

• For each pair (i, j) ∈M ×N let xij ∈ [0, 1] be the proportion of the demand of
of client i satisfied from depot j.

• Fixed costs: for each j ∈ N , let yj = 1 if depot j is used, and yj = 0 otherwise.

10

1.3 Introductory Examples B6.3 MT 2021, Oxf. Math. Inst.

Figure 5: Illustration of the UFL.

Objective: minimise the total cost∑
i∈M

∑
j∈N

cijxij +
∑
j∈N

fjyj .

Constraints:

• 100% of client i’s demand must be satisfied

n∑
j=1

xij = 1 for i = 1, . . . ,m.

• 0 ≤ xij ≤ 1 for all ij. Note that the constraints xij ≤ 1 are superfluous, as they are
implied by

∑n
j=1 xij = 1.

• yj ∈ B, with yj = 1 iff ∃ i ∈M s.t. xij > 0:

m∑
i=1

xij ≤ myj for j = 1, . . . , n.

This is an example of a so-called big M constraint.

11

1.3 Introductory Examples B6.3 MT 2021, Oxf. Math. Inst.

UFL model (mixed integer programming problem):

min
(x,y)∈Rm×n+n

∑
i∈M

∑
j∈N

cijxij +
∑
j∈N

fjyj

s.t.
∑
j∈N

xij = 1 (i ∈M),

∑
i∈M

xij ≤ myj (j ∈ N),

x ≥ 0,

y ∈ Bn.

Example 1.5 (Discrete Alternatives (Disjunctions)).

min
x∈Rn

cTx

s.t. 0 ≤ x ≤ u and (22) or (23) holds,

aT1 x ≤ b1 (1)

aT2 x ≤ b2, (2)

where ai are vectors and bi scalars (i = 1, 2). The “or” is inclusive, i.e., at least one
of conditions (22) and (23) must hold. See Figure 6 for an illustration.

Modelling such problems as a MIPs: “Big M formulation”

• Extra decision variables for which of (22),(23) to impose:

y1 =

{
1 if (22) is imposed,
0 if (22) is not imposed,

y2 =

{
1 if (23) is imposed,
0 if (23) is not imposed.

Note that even if a condition is not imposed, it may still hold, but when it is
imposed, it must hold.

• Let M ≥ max
{

max0≤x≤u a
T
i x − bi : i = 1, 2

}
, a bound that can easily be

computed via linear programming (see Lecture 2).

Alternative disjunction model:

min
(x,y)∈Rn+2

cTx

s.t. aTi x− bi ≤M(1− yi) (i = 1, 2),

y1 + y2 = 1,

0 ≤ x ≤ u
y ∈ B2.

12

1.3 Introductory Examples B6.3 MT 2021, Oxf. Math. Inst.

Figure 6: Illustration of the problem of discrete alternatives.

13

1.3 Introductory Examples B6.3 MT 2021, Oxf. Math. Inst.

We make the following Observations:

• If y1 = 1, then aT1 x− b1 ≤M(1− yi) = 0, and hence (22) is imposed.

• The case y1 = 0 is more interesting: We have aT1 x − b1 ≤ M , which is a
superfluous constraint, as it is already imposed as a consequence of 0 ≤ x ≤ u.
M has to be chosen large enough to guarantee that

{x : 0 ≤ x ≤ u} ∩ {x : AT
1 x− b1 ≤M} = {x : 0 ≤ x ≤ u}

so we don’t lose any admissible solutions!

14

B6.3 MT 2021, Oxf. Math. Inst.

2 Lecture 2: Linear Programming Primal

2.1 LP Relaxation

An important class of optimisation problems are linear programming problems
(LPs), which look just like IPs but without integrality constraints,

max
x

cTx

s.t. Ax ≤ b,
x ≥ 0.

We will see that LPs play an important role in algorithms designed to solve
general IPs through the concept of of LP relaxation:

Consider the IP problem

(IP) z∗ = max
x

cTx

s.t. Ax ≤ b,
x ∈ Zn+.

If we give up on the integrality constraints xi ∈ Z, we obtain an LP,

(LP) z̄ = max
x

cTx

s.t. Ax ≤ b,
x ≥ 0.

Giving up on the integrality constraints has two effects on the feasible set F
(the set of decision vectors x that satisfy the constraints of the problem)

• F becomes larger,

• F becomes convex.

See Figure 7 for an illustration of this effect.

Proposition 2.1 (Relaxation implies dual bound).
The consequence of the first effect is that z̄ ≥ z∗.

Proof. If the optimal objective value z∗ of (IP) is achieved at the point x∗, then
x∗ is feasible for (IP), and hence it is also feasible for (LP). Therefore,

z̄ ≥ cTx = z∗.

15

2.1 LP Relaxation B6.3 MT 2021, Oxf. Math. Inst.

c

Figure 7: Illustration of LP relaxation.

Figure 8: Rounded solutions may be far from optimal ones.

As we shall learn, the consequence of the second effect is that it is much
easier to solve the problem (LP) than (IP).

A first idea for solving IPs is to solving the LP relaxation and round the
optimal values of the decision variables to the nearest feasible integer valued
feasible solution. While this occasionally works, it is not always a good idea:

• Rounding may be non-trivial, e.g., when the LP relaxation of a binary
program takes an optimal solution x∗ with many values near 0.5.

• The rounded solution may be far from optimal. See Figure 8 for an illus-
tration of this effect.

16

2.2 Introductory Example B6.3 MT 2021, Oxf. Math. Inst.

2.2 Introductory Example

We will now discuss an algorithm for solving general linear programming
problems.

Example 2.2 (Simplex in dictionary form). Consider the LP instance

z = max
x

5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.

Preliminary step I: introduce slack variables x4, x5, x6 ≥ 0 to reformulate
inequality constraints as a system of linear equations,

z = max 5x1 + 4x2 + 3x3 + 0x4 + 0x5 + 0x6

s.t. 2x1 + 3x2 + x3 + x4 = 5

4x1 + x2 + 2x3 + x5 = 11

3x1 + 4x2 + 2x3 + x6 = 8

x1, x2, x3, x4, x5, x6 ≥ 0.

Preliminary step II: express in dictionary form

max z s.t. x1, . . . , x6 ≥ 0,

and where the variables are linked via the linear system

x4 = 5− 2x1 − 3x2 − x3
x5 = 11− 4x1 − x2 − 2x3

x6 = 8− 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3.

Step 0: x1, x2, x3 = 0, x4 = 5, x5 = 11, x6 = 8 is an initial feasible solution.
x1, x2, x3 are called the nonbasic variables and x4, x5, x6 basic variables. Note that
basic variables are expressed in terms of nonbasic ones!

x4 = 5− 2x1 − 3x2 − x3
x5 = 11− 4x1 − x2 − 2x3

x6 = 8− 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3.

Step 1: We note that as long as x1 is increased by at most

5

2
= min

(5

2
,

11

4
,

8

3

)
,

17

2.2 Introductory Example B6.3 MT 2021, Oxf. Math. Inst.

all xi remain nonnegative, but z increases. Setting x1 = 5/2 and substituting
into the dictionary, we find x2, x3, x4 = 0, x5 = 1, x6 = 1/2, z = 25/2 as an
improved feasible solution. We call x1 the pivot of the iteration.

x4 = 5− 2x1 − 3x2 − x3
x5 = 11− 4x1 − x2 − 2x3

x6 = 8− 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3.

We can now express the variables x1, x5, x6, z in terms of the new nonbasic
variables x2, x3, x4 (those currently set to zero) to obtain a new dictionary. To
do this, use line 1 of the dictionary to express x1 in terms of x2, x3, x4,

x1 =
1

2

(
5− 3x2 − x3 − x4

)
and substitute the right hand side for x1 in the remaining equations.

The new dictionary then looks as follows,

x1 =
5

2
− 3

2
x2 −

1

2
x3 −

1

2
x4 (3)

x5 = 1 + 5x2 + 2x4 (4)

x6 =
1

2
+

1

2
x2 −

1

2
x3 +

3

2
x4 (5)

z =
25

2
− 7

2
x2 +

1

2
x3 −

5

2
x4. (6)

Of course, we are still solving

max z s.t. x1, . . . , x6 ≥ 0,

subject to the relationships (3)–(6) holding between the variables, and the new
LP instance is equivalent to the old one. However, a better feasible solution can
be read off the new dictionary by setting the nonbasic variables to zero!

x1 =
5

2
− 3

2
x2 −

1

2
x3 −

1

2
x4

x5 = 1 + 5x2 + 2x4

x6 =
1

2
+

1

2
x2 −

1

2
x3 +

3

2
x4

z =
25

2
− 7

2
x2 +

1

2
x3 −

5

2
x4.

Step 2: We continue in the same vein: increasing the value of x2 or x4 is
useless, as this would decrease the objective value z. Thus, x3 is our pivot, and
we can increase its value up to

1 = min
(
5,+∞, 1),

18

2.3 The Simplex Method B6.3 MT 2021, Oxf. Math. Inst.

leading to the improved solution x2, x4, x6 = 0, x1 = 2, x3 = 1, x5 = 1, z = 13
and the dictionary corresponding to x2, x4, x6 as nonbasic variables:

x3 = 1 + x2 + 3x4 − 2x6

x1 = 2− 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

z = 13− 3x2 − x4 − x6.

At this point we can stop the algorithm for the following reasons:

• from the last line of the dictionary we see that for any strictly positive
value of x2, x4 or x6 the objective value z is necessarily strictly smaller
than 13,

• and from the other lines of the dictionary we see that as soon as the values
of x2, x4 and x6 are fixed, the values of x3, x1 and x5 are fixed too.

• Thus, the last dictionary yields a certificate of optimality for the identified
solution.

2.3 The Simplex Method

Let us now try to understand how the dictionary

x3 = 1 + x2 + 3x4 − 2x6

x1 = 2− 2x2 − 2x4 + x6 (7)
x5 = 1 + 5x2 + 2x4

z = 13− 3x2 − x4 − x6,

(which was obtained after two pivoting steps) could have been obtained di-
rectly from the input data of the original LP instance

(LPI) max 5x1 + 4x2 + 3x3 + 0x4 + 0x5 + 0x6

s.t. 2x1 + 3x2 + x3 + x4 = 5

4x1 + x2 + 2x3 + x5 = 11

3x1 + 4x2 + 2x3 + x6 = 8

x1, x2, x3, x4, x5, x6 ≥ 0

if we had been given the relevant basic variables:

The constraints of (LPI) imply a functional dependence between the non-
negative decision variables xi, expressed by the linear system

Ax = b, (8)

19

2.3 The Simplex Method B6.3 MT 2021, Oxf. Math. Inst.

where

A =

2 3 1 1 0 0
4 1 2 0 1 0
3 4 2 0 0 1

 , b =

 5
11
8

 .
The basic variables of dictionary (7) are x3, x1, x5. Writing

xB :=
[
x3 x1 x5

]T
, xN :=

[
x2 x4 x6

]T
AB :=

1 2 0
2 4 1
2 3 0

 , AN :=

3 1 0
1 0 0
4 0 1


(8) can be written as

AB xB +AN xN = b.

Solving for the basic variables xB , we obtain

xB = A−1B (b−ANxN) . (9)

Likewise, the objective function can be written as

z = cTB xB + cTN xN ,

where
cB =

[
3 5 0

]T
, cN =

[
4 0 0

]T
,

and substituting from (9), we find

z = cTBA
−1
B b+

(
cTN − cTBA−1B AN

)
xN .

Dictionary (7) is now just the system of equations

xB = A−1B b−A−1B ANxN ,

z = cTBA
−1
B b+

(
cTN − cTBA−1B AN

)
xN .

Definition 2.3 (Dictionary). A dictionary of the LP problem (P)

max
x
{cTx : Ax = b, x ≥ 0}

is a system of equations

xB = A−1B b−A−1B ANxN ,

z = cTBA
−1
B b+

(
cTN − cTBA−1B AN

)
xN ,

equivalent to

Ax = b,

z = cTx,

20

2.4 Tableau Format of the Simplex Method B6.3 MT 2021, Oxf. Math. Inst.

where up to column permutation A = [AB AN] and x = [xT
B xT

N]T is a block decom-
position such that AB is nonsingular.

A dictionary is called feasible if A−1B b ≥ 0, so that x = (xB , xN) = (A−1B b, 0) is
feasible (but generally suboptimal). The point (xB , xN) is then called a basic feasible
solution.

Algorithm 2.4 (Simplex Method for the general LP instance (P)).
// initialisation
choose a basic feasible solution (xB , xN);
while cN −AT

NA
−T
B cB > 0 do

i := min{` ∈ N : c` > AT
` A
−T
B cB}; // A` is `-th column of A

if A−1B Ai ≤ 0 then
return “(P) unbounded”; // (objective →∞)

else
AM := arg mink∈B

{
(A−1B b)k/(A

−1
B Ai)k : k ∈ B, (A−1B Ai)k > 0

}
;

j := min`∈AM `;
N ← N ∪ {j} \ {i};
B ← B ∪ {i} \ {j};

end
end
return (xB , xN) = (A−1B b, 0) “optimal basic solution”;

Comments:

• The specific choice of i and j in Steps i) and ii) provably avoid that the
same sets (B,N) appear twice in the course of the algorithm, and hence
guarantee finite termination. This is called Bland’s Rule, the proof of
which we omit.

• In an efficient implementation the full dictionary is never computed, as it
suffices to compute the vectors cN − AT

NA
−T
B cB and A−1B Ai (which com-

putationally amounts to solving two linear systems, one matrix-vector
multiplication and one vector addition), as well as A−1B b (a clever imple-
mentation does not require an extra linear systems solve).

2.4 Tableau Format of the Simplex Method

A tableau is a representation of the problem data obtained by moving all vari-
ables xi of a dictionary to one side and constants to the other. For example, the
dictionary

x4 = 5− 2x1 − 3x2 − x3
x5 = 11− 4x1 − x2 − 2x3

x6 = 8− 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3,

21

2.4 Tableau Format of the Simplex Method B6.3 MT 2021, Oxf. Math. Inst.

corresponds to the tableau

2 3 1 1 0 0 5
4 1 2 0 1 0 11
3 4 2 0 0 1 8

5 4 3 0 0 0 0.

Basic variables can be identified via the appearance of an identity submatrix,
and an optimal tableau is characterised by the appearance of all non-positive
entries on the l.h.s. of the last line.

Applying the same procedure to the second dictionary

x1 =
5

2
− 3

2
x2 −

1

2
x3 −

1

2
x4

x5 = 1 + 5x2 + 2x4

x6 =
1

2
+

1

2
x2 −

1

2
x3 +

3

2
x4

z =
25

2
− 7

2
x2 +

1

2
x3 −

5

2
x4,

we obtain the following tableau,

1 1.5 0.5 0.5 0 0 2.5
0 −5 0 −2 1 0 1
0 −0.5 0.5 −2.5 0 1 0.5

0 −3.5 0.5 −2.5 0 0 −12.5.

Here is how the first tableau can be directly transformed into the second
one:

1. Among the columns on the left, identify one whose last entry is positive.

2 3 1 1 0 0 5
4 1 2 0 1 0 11
3 4 2 0 0 1 8

5 4 3 0 0 0 0.

We call this column the pivot column.

2 3 1 1 0 0 5
4 1 2 0 1 0 11
3 4 2 0 0 1 8

5 4 3 0 0 0 0.

2. For each row (apart from the last) of the pivot column with positive coef-
ficient t, look up the corresponding coefficient u on the r.h.s.

22

2.5 Phase I of the Simplex Algorithm B6.3 MT 2021, Oxf. Math. Inst.

• If no such row exists, the problem is unbounded.

• If such rows exist, pick the one for which u/t is smallest and call it
the pivot row. In this example, t = 2 and u = 5.

2 3 1 1 0 0 5
4 1 2 0 1 0 11
3 4 2 0 0 1 8

5 4 3 0 0 0 0.

3. Divide the pivot row by t,

1 1.5 0.5 0.5 0 0 2.5
4 1 2 0 1 0 11
3 4 2 0 0 1 8

5 4 3 0 0 0 0.

4. For all other rows i of the tableau, subtract the “rescaled” pivot row ti
times, where ti is the row-i entry of the pivot colum,

1 1.5 0.5 0.5 0 0 2.5
0 −5 0 −2 1 0 1
0 −0.5 0.5 −2.5 0 1 0.5

0 −3.5 0.5 −2.5 0 0 −12.5.

In the new tableau there once again appears a permuted identity matrix
that identifies the new basic variables.

2.5 Phase I of the Simplex Algorithm

A problem we neglected so far is that the simplex algorithm needs to be given
a basic feasible solution as a starting point to be able to run, and finding such
a solution is often a non-trivial problem in itself. Luckily, we can first solve the
auxiliary LP instance

(AUX) max
y=(s,t,x)∈Rm+m+n

−
m∑
i=1

(si + ti)

s.t.
[
I − I A

] st
x

 = b,

s, t, x ≥ 0.

A basic feasible solution for (AUX) is readily given by

B = {i : 1 ≤ i ≤ m, bi ≥ 0} ∪ {m+ i : 1 ≤ i ≤ m, bi < 0},

23

2.5 Phase I of the Simplex Algorithm B6.3 MT 2021, Oxf. Math. Inst.

so that yB = |b| consists of components of s and t.

Further, the optimal basic solution y∗ = (s∗, t∗, x∗) of the auxiliary problem
satisfies exactly one of the following two conditions:

i) Either s∗, t∗ = 0 and then w.l.o.g. all the y-indices corresponding to s and
t can be assumed to have been pivoted into the set of nonbasic variables
y∗N , so that

(xB , xN) = (πBx y
∗
B , π

N
x y
∗
N)

is a basic feasible solution for (P), where the maps π·x are the projections
of the relevant parts of y onto their x-components.

ii) Or else,
∑m
i=1(si + ti) > 0 proves that the set of feasible solutions for (P)

is empty, since any feasible solution x of (P) together with s, t = 0 would
improve on the optimal objective value.

24

B6.3 MT 2021, Oxf. Math. Inst.

3 Lecture 3: Linear Programming Duality

3.1 Bounding LPs

Let us again consider the LP instance we studied previously,

(P) max 5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.

We saw that the optimal value is 13.

In integer programming, instead of solving an LP relaxation to optimality
one is often interested in finding merely upper and lower bounds on the opti-
mal value. A lower bound is provided by any feasible solution. For example,
x1, x2 = 1, x3 = 0 is feasible with objective value 9.

How can we obtain upper bounds?

• Multiplying the first constraint by 3 we obtain

6x1 + 9x2 + 3x3 ≤ 15,

and since x1, x2, x3 ≥ 0, this yields an upper bound on the objective func-
tion:

z = 5x1 + 4x2 + 3x3 ≤ 6x1 + 9x2 + 3x3 ≤ 15,

• Likewise, taking the sum of the first two constraints yields the valid up-
per bound

z = 5x1 + 4x2 + 3x3 ≤ 6x1 + 4x2 + 3x3 ≤ 16.

• More generally, such bounds can be obtained from any sum of positive
multiples of the constraints for which the resulting coefficients are no
smaller than the corresponding coefficients of the objective function:

[
5 4 3

]
≤
[
y1 y2 y3

] 2 3 1
4 1 2
3 4 2

 , y1, y2, y3 ≥ 0

⇒ z ≤
[
y1 y2 y3

]  5
11
8

 .

25

3.1 Bounding LPs B6.3 MT 2021, Oxf. Math. Inst.

The best such upper bound is obtained by solving the LP instance

(D) min
y

5y1 + 11y2 + 8y3

s.t. 2y1 + 4y2 + 3y3 ≥ 5,

3y1 + y2 + 4y3 ≥ 4,

y1 + 2y2 + 2y3 ≥ 3,

y1, y2, y3 ≥ 0.

This is called the dual of the LP instance (P), the latter being called the primal.

More generally, an LP of the form

(P) z∗ = max
x

cTx

s.t. Ax ≤ b
x ≥ 0

is associated with a dual

(D) w∗ = min
y

bTy

s.t. ATy ≥ c
y ≥ 0,

since
yTA ≥ cT x≥0

=⇒ yTAx ≥ cTx y≥0, Ax≤b
=⇒ yTb ≥ cTx.

This allows us to formulate a dual problem for any LP, by first reformulat-
ing it in canonical form. For example,

(P) z∗ = max
x

cTx

s.t. Ax ≤ b.

Writing x = x1 − x2 with x1, x2 ≥ 0, this is equivalent to

(P’) z∗ = max
x1,x2

[cT,−cT]

[
x1

x2

]
s.t. [A, −A]

[
x1

x2

]
≤ b,

x1, x2 ≥ 0.

The latter has the dual

(D’) w∗ = min
y

bTy

s.t. ATy ≥ c,
−ATy ≥ −c,
y ≥ 0,

26

3.2 Weak Duality B6.3 MT 2021, Oxf. Math. Inst.

which in turn is equivalent to

(D) w∗ = min
y

bTy

s.t. ATy = c,

y ≥ 0.

3.2 Weak Duality

To analyse the relationship between the primal-dual pair (P), (D), we will hence-
forth consider LPs in the following standard form into which any LP may be cast
under an appropriate reformulation,

(P) max
x

n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≤ bi, (i = 1, . . . ,m),

(D) min
y

m∑
i=1

yibi

s.t.
m∑
i=1

yiaij = cj , (j = 1, . . . , n)

yi ≥ 0, (i = 1, . . . ,m).

Theorem 3.1 (Weak Duality Theorem).

i) If x is primal feasible and y is dual feasible (feasible for (P), (D) respectively),
then

n∑
j=1

cjxj ≤
m∑
i=1

yibi. (10)

ii) If equality holds in (10), then x is primal optimal and y is dual optimal.

iii) If either (P) or (D) is unbounded, then the other programme is infeasible (has no
feasible solutions).

Proof. i) By assumption, we have
∑n
j=1 aijxj ≤ bi for all i and

∑m
i=1 yiaij = cj ,

yi ≥ 0 for all j. Therefore,

n∑
j=1

cjxj =

n∑
j=1

(
m∑
i=1

yiaij

)
xj =

m∑
i=1

yi

 n∑
j=1

aijxj

 ≤ m∑
i=1

yibi.

27

3.3 Strong Duality B6.3 MT 2021, Oxf. Math. Inst.

ii) and iii) are immediate consequences of i).

Theorem 3.2 (Theorem of Alternatives for Linear Inequalities). Consider the fol-
lowing two systems of linear inequalities,

n∑
j=1

aijxj ≤ bi, (i = 1, . . . ,m) (11)

and
m∑
i=1

yiaij = 0, (j = 1, . . . , n)

yi ≥ 0, (i = 1, . . . ,m) (12)
m∑
i=1

yibi < 0.

Then system (11) has a solution if and only if (12) has no solution.

Proof. See problem sheets.

3.3 Strong Duality

Theorem 3.3 (Strong Duality Theorem).

i) If (P) and (D) both have feasible solutions, then they have optimal solutions x
and y such that

∑n
j=1 cjxj =

∑m
i=1 yibi.

ii) If either (P) or (D) is infeasible, then the other programme is either unbounded
or infeasible.

Proof. Expanding each equality of the dual constraints as two inequalities, the
claim of part i) may be written as the following system,

n∑
j=1

aijxj ≤ bi, (i = 1, . . . ,m) (primal feasibility)

m∑
i=1

yiaij ≤ cj , (j = 1, . . . , n) (dual feasibility)

−
m∑
i=1

yiaij ≤ −cj , (j = 1, . . . , n) (dual feasibility) (13)

−yi ≤ 0, (i = 1, . . . ,m) (dual feasibility)

−
n∑
j=1

cjxj +

m∑
i=1

biyi ≤ 0 (optimality)

28

3.3 Strong Duality B6.3 MT 2021, Oxf. Math. Inst.

In matrix form (22) reads as

(I)


A

AT

−AT

− I
−cT bT


[
x
y

]
≤


b
c
−c
0
0


Writing this as Ãx̃ ≤ b̃, the FTLI implies that (I) has a solution if and only if
the following system does not have a solution, ÃTỹ = 0, ỹ ≥ 0, ỹTb̃ < 0, or
equivalently,

(II)
[
AT −c

A −A − I b

]
u
v
w
s
τ

 =

[
0
0

]
,

bTu+ cT(v − w) < 0, u, v, w, s, τ ≥ 0.

Writing h = w − v the latter system can be rewritten as follows,

m∑
i=1

uiaij − cjτ = 0, (j = 1, . . . , n)

−
n∑
j=1

aijhj − si + biτ = 0, (i = 1, . . . ,m) (14)

ui, si, τ ≥ 0, (i = 1, . . . ,m; j = 1, . . . , n)
m∑
i=1

biui −
n∑
j=1

cjhj < 0,

To prove that (22) is feasible, we must show that assuming the feasibility of
(23) leads to a contradiction.

Case 1: (23) has solution with τ > 0. Let xj = 1
τ hj ∀j and yi = 1

τ ui ∀i. Then
x and y are primal and dual feasible, but

m∑
i=1

biui +

n∑
j=1

cjhj < 0

implies
∑m
i=1 yibi <

∑n
j=1 cjxj , violating weak duality.

Case 2: (23) has solution with τ = 0 and
∑m
i=1 uibi < 0. Take ỹ dual feasible.

Then y = ỹ + λu is dual feasible for all λ ≥ 0, and

m∑
i=1

yibi =

m∑
i=1

ỹibi + λ

m∑
i=1

uibi

29

3.4 Linear Complementarity B6.3 MT 2021, Oxf. Math. Inst.

becomes arbitrarily negative for large λ. By weak duality, (P) is infeasible.

Case 3: (23) has solution with τ = 0 and
∑n
j=1 cjhj > 0: similar construction

to Case 2 with x = x̃+ λh and x̃ primal feasible.

For parts ii) proceed similarly (see problem sheets).

3.4 Linear Complementarity

Definition 3.4 (Complementarity). x ∈ Rn and y ∈ Rm are complementary solu-
tions relative to (P) and (D) if

yi

bi − n∑
j=1

aijxj

 = 0, (i = 1, . . . ,m),

that is, either yi = 0 or the primal constraint
∑n
j=1 aijxj ≤ bi is active (holds as

equality).

Theorem 3.5 (Complementary Slackness). x and y are complementary solutions
relative to (P) and (D) if and only if they are optimal solutions of (P) and (D).

Proof. x and y are primal and dual feasible. Therefore,

m∑
i=1

yi

bi − n∑
j=1

aijxj

 =

m∑
i=1

yibi −
n∑
j=1

(
m∑
i=1

yiaij

)
xj =

m∑
i=1

yibi −
n∑
j=1

cjxj .

(15)

If x and y are complementary, then the l.h.s. of (15) equals zero, hence by
weak duality, the r.h.s. shows that x and y are optimal.

If x and y are optimal, then by strong duality, the r.h.s. of (15) equals zero,
and since the l.h.s. consists of non-negative summands, we have yi

(
bi −

∑n
j=1 aijxj

)
for all i.

Definition 3.6 (Linear Complementarity). More generally, solutions (x, s) and
(y, t) are complementary relative to the primal-dual pair of LP problems

(P) z∗ = max
(x,s)

cTx+ dTs (D) w∗ = min
(y,t)

aTy + bTt

s.t. Ax+ Cs ≤ a, s.t. ATy +BTt ≥ c
Bx+Ds = b, CTy +DTt = d

x ≥ 0 y ≥ 0.

30

3.4 Linear Complementarity B6.3 MT 2021, Oxf. Math. Inst.

if the following conditions are satisfied,

yi

ai −∑
j

aijxj −
∑
k

ciksk

 = 0, ∀i,

(∑
i

yiaij +
∑
`

t`b`j − cj

)
xj = 0, ∀j.

Corollary 3.6.1 (Complementarity and duality). Complementary solutions rela-
tive to a primal-dual pair of LPs remain complementary when the roles of primal and
dual are interchanged.

Proof. Follows from the the Complementary Slackness Theorem and the fact
that the bi-dual equals the primal.

Example 3.7 (Check optimality by complementarity). Consider the LP instance

(P) max 5x1 + 4x2 + 3x3

s.t. 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.

Suppose we are given the solution x∗1 = 2, x∗2 = 0, x∗3 = 1. How can we check if this
solution is optimal for (P)? We verify the claim by constructing a dual optimal y∗ via
complementary slackness.

First we check that x∗ is feasible for (P) by substitution into the constraint inequal-
ities: If x∗ is optimal, then by complementary slackness, x∗1, x∗3 > 0 implies

2y∗1 + 4y∗2 + 3y∗3 = 5 (16)
y∗1 + 2y∗2 + 2y∗3 = 3. (17)

Furthermore, 4x∗1 + x∗2 + 2x∗3 = 10 < 11 implies y∗2 = 0.

Substituting into (16) and (17), we obtain

2y∗1 + 3y∗3 = 5

y∗1 + 2y∗3 = 3

Solving this linear system, we find y∗1 = 1, y∗3 = 1.

By construction, y∗ satisfies the constraints ATy∗ ≥ c, and we also see that y∗ ≥
0. Furthermore,

cTx∗ = 5 · 2 + 4 · 0 + 3 · 1 = 13 = 5 · 1 + 11 · 0 + 8 · 1 = bTy∗,

confirming the optimality of both x∗ and y∗.

31

B6.3 MT 2021, Oxf. Math. Inst.

4 Lecture 4: Dual Simplex Algorithm, Alternative
IP Formulations

4.1 The Dual Simplex Algorithm

Thanks to strong LP duality and strict complementarity, one could solve the
dual of a given LP and derive the primal optimal solution from the dual op-
timal solution, if that is easier. Applying the simplex algorithm to the dual
problem can be done directly in the primal tableau, and this is called the dual
simplex algorithm.

Example 4.1 (Dual Simplex).

(P) max
x1,x2

− 1

4
x1 −

1

4
x2

s.t.
1

6
x1 −

1

6
x2 ≤ 1,

1

4
x1 +

1

4
x2 ≤

3

2
,

−1

4
x1 −

1

4
x2 ≤ −

1

2
,

x1, x2 ≥ 0.

Adding slack variables, we find the tableau

1/6 -1/6 1 0 0 1
1/4 1/4 0 1 0 3/2
-1/4 -1/4 0 0 1 -1/2
-1/4 -1/4 0 0 0 0

The last line indicates that the tableau would be optimal if only the associated basic
solution were feasible, which the r.h.s. shows it is not. We want to take pivots that
keep the coefficients on the last line non-positive (dual feasibility) and make progress
toward making the tableau feasible. To render x5 non-negative, we must use row 3 as
a pivot row in which to eliminate a different variable.

To decide on which column to pivot, note that if the pivot row t were to read
n∑
j=1

ātjxj = b̄t

with ātj ≥ 0 (j = 1, . . . , n) and b̄t < 0, then no matter how x ≥ 0 is chosen,
constraint t could not be satisfied. In that case, we would have to conclude that the
primal problem is infeasible.

Luckily, in our case, this is not so, and in pivoting on column h with āth < 0, the
last row changes as follows,

c̄j ← c̄j −
c̄h
āth

ātj .

32

4.2 Polyhedra and Polytopes B6.3 MT 2021, Oxf. Math. Inst.

Figure 9: Illustration of a polyhedron.

To guarantee dual feasibility, we must not allow any c̄j to become positive, that is,

c̄j −
c̄h
āth

ātj ≤ 0, (j = 1, . . . , n) (not a problem if ātj ≥ 0, since c̄h ≤ 0 and āth < 0)

⇔ c̄j
|ātj |

− c̄h
|āth|

≤ 0, (j ∈ [1, n], ātj < 0)

⇔ h ∈ arg max

{
c̄j
|ātj |

: j ∈ [1, n], ātj < 0

}
.

For example in our case, t = 3, h ∈ {1, 2}. Eliminating x1 in row 3 optimises the
tableau,

1/6 -1/6 1 0 0 1
1/4 1/4 0 1 0 3/2
1 1 0 0 -4 2

-1/4 -1/4 0 0 0 0

→

0 -1/3 1 0 2/3 2/3
0 0 0 1 1 1
1 1 0 0 -4 2
0 0 0 0 -1 1/2

4.2 Polyhedra and Polytopes

Definition 4.2 (Polyhedron). A polyhedron is a set P ⊂ Rn described as an inter-
section of finitely many affine half spaces

P =

x ∈ Rn :

n∑
j=1

aijxj ≤ bi, (i = 1, . . . ,m)

 ,

for some A = (aij) ∈ Rm×n and b ∈ Rm. See Figure 9 for an illustration of this
concept.

Definition 4.3 (Polytope). A polytope is a set P ′ ⊂ Rn described as the convex
hull of finitely many points

P ′ = conv
{
xk : k ∈ [1, p]

}
:=

{
p∑
k=1

λkx
k :

p∑
k=1

λk = 1, λk ≥ 0, ∀k

}
for some x1, . . . , xp ∈ Rn. See Figure 10 for an illustration of this concept.

33

4.2 Polyhedra and Polytopes B6.3 MT 2021, Oxf. Math. Inst.

Figure 10: Illustration of a polytope.

Polytopes and polyhedra are essentially the same objects, except that poly-
hedra may extend to infinity and that the descriptions are duals of each other,
one in terms of linear inequalities, and one by generators.

Theorem 4.4 (Weyl’s Theorem). If P ′ is a polytope, then P ′ is also a polyhedron.

Proof. x ∈ P ′ iff ∃λ such that

xj −
p∑
k=1

λkx
k
j = 0, (j = 1, . . . , n)

p∑
k=1

λk = 1,

λk ≥ 0, (k = 1, . . . , p),

where xj and λk are variables but xjk are constants. Equivalently, the require-
ment can be written as a system of linear inequalities,

xj −
p∑
k=1

λkx
k
j ≤ 0, (j = 1, . . . , n)

−xj +

p∑
k=1

λkx
k
j ≤ 0, (j = 1, . . . , n)

p∑
k=1

λk ≤ 1,

−
p∑
k=1

λk ≤ −1,

−λk ≤ 0, (k = 1, . . . , p).

34

4.2 Polyhedra and Polytopes B6.3 MT 2021, Oxf. Math. Inst.

Figure 11: Extreme points of a convex set.

Now apply Fourier-Motzkin Elimination (see problem sheet) to eliminate
all the variables λk. This yields a new system of inequalities

n∑
j=1

aijxj +

N∑
k=1

0 · λk ≤ bi, (i = 1, . . . ,m)

for some A = (aij), b and m, each of which is a positive linear combination
of inequalities of the original system. By the properties of Fourier-Motzkin
elimination, ∃λ such that (x, λ) satisfy the orginal system iff x satisfies the new
system, which now doesn’t involve λ. Hence,

P ′ = P = {x ∈ Rn : Ax ≤ b} .

Definition 4.5 (Extreme points). Let C ⊂ Rn be a convex set. A point x ∈ C is an
extreme point of C if x is not a convex combination of two points in C distinct from
x

6 ∃x1, x2 ∈ C \ {x}, λ ∈ (0, 1) s.t. x = λx1 + (1− λ)x2.

See Figure 11 for an illustration of this concept.

Theorem 4.6 (Minkowski’s Theorem). If P ⊂ Rn is a polyhedron and bounded,
then P is a polytope, that is, P has a finite setX of extreme points, and P = conv(X).

Proof. See problem sheet.

35

4.3 Alternative Formulations of IP Problems B6.3 MT 2021, Oxf. Math. Inst.

Figure 12: Relaxation of a MIP.

Figure 13: The feasible set is the intersection of the formulation with the integer
lattice.

4.3 Alternative Formulations of IP Problems

Let us now consider the mixed integer programming problem

(MIP) max
(x,y)∈Rn+p

cTxx+ cTy y

s.t. Ax+By ≤ b
x ∈ Zn,

where A and B are matrices, and let us denote the set of feasible solutions of
(MIP) by

F :=
{

(x, y) ∈ Rn+p : Ax+By ≤ b, x ∈ Zn
}
.

If we drop the integrality constraints x ∈ Zn, the set of points that satisfy
the remaining constraints is a polyhedron:

P :=
{

(x, y) ∈ Rn+p : Ax+By ≤ b
}
.

See Figure 12 for an illustration.

Furthermore, we have F = P ∩ (Zn × Rp), as depicted in Figure 13

Definition 4.7 (Formulation of a MIP-feasible set). A polyhedron P ⊂ Rn+p is
called a formulation of a set F ⊆ Zn × Rp if

P ∩
(
Zn × Rp

)
= F .

36

4.3 Alternative Formulations of IP Problems B6.3 MT 2021, Oxf. Math. Inst.

Figure 14: Alternative formulations of the same MIP.

A formulation of Problem (MIP) is any formulation of its feasible set F .

Example 4.8 (Alternative formulations). Consider the polyhedra

P1 = {x ∈ R4 : 0 ≤ x ≤ 1, 83x1 + 61x2 + 49x3 + 20x4 ≤ 100},
P2 = {x ∈ R4 : 0 ≤ x ≤ 1, 4x1 + 3x2 + 2x3 + x4 ≤ 4},
P3 = {x ∈ R4 : 0 ≤ x ≤ 1, 4x1 + 3x2 + 2x3 + x4 ≤ 4, x1 + x2 + x3 ≤ 1, x1 + x4 ≤ 1}.

Then the IPs

(IPi) max
x∈Z4

cTx

s.t. x ∈ Pi

all describe the same mathematical optimisation problem for i = 1, 2, 3, because all
three polyhedra are formulations of the same feasible set

F = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)}

Algorithmically, however, Formulation 3 is easier to solve than Formulation 2, and the
latter is easier to solve than Formulation 1, because P3 ⊂ P2 ⊂ P1.

Let us verify these claims: If x ∈ P1 ∩ {0, 1}4, then dividing 83x1 + 61x2 +
49x3 + 20x4 ≤ 100 by 20 1

3 yields

4.08x1 + 3x2 + 2.41x3 + 0.98x4 ≤ 4.92,

and since x4 ≤ 1, adding 0.02x4 yields

4.08x1 + 3x2 + 2.41x3 + x4 ≤ 4.94.

37

4.3 Alternative Formulations of IP Problems B6.3 MT 2021, Oxf. Math. Inst.

Since all xi ≥ 0, rounding down the coefficients in the l.h.s. can only render the
inequality more satisfied,

4x1 + 3x2 + 2x3 + x4 ≤ 4.94.

Seen as all xi are integers, the l.h.s must be integer, hence we can round down
the r.h.s.,

4x1 + 3x2 + 2x3 + x4 ≤ 4.

This shows P1 ∩ {0, 1}4 ⊆ P2 ∩ {0, 1}4. Moreover, x ∈ P2 implies (multiplying
4x1 + 3x2 + 2x3 + x4 ≤ 4 by 25),

100x1 + 75x2 + 50x3 + 25x4 ≤ 100,

and using xi ≥ 0,
83x1 + 61x2 + 49x3 + 20x4 ≤ 100,

whence x ∈ P1. Therefore, P2 ⊂ P1 and P2 ∩ {0, 1}4 ⊆ P1 ∩ {0, 1}4, which
implies

P1 ∩ {0, 1}4 = P2 ∩ {0, 1}4.

Next, If x ∈ P2 ∩ {0, 1}4, then 4x1 + 3x2 + 2x3 + x4 ≤ 4, thus at most
one of x1, x2, x3 can be equal to 1, and at most one of x1, x4 can be equal to 1.
Therefore,

x1 + x2 + x3 ≤ 1,

x1 + x4 ≤ 1,

so that x ∈ P3. This shows that P2 ∩ {0, 1}4 ⊆ P3 ∩ {0, 1}4. It is also immediate
that P3 ⊂ P2, and hence, P3 ∩ {0, 1}4 ⊆ P2 ∩ {0, 1}4. Therefore,

P2 ∩ {0, 1}4 = P3 ∩ {0, 1}4.

Definition 4.9 (Tigher formulation). If two formulations P1, P2 of the feasible set
F of an IP or MIP satisfy P2 ⊂ P1, we say that P2 is a tighter formulation than P1.

Definition 4.10 (Ideal formulation). If a formulationP of the feasible set F satisfies
P = conv(F), then P is called an ideal formulation. See Figure 15 for an illustration
of this concept.

Example 4.11 (Ideal formulation). Formulation P3 of the previous example is an
ideal formulation of F .

Theorem 4.12 (Ideal formulations are solved by LP relaxation). Let

(IP) z = max
x

cTx

s.t. Ax = b

x ≥ 0

xj ∈ Z, (j = 1, . . . , n)

38

4.3 Alternative Formulations of IP Problems B6.3 MT 2021, Oxf. Math. Inst.

c

Figure 15: An ideal formulation.

be an IP given with an ideal formulation P = {x : Ax = b, x ≥ 0}, and let x∗ be
an optimal basic solution (one found by application of the simplex algorithm) of the LP
relaxation

(LP) w = max
x

cTx

s.t. Ax = b

x ≥ 0.

Then x∗ is also an optimal solution of (IP).

Proof. Since (LP) is a relaxation of (IP), we already know that z ≤ w, so all we
need to establish is that x∗ is feasible for (IP), that is, it takes integer values,
and optimality follows automatically. Since by assumption P = conv(F), each
extreme point x̃ of P is in F , and thus x̃ is integer valued. It therefore suffices
to prove that x∗ is an extreme point of P .

Since x∗ is an optimal basic solution, it is a basic feasible solution, and it
thus suffices to prove that any basic feasilbe solution x̃ ofP is an extreme point.
Let x̃ be a basic feasible solution with basis B and non-basis N , that is, x̃B =
A−1B b and x̃N = 0. Suppose that

x̃ = λx1 + (1− λ)x2 (18)

for some x1, x2 ∈ P and λ ∈ (0, 1). We have x1N , x
2
N ≥ 0 and 0 = x̃N =

λx1N + (1 − λ)x2N , whence x1N = x2N = 0. It follows that b = Axi = ABx
i
B , so

that xiB = A−1B b = x̃B for (i = 1, 2). We have shown that x1 = x2 = x̃ for all
representations of the form (18), which shows that x̃ is an extreme point.

39

B6.3 MT 2021, Oxf. Math. Inst.

5 Lecture 5: Total Unimodularity

5.1 Totally Unimodular Matrices

We consider the IP

(IP) max
x
{cTx : Ax = b, x ≥ 0, x ∈ Zn}

and ask the question whether we have a chance to recognise if

P = {x ∈ Rn : Ax = b, x ≥ 0}

is an ideal formulation, in which case we are in the fortuitous situation that (IP)
is solved by its LP relaxation. While this is difficult to decide in general, there
exists at least an important family of cases where this is possible:

Definition 5.1 (Totally unimodular matrix). A matrix A ∈ Rm×n is called totally
unimodular if every square non-singular submatrix of A has determinant ±1.

Lemma 5.2 (Extreme point implies basic feasible). Each extreme point of P is a
basic feasible solution.

Proof. See problem sheet.

Theorem 5.3 (Total unimodularity implies integrality I). If the constraint matrix
A of problem (IP) is totally unimodular and b is integer valued, then every extreme
point of the formulation P is integer valued.

Proof. W.l.o.g., we assume that the rows of A are linearly independent. By the
Lemma, every extreme point x̃ is a basic feasible solution, and thus there exists
a basis B = {j1, . . . , jm} and non-basis N such that x̃N = 0 and

ABx̃B = b.

The nonbasic components x̃N are clearly integer valued, and using Cramer’s
Rule, we have

x̃jk =
det(AkB)

det(AB)
,

where AkB = [Aj1 ... Ajk−1
b Ajk+1

... Ajm]. Since AkB has integer components,
we have det(AkB) ∈ Z, and since det(AB) = ±1, it follows that x̃B is integer
valued.

5.2 Total Unimodularity Theory

We can easily extend Theorem 5.3 to polyhedra in inequality constrained form:

40

5.2 Total Unimodularity Theory B6.3 MT 2021, Oxf. Math. Inst.

Theorem 5.4 (Total unimodularity implies integrality II). If A is TU, then for all
b ∈ Zm, all extreme points of the polyhedron P(b) := {x ∈ Rn : Ax ≤ b, x ≥ 0} are
integer valued.

Proof. IfA is TU, then Â = [A I] is TU, so that by Theorem I, the extreme points
of

P ′(b) :=
{
z ∈ Rn+m : Âz = b, z ≥ 0

}
are integer valued. Let ΠRn : z = (x, s) ∈ Rn+m 7→ x be the projection onto the
first n components of the variables z. Then P(b) = ΠRnP ′(b) , and all extreme
points of P(b) are projections of extreme points of P ′(b). Therefore, the extreme
points of P(b) are also integer valued.

The following is a near-converse result:

Theorem 5.5 (Integrality implies total unimodularity). If A ∈ Zm×n is such that
all extreme points of the polyhedron P(b) := {x ∈ Rn : Ax ≤ b, x ≥ 0} are integer
valued for all b ∈ Zm, then A is TU.

Proof. Let Â = [A I]. We will prove in one of the problem sheets that all extreme
points of

P ′(b) =
{
z ∈ Rn+m : Âz = b, z ≥ 0

}
are integer valued. Let AI,J be an arbitrary invertible square submatrix of A,
corresponding to row indices I and column indices J . Let

B = J ∪ {n+ i : i /∈ I},

then ÂB is an invertible m × m submatrix of Â. If rows I of matrix ÂB are
permuted into the top position by left multiplication with appropriate permu-
tation matrices P1, P2, it is of the form

P1ÂBP2 =

[
AI,J 0
? I

]
.

This process is illustrated in Figure 16. Hence det(ÂB) = ±det(AI,J), so that
det(AI,J) = ±1 if and only if det(ÂB) = ±1.

Let ei be the i-th canonical unit vector in Rm, so that

1 :=

m∑
i=1

ei =
[
1 . . . 1

]T
,

and let

δ =

⌈
max
k,`

∣∣∣∣(Â−1B)
k,`

∣∣∣∣⌉ .
41

5.2 Total Unimodularity Theory B6.3 MT 2021, Oxf. Math. Inst.

Figure 16: The permutation required in the proof of Theorem 5.5.

Then
bi = δ · ÂB1 + ei,

is an integer vector ∀i. The basic solution associated with the basis B and the
r.h.s. bi is

xB = Â−1B bi = δ · 1 + Â−1B ei ≥ 0, xN = 0,

so it is basic feasible and hence an extreme point of P ′.

⇒xB ∈ Zm,

⇒
(
Â−1B

)
i

= Â−1B ei = xB − δ · 1 ∈ Zm,

⇒Â−1B =
[
Â−1B e1 . . . Â−1B em

]
∈ Zm×m,

⇒det
(
Â−1B

)
∈ Z,

⇒det
(
ÂB

)
,det

(
ÂB

)−1
∈ Z,

⇒det
(
ÂB

)
∈ {±1}.

42

5.3 Practical Tools to Recognise TU matrices B6.3 MT 2021, Oxf. Math. Inst.

5.3 Practical Tools to Recognise TU matrices

Verifying that a given matrix is TU seems a task of complexity exponential in
the size of the matrix.

There are two categories of simple tools to recognise special cases:

• Rules by which small TU matrices can be assembled into larger ones. By
applying the inverse of these rules, we may be able to recognise how
to decompose a matrix into smaller parts whose total unimodularity is
computationally cheaper to verify.

• Sufficient criteria that can easily be checked may allow us to identify
some important families of TU matrices.

The following rules are easy to prove: A ∈ Rm×n is TU if and only if any of
the following matrices are TU,

i) AT,

ii) [A −A],

iii) A · P , where P is a n× n permutation matrix

iv) P ·A, where P is a m×m permutation matrix,

v)
[
A J1
J2 0

]
, with Ji = Pi

[
I 0
0 0

]
Qi, I an identity matrix, 0 a block of zeros, and

Pi, Qi permutation matrices of appropriate size.

Example 5.6 (TU matrix). The following matrix is TU,

A =

1 0 0 −1
1 1 −1 −1
0 0 1 0

 .
Indeed, it is trivial to check that

[
1 0
1 1] is TU. By application of ii),[
1 0 −1 0
1 1 −1 −1

]
.

is TU, and by application of v), 1 0 −1 0
1 1 −1 −1
0 0 0 1


is TU. By permuting the last two columns we find that A is TU.

43

5.4 Another Sufficient Condition for TU B6.3 MT 2021, Oxf. Math. Inst.

Definition 5.7 (Consecutive ones). A 0, 1-valued matrix A has the consecutive
ones property if the rows can be ordered so that the 1s in each column appear consec-
utively.

Theorem 5.8 (Consecutive ones implies TU). If A ∈ {0, 1}m×n has the consecu-
tive ones property, then A is TU.

Proof. See problem sheet.

Example 5.9 (Consecutive ones). The following matrix has the consecutive ones
property:

A =


0 0 1 0 0 1 0
1 0 1 0 0 0 1
0 1 1 0 1 0 1
0 1 1 0 1 0 1
0 1 0 0 1 0 1


Example 5.10 (Workforce planning). Matrices with the consecutive ones property
occur naturally in workforce planning problems:

• Workers are assigned to shifts consisting of consecutive time periods in periods
i = 1, . . . ,m. There are thus at most (m+1

2) possible shifts j = 1, . . . , n.

• Hiring for shift j costs cj per worker.

• In period i at last di workers are needed to operate the machinery.

• How many workers xj to hire for each shift so as to minimise the total cost?

min
x∈Rn

n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≥ di, (i = 1, . . . ,m)

xj ≥ 0, (j = 1, . . . , n)

xj ∈ Z, (j = 1, . . . , n).

Each column of A = (aij) is of the form [0 ... 0 1 ... 1 0 ... 0]T because all shifts must
consist of a set of consecutive time periods. Therefore, the matrix A is TU.

5.4 Another Sufficient Condition for TU

Theorem 5.11 (Sufficient condition). Let A = [aij] be a matrix such that

i) aij ∈ {+1,−1, 0} for all i, j.

44

5.5 Application to Graph Problems B6.3 MT 2021, Oxf. Math. Inst.

ii) Each column contains at most two nonzero coefficients,

m∑
i=1

|aij | ≤ 2 (j ∈ [1, n]).

iii) The set M of rows can be partitioned into (M1,M2) such that each column j
containing two nonzero coefficients satisfies∑

i∈M1

aij −
∑
i∈M2

aij = 0.

Then A is totally unimodular.

Proof. The proof is by contradiction, assuming that A is not TU.

Let B be a smallest submatrix of A such that det(B) /∈ {0,+1,−1}. Then
all columns of B contain exactly two nonzero coefficients, for else there exist
permutation matrices P1, P2 such that

P1BP2 =

[
±1 ∗
0 C

]
,

and then det(C) = ±det(B) /∈ {0,+1,−1}, and C is the row permutation of a
strict submatrix of B, contradicting the choice of B. E

Because of iii), adding the rows of B with indices in M1 and subtracting the
rows with indices in M2 yields the zero vector, showing that the rows of B are
linearly dependent and det(B) = 0, in contradiction to the choice of B. E

5.5 Application to Graph Problems

Definition 5.12 (Graph). A graph G = (V,E) consists of a finite set of vertices (or
nodes) V and a finite collection of edges E ⊂ {{v, w} : v, w ∈ V } consisting of
unordered pairs of vertices, referred to as the heads or endpoints of the edge.

If v is a head of e, we say that e and v are incident to one another.

An edge e ∈ E is called a loop at v ∈ V if both heads of e equal v.

The vertex-edge incidence matrix of G is the matrix 0,±1-valued matrix

A(G) = (Av,e(G))v∈V,e∈E ,

Av,e(G) =


1 if v is one of two distinct heads of e,
2 if e is a loop at v,
0 otherwise.

Definition 5.13 (Bipartite graph). A graph G is bipartite if V = V1∪̇V2 is a parti-
tion and E ⊂ {{v, w} : v ∈ V1, w ∈ V2}.

45

5.5 Application to Graph Problems B6.3 MT 2021, Oxf. Math. Inst.

Figure 17: The graphs of Example 5.14.

Example 5.14 (Graph and bipartite graph). The drawings of Figure 17 give an
example of a graph and a bipartite graph with incidence matrices

A(G1) =


1 1 0 0 0 0 0 0
1 0 0 0 1 2 1 0
0 0 0 1 0 0 1 2
0 0 1 1 0 0 0 0
0 1 1 0 1 0 0 0

 A(G2) =



1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 0 0 1 0 0



Definition 5.15 (Digraph). A graphG is a digraph (directed graph) ifE ⊂ {(v, w) :
v, w ∈ V } consists of ordered pairs, giving each edge (or arc) a direction from its tail
v to its head w. The vertex-edge incidence matrix is then defined as

Av,e(G) =


1 if v is the head of e,
−1 if v is the tail of e,
0 if e is a loop at v,
0 otherwise.

Example 5.16 (Digraph). The graph of Figure 18 is a digraph with incidence matrix

A(G3) =


0 −1 0 0 0 0
0 0 0 −1 1 −1
0 1 −1 1 0 0
0 0 1 0 −1 1



Theorem 5.17 (Incidence matrix of bipartite graph implies TU). The vertex-edge
incidence matrix of any bipartite graph is TU.

46

5.5 Application to Graph Problems B6.3 MT 2021, Oxf. Math. Inst.

1

2

3

4

5

6

Figure 18: The graph of Example 5.16.

47

5.5 Application to Graph Problems B6.3 MT 2021, Oxf. Math. Inst.

Proof. Each column of A(G) contains exactly two nonzero components, a 1 for
some v ∈ V1, and a 1 for some w ∈ V2. Therefore, the sufficient criterion of the
above theorem applies for the choice M1 = V1, M2 = V2.

Theorem 5.18 (Incidence matrix of digraph implies TU). The vertex-edge inci-
dence matrix of any digraph is TU.

Proof. Each column A:,e(G) corresponding to a loop is a zero vector. If e is not
a loop, then A:,e(G) contains exactly two nonzero components, a +1 for the
head, and a −1 for the tail. Therefore, the sufficiency theorem applies with M1

= M , M2 = ∅.

Example 5.19 (Shortest Path Problem). • Given is a digraph G = (V,E) with
nonnegative arc lengths ce for all e ∈ E.

• Two nodes s, t ∈ V are marked.

• Find a shortest path from s to t in G.

For each e ∈ E, let xe = 1 if e lies along the path taken, and xe = 0 otherwise.

For each v ∈ V , let bv = 1 if v = s, bv = −1 if v = t, and bv = 0 otherwise.

We write V +(v), V −1(v) for the successor and predecessor nodes of v.

(SP) z = min
∑

(i,j)∈E

cijxij

s.t.
∑

j∈V +(s)

xsj −
∑

j∈V −(s)

xjs = 1

∑
j∈V +(t)

xtj −
∑

j∈V −(t)

xjt = −1

∑
j∈V +(i)

xij −
∑

j∈V −(i)

xji = 0 (i ∈ V \ {s, t})

0 ≤ xij ≤ 1 ((i, j) ∈ E)

x ∈ Z|E|.

In matrix form, we now have

(SP) min
∑
e∈E

cexe

s.t. A(G)x = b,

0 ≤ xe ≤ 1, (e ∈ E),

xe ∈ Z, (e ∈ E).

The constraint matrix of (SP) (reformulated in inequality constrained form) is [AT,−AT, I]T,
in which A = A(G) is the vertex-edge incidence matrix of a digraph, hence the model
is TU and may be solved via LP relaxation.

48

5.5 Application to Graph Problems B6.3 MT 2021, Oxf. Math. Inst.

1

0

0

0

−1

3

2

1
1

1
1

1

1
1

0.5

1

1

1

2

Figure 19: Shortest path problem as a network flow problem.

Note: (SP) has an interpretation as an s-t flow problem with capacities 1 on
each edge and integrality constraints on the xe, with flow conservation con-
straints at each vertex. See Figure 19 for an illustration.

Example 5.20 (Assignment Problem). The problem lives in a bipartite graph G =

49

5.5 Application to Graph Problems B6.3 MT 2021, Oxf. Math. Inst.

(V1, V2, E) with V1 = {i1, . . . , in} workers, V2 = {j1, . . . , jn} jobs, E = V1 × V2.

min
x∈Rn×n

n∑
i=1

n∑
j=1

cijxij

s.t.
n∑
j=1

xij = 1 for i = 1, . . . , n,

n∑
i=1

xij = 1 for j = 1, . . . , n,

xij ∈ {0, 1} for i, j = 1, . . . , n.

Reformulating the problem in terms of the vertex-edge incidence matrix A(G),

min
x∈Rn×n

∑
e∈E

cexe

s.t. A(G)x = 1,

0 ≤ xe ≤ 1, (e ∈ E),

xe ∈ Z, (e ∈ E),

we recognise the problem as totally unimodular.

50

B6.3 MT 2021, Oxf. Math. Inst.

6 Lecture 6: Submodularity

6.1 The Maximum Weight Forest Problem

Definition 6.1 (Subgraph). A subgraph of a graph G = (V,E) is a graph G′ =
(V ′, E′) such that V ′ ⊆ V and E′ ⊆ E ∩ {{u, v} : u, v ∈ V ′}.

Definition 6.2 (Forest). A forest in a graphG = (V,E) is a subgraphG′ = (V ′, E′)
that contains no cycles, that is, every pair of nodes are connected via at most one path
in G′.

Example 6.3 (Forests). The red edges in the following graphs form forests.

Let G = (V,E, c) be a graph with n = |V | vertices and m = |E| edges,
endowed with a set of edge weights ce ∈ R for every e ∈ E.

Definition 6.4 (MWF). The Maximum Weight Forest Problem finds a forest of max-
imal total weight in G,

(MWF) max

{∑
e∈E′

ce : E′ ⊆ E s.t. G′ = (V,E′) is a forest

}
.

We will later reformulate this combinatorial optimisation problem as an
IP and see that the following O(n + m logm)-time algorithm solves (MWF) to
optimality.

Algorithm 6.5 (Greedy MWF).

51

6.2 Submodular functions B6.3 MT 2021, Oxf. Math. Inst.

// initialisation
order edges c1 ≥ · · · ≥ cm by nonincreasing weights ;
set F 0 := ∅;
initialise function cycles;
// body
for i = 1, . . . ,m do

if ci ≤ 0 then
return “F i−1 optimal”;

else if F i−1 ∪ {ei} contains no cycle then
F i := F i−1 ∪ {ei};

else
F i := F i−1;

end
if |F i| = n− 1 or i = m then

return “F i optimal”;
end

end

Notes:

• n− 1 is the maximal possible cardinality of a forest.

• The second step in the body requires checking if adding the edge et cre-
ates a cycle, which can be checked by calling Function 6.6 below.

Function 6.6 (Cycles).
// initialisation
create lists (connected components) L1 = {v1}, . . . , Ln = {vn};
create pointers v 7→ L(v) to lists;
// input
e = {v, w};
// body
if L(v) = L(w) then

return “creates cycle”
else

merge L(v) and L(w);
return “creates no cycle”;

end

6.2 Submodular functions

Definition 6.7 (Submodularity). Let P := {A : A ⊆ {1, . . . , n}} for some n ∈ N.
A function f : P → R is called

i) submodular if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B), ∀A,B ∈P,

52

6.3 Submodular Optimisation B6.3 MT 2021, Oxf. Math. Inst.

ii) non-decreasing if

f(A) ≤ f(B) ∀A ⊆ B ∈P.

Example 6.8 (Submodularity).

• f : A 7→ |A| is submodular non-decreasing.

• Let {v1, . . . , vn} ⊂ V be vectors in a vector space V . Then

f : A 7→ rank({vi : i ∈ A})

is submodular non-decreasing, where rank({vi : i ∈ A}) := dim(span{vi :
i ∈ A}).

• Let {v1, . . . , vn} be a list of training samples (images, audio files, texts, . . .),
Gi ∈P (i = 1, . . . , k) a list of groups of samples {vi : i ∈ Gi}, and h : R+ →
R+ a concave non-decreasing function. Then

f : A 7→
k∑
i=1

h (|Gi ∩A|)

is a submodular non-decreasing function (structured diversity function used in
machine learning, image segmentation, etc.).

6.3 Submodular Optimisation

Definition 6.9 (Submodular Polyhedron). Let f be a non-decreasing submodular
function for which f(∅) = 0. The submodular polyhedron associated with f is
defined by

P (f) =
{
x ∈ Rn : x ≥ 0,

∑
j∈S

xj ≤ f(S), ∀S ∈P \ {∅}
}
.

Given a vector c ∈ Rn, the submodular optimisation problem associated with f
and c is given by

(SOP) max{cTx : x ∈ P (f)}.

Note that (SOP) is an LP with 2n − 1 constraints. Therefore, even for mod-
erately sized n the constraint matrix of (SOP) could not be held explicitly in the
memory of a computer, and the simplex method could not be applied.

Suprisingly, an efficient algorithm for solving (SOP) is nonetheless avail-
able:

53

6.3 Submodular Optimisation B6.3 MT 2021, Oxf. Math. Inst.

Algorithm 6.10 (Greedy SOP).
// initialisation
re-indexation s.t. c1 ≥ · · · ≥ cr > 0 ≥ cr+1 ≥ · · · ≥ cn, where r = n if cn > 0;
set S0 := ∅;
// body
for i = 1, . . . , r do

set Si = {1, . . . , i};
set xi = f(Si)− f(Si−1);

end
for j > r do

set xj = 0;
end

Lemma 6.11 (Law of diminishing returns). Let C ⊂ D ∈ P such that D \ C =
{d} is a singleton. Then for all T ∈P with d ∈ T , we have

f(D)− f(C) ≤ f(D ∩ T)− f(C ∩ T).

Proof. Applying the submodularity inequality to A = C and B = D ∩ T ,

f(C) + f(D ∩ T) = f(A) + f(B)

≥ f(A ∩B) + f(A ∪B)

= f(C ∩ T) + f(D), (since d ∈ T).

which proves the claim.

Theorem 6.12 (Greedy solution of SOP). The greedy algorithm terminates in O
(
n(wf+

log n)
)

time, where wf is the amount of work required per function evaluation of f ,
and its output x is an optimal solution for (SOP).

Proof. The complexity claim is immediate, as steps 2 and 3 take at most n · wf
time, and step 1 takes O(n log n) time.

Since f is nondecreasing, xi = f(Si)− f(Si−1) ≥ 0 (i = 1, . . . , r), and since
xi = 0 (i = r + 1, . . . , n), the nonnegativity constraints x ≥ 0 are satisfied.
Further, for all T ∈P ,∑
j∈T

xj =
∑

j∈T∩Sr

(
f(Sj)− f(Sj−1)

)
(by construction of x)

≤
∑

j∈T∩Sr

(
f(Sj ∩ T)− f(Sj−1 ∩ T)

)
(law of diminishing returns)

≤
∑
j∈Sr

(
f(Sj ∩ T)− f(Sj−1 ∩ T)

)
(f is non-decreasing)

= f(Sr ∩ T)− f(∅) ≤ f(T). (telescoping sum)

Therefore, x is (SOP)-feasible with objective value z∗ =
∑r
i=1 ci

(
f(Si)− f(Si−1)

)
.

54

6.4 Submodular Rank Functions B6.3 MT 2021, Oxf. Math. Inst.

To show optimality, we construct a dual feasible solution with dual objec-
tive value z∗. The dual of reads

(D) min
∑
S∈P

f(S) · yS

s.t.
∑
S:j∈S

yS ≥ cj (j = 1, . . . , n)

yS ≥ 0 ∀S ∈P.

For i = 1, . . . , r− 1 set ySi = ci − ci+1. Set ySr = cr, and set yS = 0 for all other
S ∈P . Then y is (D)-feasible, since yS ≥ 0 for all S ∈P , and furthermore for
j ≤ r, ∑

S:j∈S
yS =

r∑
i=j

ySi =

r−1∑
i=j

(ci − ci+1) + cr = cj ,

whereas for j > r, ∑
S:j∈S

yS = 0 ≥ cj .

The dual objective value at y is

r∑
i=1

f(Si)ySi =

r−1∑
i=1

f(Si)(ci − ci+1) + f(Sr)cr =

r∑
i=1

ci
(
f(Si)− f(Si−1)

)
= z∗,

as claimed.

6.4 Submodular Rank Functions

Definition 6.13 (Submodular rank function). f : P → R is called a submodular
rank function if the following are satisfied,

i) f is non-decreasing submodular

ii) f(∅) = 0,

iii) f(S ∪ {j})− f(S) ∈ {0, 1}, for all S ∈P and j /∈ S.

Example 6.14 (Submodular rank function). The following are examples of submod-
ular rank functions:

• Let {v1, . . . , vn} ⊂ V be vectors in a vector space V . Then

f : A 7→ rank({vi : i ∈ A})

is a submodular rank function.

55

6.4 Submodular Rank Functions B6.3 MT 2021, Oxf. Math. Inst.

• Let G = (V,E) be an undirected graph, and let

f : P(E)→ R,
A 7→ max

{
|F | : F ⊆ A, (V, F) is a forest

}
.

Then f is a submodular rank function.

Proposition 6.15 (Properties of submodular rank functions). If f is a submodular
rank function, then

i) f(A) ≤ |A| for all A ∈P ,

ii) If f(A) = |A| then f(B) = |B| for all B ⊂ A.

iii) Let xA be the incidence vector of A ∈ P , defined by xAj = 1 if j ∈ A and
xAj = 0 otherwise. Then xA ∈ P (f) if and only if f(A) = |A|.

Proof. i) Let A = {a1, . . . , a`} and Ak := {a1, . . . , ak}, (k = 1, . . . , `). Then

f(A) = f(A`) ≤ f(A`−1)+1 ≤ (f(A`−2)+1)+1 ≤ . . . ((. . . (f(∅)+1) . . .))+1 = ` = |A|.
(19)

ii) W.l.o.g. the elements of A are indexed so that B = Ak for some k < `.
If f(A) = |A|, then all inequalities in (19) must hold as equalities, and then
f(Ak) = |Ak| for all k. In particular, f(B) = |B|.

iii) If f(A) < |A| then
∑
j∈A x

A
j = |A| > f(A), and hence, xA /∈ P (f).

Conversely, if f(A) = |A|, then for all S ∈P(N),∑
j∈S

xAj = |A ∩ S| ii)= f(A ∩ S) ≤ f(S).

Hence, xA ∈ P (f), as claimed.

56

B6.3 MT 2021, Oxf. Math. Inst.

7 Lecture 7: Matroids

7.1 Submodular Rank Functions Continued

Lemma 7.1 (Closure). Let f : P → R be a submodular rank function. If A,B ∈P
are such that f(A ∪ {e}) = f(A) for all e ∈ B \A, then

f(A ∪B) = f(A).

Proof. See Problem Sheet 2.

Definition 7.2 (Independent set). Let N := {1, . . . , n} be a finite set and f :
P(N) :→ N a submodular rank function. A set A ∈ P(N) is called independent
under f if f(A) = |A|.

Proposition 7.3 (Properties of independent sets). The set I = {A ∈ P : |A| =
f(A)} of independent sets satisfies

i1) ∅ ∈ I,

i2) if A ⊂ B and B ∈ I(M), then A ∈ I(M),

i3) if A,B ∈ I and |B| > |A|, then ∃ e ∈ B \A such that A ∪ {e} ∈ I.

Proof. Property i1) follows from Part i) of Proposition (Properties of submodu-
lar rank functions), while i2) follows from Part ii). If i3) doesn’t hold, then by
Lemma (Closure), f(A ∪B) = f(A), and then

|B| > |A| = f(A) = f(A ∪B) ≥ f(B) = |B|. E

7.2 Matroids

Definition 7.4 (Matroid). A matroid M =
(
E(M), I(M)

)
consists of

• a finite set E(M) (the ground set of M),

• a subset I(M) of the power set P
(
E(M)

)
= {A : A ⊆ E(M)} that satisfies

properties

i1) ∅ ∈ I,
i2) if A ⊂ B and B ∈ I(M), then A ∈ I(M),
i3) if A,B ∈ I and |B| > |A|, then ∃e ∈ B \A such that A ∪ {e} ∈ I.

The rank function rM : P
(
E(M)

)
→ R of M is defined by

A 7→ max {|X| : X ⊆ A, X ∈ I(M)} .

57

7.2 Matroids B6.3 MT 2021, Oxf. Math. Inst.

Notes:

• W.l.o.g., E(M) = {1, . . . , n}.

• Axioms i1) – i3) generalise the properties of sets of linearly independent
vectors.

• Matroids generalise aspects of both matrices and graphs.

Example 7.5 (Linear matroid). Let A = [v1 ... vn] be a matrix over a field F (e.g.
F = R). Let

E(M) = {1, . . . , n},
I(M) := {X ⊆ {1, . . . , n} : {vi : i ∈ X} linearly independent}.

Then M =
(
E(M), I(M)

)
is the linear matroid of A, and we say that A is a repre-

sentation of M over F .

Example 7.6 (Graphic matroid). LetG = (V,E) be a graph, and letE(M) = E and
I(M) be the set of forests in G. Then M =

(
E(M), I(M)

)
is the graphic matroid

of G.

Theorem 7.7 (Matroid induced by submodular rank function). LetE := {1, . . . , n},
f : P(E) → R a submodular rank function and I := {A ∈ P(E) : f(A) = |A|}.
Then M = (E, I) is a matroid with E(M) = E, I(M) = I and rank function
rM = f .

Proof. Proposition (Properties of independent sets) shows that M = (E, I) is a
matroid. Furthermore, the rank function associated with M is

rM : A 7→ max {|X| : X ⊆ A, X ∈ I} . (20)

Let XA be a maximising independent subset of A in (20). Then f(XA) = |XA|,
and for all e ∈ A \XA, we have XA ∪ {e} /∈ I and thus,

f(XA) ≤ f(XA ∪ {e}) < |XA ∪ {e}| = |XA|+ 1 = f(XA) + 1,

which implies f(XA ∪ {e}) = f(XA). By Lemma (Closure), this implies

f(A) = f(XA ∪A) = f(XA) = |XA| = rM (A),

as claimed.

Theorem 7.8 (Submodular rank function induced by matroid). LetM = (E(M), I(M))
be a matroid. Then rM is a submodular rank function with induced matroid M .

Proof. See Problem Sheet 2.

58

7.3 The MISP B6.3 MT 2021, Oxf. Math. Inst.

7.3 The MISP

Definition 7.9 (MISP). Let M =
(
E, I

)
be a matroid, and let each element e of E

be associated with a weight ce. The maximum weight independent set problem
(MISP) associated with M and c is given by

(MISP) max

∑
j∈A

cj : A ∈ I

 .

Theorem 7.10 (Greedy solution of MISP). The greedy algorithm applied to f = rM
and weights c solves (MISP) to optimality.

Proof. By Theorem 7.8, rM is a submodular rank function, and by Theorem
(Greedy solution of SOP), the greedy algorithm solves the submodular optimi-
sation problem associated with rM and c to optimality,

(SOP) max

∑
j∈N

cjxj : x ∈ P (rM)

 .

Since rM is a rank function, the output x∗ of the greedy algorithm applied to
(SOP) satisfies x∗j ∈ {0, 1} for all j, by way of how the greedy algorithm is
constructed: xi = rM (Si)− rM (Si−1), (i = 1, . . . , r).

Furthermore, it follows from Proposition 6.15 that

(MISP) max

∑
j∈A

cj : A ∈ I

 = max

∑
j∈N

xAj cj : A ∈ I


= max

∑
j∈N

xjcj : x ∈ {0, 1}n, x ∈ P (rM)

 .

This shows that (SOP) is the LP relaxation of (MISP). Since the optimal solution
x∗ of (SOP) is (MISP)-feasible, it follows by relaxation that x∗ is also (MISP)-
optimal.

Example 7.11 (Greedy solution of MWF). Let G = (V,E) be an undirected graph,
and let

rM : P(E)→ R,
A 7→ max

{
|F | : F ⊆ A, (V, F) is a forest

}
.

Then rM is a submodular rank function. The associated set of independent sets I is
the set of forests in G, and the associated maximum weight independent set problem
becomes the maximum weight forest problem for G.

59

7.4 Lovasz Extension B6.3 MT 2021, Oxf. Math. Inst.

Step 2.ii) of the greedy algorithm for (SOP) reads

xi = rM (Si)− rM (Si−1) =

{
1 if F i−1 ∪ {ei} is a forest,
0 if F i−1 ∪ {ei} contains a cycle,

where F i denotes the forests built in the greedy algorithm for (MWF), which satisfy
F i ∈ arg max{|F | : F ⊆ Si, (V, F) is a forest}.

Furthermore, for j > r, the greedy algorithm for (SOP) sets xj = 0, which co-
incides with the effect of the stopping criterion of step 2.i) of the greedy algorithm for
(MWF). Stopping criterion 2.iii) of the latter applies because if the main loop were con-
tinued, step 2.ii) would always result in the detection of a cycle, and hence F i = F i−1,
and hence xi = 0. Therefore, the greedy algorithm for (SOP) reduces exactly to the
greedy algorithm for (MWF) in this case.

Definition 7.12 (Matroid polytope). Let M = (E(M), I(M)) be a matroid. The
matroid polytope associated with M is defined as

PI(M) := conv
(
xA ∈ {0, 1}n : A ∈ I(M)

)
.

Corollary 7.12.1 (Matroid polytope and submodular polyhedron). Let f be a
submodular rank function. Then the submodular polyhedron P (f) equals the matroid
polytope of the matroid associated with f .

Proof. By Proposition (Properties of submodular rank functions) iii), x ∈ {0, 1}n ∈
P (f) if and only if x = xA for someA ∈ I, and since P (f) is convex, this shows
that

PI(M) ⊆ P (f).

Furthermore, Theorem (Greedy solution of MISP) shows that every linear
objective function is maximised over P (f) by a point in PI(M). Hence, all ex-
treme points of P (f) are in PI(M), and

P (f) ⊆ PI(M).

7.4 Lovasz Extension

Lemma 7.13 (Ordered decomposition). Every nonzero vector x ∈ [0, 1]n has a
unique decomposition x =

∑m
j=1 λjx

j such that m ≤ n, λj > 0, (j = 1, . . . ,m),
xj ∈ {0, 1}n, (j = 1, . . . ,m), and

x1 ≥ x2 ≥ · · · ≥ xm 6= 0.

60

7.4 Lovasz Extension B6.3 MT 2021, Oxf. Math. Inst.

Proof. The proof is by a constructive algorithm. We make the stronger claim
that m ≤ k(x) := |S(x)|, where S(x) := {i : xi > 0}| is the support set of x,
and that S(xm) (S(xm−1) (· · · (S(x1).

Let i∗ ∈ arg min{xi : i ∈ S(x)}. Set λ1 = xi∗ and x1 =
∑
i∈S(x) e

i. Then
S(x1) = S(x), and we have y := x− λ1x1 ∈ [0, 1]n with S(y) (S(x).

If k(y) = 0, we are done. Otherwise, 0 < k(y) < k(x), and by induction
there exists a unique decomposition y =

∑m
j=2 λjx

j with m − 1 ≤ k(y) ≤
k(x)− 1 and such that

S(xm) (S(xm−1) (· · · (S(x2) = S(y) (S(x1),

which proves that x1 ≥ x2, · · · ≥ xm and x =
∑m
j=1 λjx

j .

By definition of i∗, we must have λ1 = xi∗ for every decomposition x =∑m
j=1 λjx

j , so that λ1x1 is unique. Then y is unique, and by induction, the part∑m
j=2 λix

i is unique.

Definition 7.14 (Lovasz Extension). Let f : P({1, . . . , n})→ R be a submodular
non-decreasing function with f(∅) = 0. The Lovasz Extension of f is the function

fL : [0, 1]n → R,

x 7→
m∑
j=1

λjf(S(xj)),

where x =
∑m
j=1 λjx

j is the unique decomposition of Lemma (Ordered decomposition)
and S(xj) is the support of xj .

Theorem 7.15 (Convexity and integer minima of Lovasz Extension). The func-
tion fL is convex, piecewise linear, and attains its minimum over [0, 1]n at a point in
{0, 1}n.

Remark 7.16 (Minimisation of submodular functions). As a consequence, sub-
modular functions may be minimised using an algorithm that can minimise convex
piecewise linear functions, such as the subgradient algorithm (see Lecture 13). But we
note that fL consists of exponentially many linear pieces!

Proof. (Proof of Theorem 7.15) Let x ∈ [0, 1]n. We claim that fL(x) = w(x),
where

w(x) = max
z

{
n∑
i=1

xizi : z ∈ P (f)

}
. (21)

W.l.o.g. (after re-indexing), x1 ≥ x2 ≥ · · · ≥ xn. Let S0 = ∅ and Sj = {1, . . . , j}
for j = 1, . . . , n.

The proof of Theorem 6.12 shows that

w(x) =

n∑
i=1

xi (f(Tj)− f(Tj−1)) =

n∑
i=1

(xi − xi+1) f(Tj),

61

7.4 Lovasz Extension B6.3 MT 2021, Oxf. Math. Inst.

where xn+1 := 0 and Tj = {1, . . . , j}. Writing λj := xj − xj+1, we get the
decomposition

x =
∑

j:λj>0

λjx
Tj ,

where xTj is the indicator vector of the set Tj . By uniqueness this must be
the unique decomposition of x according to Lemma (Ordered decomposition).
Therefore, as claimed, we have

fL(x) =
∑

j:λj>0

λjf(Tj) = w(x).

The proof of Theorem 7.10 applied to the SOP (21) with objective weights x
shows that

arg max
z

{
n∑
i=1

xizi : z ∈ P (f)

}
∈ {0, 1}n,

so that by Proposition (Properties of rank functions),

fL(x) = max{zTx : z = xA, A ∈ I}

is a pointwise maximum of linear functions. The pointwise maximum of a
finite set of linear functions is convex and piecewise linear.

Finally, suppose fL is not minimised by an integer point, and let x∗ =
arg minx∈[0,1]n fL(x). Since fL(0) = f(∅) = 0, we have fL(x∗) < 0. Let
x∗ =

∑m
j=1 λjx

j be the decomposition of x∗ according to Lemma (Ordered
decomposition). Then λj > 0 and f(xj) ≥ 0, so that

0 > fL(x∗) =

m∑
j=1

λjf(xj) ≥ 0. E

62

B6.3 MT 2021, Oxf. Math. Inst.

Figure 20: Branch and bound splitting.

8 Lecture 8: Branch and Bound

8.1 Branch-and-Bound: A Divide and Conquer Strategy

LP based Branch-and-Bound is a divide-and-conquer strategy to solve any IP via
LP relaxation. We write

(F) z = max{cTx : x ∈P, x ∈ Zn}

for some formulation (polyhedron) P and feasible set F = P ∩ Zn and with
LP relaxation

(P) z = max{cTx : x ∈P},
yielding a dual bound z that we track. We also keep tracking a primal bound z
(may be −∞). The main idea of the method is a hierarchical splitting of F into
smaller subsets.

Specifically, we

1. solve (P) to find z, possibly find z,

2. split the feasible set so that F1∪F2 = F , but P1∪P2 (P , to guarantee
that z1, z2 < z,

3. if z2 ≥ z1, no need to split F1 (pruning),

4. repeat with a subproblem stored at another node.

63

8.2 Introductory Example B6.3 MT 2021, Oxf. Math. Inst.

8.2 Introductory Example

Example 8.1. For illustration, we will solve the IP instance

(F) z = max 4x1 − x2
s.t. 7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x ∈ Z2
+.

Step 1: Bounding (F). To obtain a dual bound, we solve the LP relaxation

(P) x = arg max 4x1 − x2
s.t. 7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x ≥ 0

of (F). Introducing slack variables x3, x4, x5 and applying the simplex algo-
rithm, we obtain the optimal tableau

1 0 1/7 2/7 0 20/7
0 1 0 1 0 3
0 0 -2/7 10/7 1 23/7
0 0 -4/7 -1/7 0 -59/7

We have z = 59/7, z = −∞.

To obtain a primal bound, we could try finding a feasible solution x̃ of (IP)
via a heuristic and set z = 4x̃1 − x̃2. We would also keep x̃ in memory as
incumbent. In this case, we did not produce a primal bound via a heuristic and
can use z = −∞ as a valid lower bound.

Key Idea 8.2 (Tightening Bounds). So far we know that

z ≤ z ≤ z.

In subsequent iterations we will produce improved primal bounds z ≤ z+ and im-
proved dual bounds z+ ≤ z such that

z+ ≤ z ≤ z+

sandwiches the optimal objective value z in a narrower interval.

Each time the primal bound z increases, a new best feasible solution of (F) has
been found, and we update the incumbent.

64

8.2 Introductory Example B6.3 MT 2021, Oxf. Math. Inst.

Should we ever encounter a situation where z = z, the incumbent must be an
optimal solution of (F), and we can stop.

Often, we run the algorithm on a fixed time budget and stop early. The bounds
then give an approximation guarantee, as the objective value z of the incumbent is at
most z− z away from optimal or, assuming positive objective values, the incumbent is
within a factor of z/z of optimal.

Step 2: Branching (F).

• z < z ⇒ (F) not soved to optimality.

• Fractional branching: x1 = 20/7 is not integer.

P1 = P ∩ {x : x1 ≤ b
20

7
c}, P2 = P ∩ {x : x1 ≥ d

20

7
e}.

More generally, we can pick any index j such that xj /∈ Z and set

F1 = F ∩ {x : xj ≤ bxjc},
F2 = F ∩ {x : xj ≥ dxje}.

Of course, futher down the tree we can use the same branching rule to subdi-
vide any Fj thus generated. In our case this leads to the two subproblems

(F1) z = max 4x1 − x2 (F2) z = max 4x1 − x2
s.t. 7x1 − 2x2 ≤ 14 s.t. 7x1 − 2x2 ≤ 14

x2 ≤ 3 x2 ≤ 3

2x1 − 2x2 ≤ 3 2x1 − 2x2 ≤ 3

x1 ≤ 2 x1 ≥ 3

x ∈ Z2
+, x ∈ Z2

+.

So far we obtained the partial enumeration tree of Figure 21. Nodes F1 and
F2 still need to be explored. We mark these nodes as active. The node F has
been processed and is inactive.

Step 3: Pick an active node. We pick active node (F1).

Note: P1 (P and x 6= P1 implies

z1 = max{cTx : x ∈P1} ≤ z,

and the inequality is strict in general.

More generally, upon solving the LP relaxations of the subproblems ob-
tained by up- and down-branching of a fractional variable, we will have

max{z[1], z[2]} ≤ z,

65

8.2 Introductory Example B6.3 MT 2021, Oxf. Math. Inst.

Figure 21: The partial enumeration tree.

since said variable would have to be allowed to take the fractional value for z
to be attained as objective value. This will ensure that z decreases.

Step 4: Bounding (F1). Need to solve the LP relaxation

(P1) z1 = max 4x1 − x2
s.t. 7x1 − 2x2 ≤ 14, x2 ≤ 3, 2x1 − 2x2 ≤ 3

x1 ≤ 2, x ≥ 0.

Can we use a warm start?

(P) x = arg max cTx (D) y = arg min bTy

s.t. Ax ≤ b s.t. ATy ≥ c
x ≥ 0 y ≥ 0

↓ ↓
(P1) max cTx (D1) min bTy

s.t. Ax ≤ b s.t. ATy ≥ c
x1 ≤ 2 y4 ≥ 0

x ≥ 0 y ≥ 0.

Note: x infeasible (y, y4 = 0) feasible

Add new constraint to tableau (blue row, new slack variable corresponding
to red column):

1 0 1/7 2/7 0 0 20/7
0 1 0 1 0 0 3
0 0 -2/7 10/7 1 0 23/7
1 0 0 0 0 1 2
0 0 -4/7 -1/7 0 0 -59/7

Eliminate basic variable x1 in new row:

66

8.2 Introductory Example B6.3 MT 2021, Oxf. Math. Inst.

1 0 1/7 2/7 0 0 20/7
0 1 0 1 0 0 3
0 0 -2/7 10/7 1 0 23/7
0 0 -1/7 -2/7 0 1 -6/7
0 0 -4/7 -1/7 0 0 -59/7

Apply dual simplex step to blue row: (−1/7)/(−2/7) < (−4/7)/(−1/7) ⇒
pivot on x4

1 0 1/7 2/7 0 0 20/7
0 1 0 1 0 0 3
0 0 -2/7 10/7 1 0 23/7
0 0 -1/7 -2/7 0 1 -6/7
0 0 -4/7 -1/7 0 0 -59/7

(−1/7)/(−2/7) < (−4/7)/(−1/7)⇒ pivot on x4, i.e. eliminate all but red coef-
ficient in column 4:

1 0 0 0 0 1 2
0 1 -1/2 0 0 7/2 0
0 0 -1 0 1 5 -1
0 0 1/2 1 0 -7/2 3
0 0 -1/2 0 0 -1/2 -8

Take another dual simplex step, pivoting on Row 3:

1 0 0 0 0 1 2
0 1 -1/2 0 0 7/2 0
0 0 -1 0 1 5 -1
0 0 1/2 1 0 -7/2 3
0 0 -1/2 0 0 -1/2 -8

1 0 0 0 0 1 2
0 1 0 0 -1/2 1 1/2
0 0 1 0 -1 -5 1
0 0 0 1 1/2 -1 5/2
0 0 0 0 -1/2 -6/2 -15/2

The re-optimised tableau yields the optimal solution of (P1),

z[1] =
15

2
,

(
x
[1]
1 , x

[1]
2

)
=
(
2,

1

2

)
.

Step 5: Branching. Fractional branching yields

F11 = F1 ∩ {x : x2 ≤ 0} = F1 ∩ {x : x2 = 0} (since x2 ≥ 0),
F12 = F1 ∩ {x : x2 ≥ 1}.

67

8.2 Introductory Example B6.3 MT 2021, Oxf. Math. Inst.

Figure 22: The updated partial enumeration tree.

We now arrive at the updated partial enumeration tree of Figure 8.2, and the
new list of active nodes is F11,F12,F2.

Step 6. Choose the active node F2. Using dual simplex, solve LP relaxation
(P2). We find P2 = ∅ ⇒ F2 = ∅. Prune by infeasibility.

Key Idea 8.3 (Pruning by bound). • Nodes whose bounds certify that they do
not contain an optimal solution need not be further processed.

• In particular, nodes with dual bound−∞ need not be processed further (pruning
by infeasibility).

Step 7. We arbitrarily choose the active node F12 and sove the LP relaxation
(P12) via dual simplex steps, yielding the optimal solution (x

[12]
1 , x

[12]
2) = (2, 1)

and optimal value z[12] = 7.

68

8.2 Introductory Example B6.3 MT 2021, Oxf. Math. Inst.

Figure 23: The partial enumeration tree.

Step 8. Since x[12] is integral, this is a feasible solution for (F1) and provides
a lower bound z[12] = 7. In fact, F12 can now be pruned by optimality. The
partial enumeration tree is now as in Figure 23.

Key Idea 8.4 (Pruning by optimality). Nodes whose bounds certify that their sub-
problem has been solved to optimality need not be processed any further.

Step 9: Updating the incumbent. We store (1, 2) as the best integer solu-
tion found so far and update the lower bounds z ← max(z, 7) = 7, z[1] ←
max(z[1], 7) = 7.

Step 10. Solve LP relaxation (P11) of only remaining active node F11. Dual
simplex yields optimal solution

(
x
[11]
1 , x

[11]
2

)
=
(
3
2 , 0
)

and optimal value z[11] =
6.

Since z[11] < z, we can prune F11 by bound and arrive at the partial enumer-
ation tree of Figure 24.

Step 11: Termination. There are no further active nodes left, and the al-
gorithm terminates, returning the optimal solution z = 7 and the maximiser
x = (2, 1) that achieves it.

69

B6.3 MT 2021, Oxf. Math. Inst.

Figure 24: The final partial enumeration tree.

9 Lecture 9: More on Branch and Bound

9.1 General Branch-and-Bound Principles

Proposition 9.1 (Divide and conquer). Consider the problem

z = max{cTx : x ∈ F},

where F denotes the set of feasible solutions (as we saw, F is usually defined implicitly
via constraints). If F can be decomposed into a union of simpler sets F = F1 ∪ · · · ∪
Fk and if

z[j] := max{cTx : x ∈ Fj} (j = 1, . . . , k),

then z = maxj z
[j].

Proof. F is a relaxation of Fj , so that z[j] ≤ z for all j, and hence, maxj z
[j] ≤ z.

Let x∗ be optimal for the master problem, i.e., x∗ ∈ F such that z = cTx∗. Then
x∗ ∈ Fi for some i, so that z = cTx∗ ≤ z[i] ≤ maxj z

[j].

Example 9.2 (Enumeration tree). Let F be the set of feasible tours of the travelling
salesman problem on a network of 4 cities. Let node 1 be the departure city.

F can be subdivided F = F(1,2) ∪F(1,3) ∪F(1,4) into the disjoint sets of tours
that start with an arc (1, 2), (1, 3) or (1, 4) respectively.

Each of the sets F(1,2), F(1,3) and F(1,4) can be further subdivided according to
the choice of the second arc, F(1,2) = F(1,2)(2,3) ∪F(1,2)(2,4) etc.

Finally, we see that each of these sets corresponds to a specific TSP tour and cannot
be further subdivided. We have found the enumeration tree of the TSP tours depicted
in Figure 25.

70

9.1 General Branch-and-Bound Principles B6.3 MT 2021, Oxf. Math. Inst.

Figure 25: The enumeration tree of the TSP example.

Proposition 9.3 (Bound propagation). Consider the problem

z = max{cTx : x ∈ F},

and let F = F1 ∪ · · · ∪Fk be a decomposition of its feasible domain into smaller sets.
Let z[j] ≤ z[j] ≤ z[j] be lower and upper bounds on z[j] = max{cTx : x ∈ Fj} for
all j. Then

z := max
j
z[j] ≤ z ≤ max

j
z[j] =: z

gives an upper and lower bound on z.

Proof. Since (F) is a relaxation of (Fj), we have z[j] ≤ z[j] ≤ z for all j, and
hence,

max
j
z[j] ≤ z.

On the other hand, by Proposition (Divide and conquer), we have

z = max
j
z[j] ≤ max

j
z[j].

Proposition 9.4 (Pruning by bound). A branch Fj can be pruned when z[j] ≤ z.

Proof. By construction of z, the incumbent x∗ (our best solution for the root
problem (F) thus far encountered) satisfies

cTx∗ = z ≥ z[j] ≥ cTx ∀x ∈ Fj .

Therefore, the incumbent cannot be improved by searching over Fj .

Proposition 9.5 (Pruning by infeasibility). If Fj = ∅, then the corresponding
branch can be pruned.

71

9.1 General Branch-and-Bound Principles B6.3 MT 2021, Oxf. Math. Inst.

Figure 26: Pruning in action.

Proof. This is a special case of pruning by bound in which z[j] = −∞.

Remark 9.6. It may not be obvious that Fj is empty, but this may be algorithmically
detected, e.g., by LP relaxation.

Proposition 9.7 (Pruning by optimality). When z[j] = z[j] for some j, then the
branch corresponding to Fj needs no further consideration.

Proof. z[j] = z[j] = z[j] certfies that we have solved this branch to optimality.
The optimal point of the branch has automatically become the incumbent if it
is the best solution found so far for the root problem.

72

9.2 The General Branch & Bound Framework B6.3 MT 2021, Oxf. Math. Inst.

9.2 The General Branch & Bound Framework

Data Specification 9.8 (General B&B).
// input
objective x 7→ f(x);
implicit description of feasible set x ∈ F of root problem
z = max{f(x) : x ∈ F};
// working data
list AN of active nodes;
global primal bound z ≤ z;
global dual bound z ≥ z;
incumbent x∗, i.e. best solution found so far;
subproblem primal bound z[j] ≤ z[j] := max{f(x) : x ∈ Fj};
subproblem dual bound z[j] ≥ z[j];
// outputs
global bounds z, z to provide certificate of optimality (when z = z) or
approximation guarantee;
incumbent x∗ as optimal solution (or solution with approximation guarantee
when z < z);

Methods 9.9 (General B&B).
// required methods
method to compute dual bounds by solving an easy problem

(Rj) z[j] = max{gj(x) : x ∈ Rj}

e.g., gj(x) ≥ f(x) ∀x ∈ Fj and Rj ⊃ Fj (relaxation);
branching rule to split Fj = Fj1 ∪ · · · ∪Fjk so that subproblems

(Fj) max{f(x) : x ∈ Fj}

all fall into the same problem class as root problem (F) to which above methods
apply;
// optional methods

heuristic to find y ∈ Fj and compute primal bounds z[j] = f(y);
selection rule for (Fj) ∈ AN;

73

9.3 LP Based Branch and Bound B6.3 MT 2021, Oxf. Math. Inst.

Algorithm 9.10 (General B&B).
AN = {(F)}; z = −∞; z = +∞; x∗ = NaN; // initialisation
while AN 6= ∅ do

choose (Fj) ∈ AN;
if z[j] ≤ z then

AN := (AN \ {(Fj})); // prune by bound
else

solve x[j] = arg max{gj(x) : x ∈ Rj}; // relaxation of (Fj)

z[j] := gj(x
[j]); // z[j] := −∞ if Rj = ∅

z := max{z[j] : (Fj) ∈ AN}; // update global upper
bound

if x[j] ∈ Fj then
y[j] := x[j];

else
attempt to find y[j] ∈ Fj via heuristic; // unassigned if

unsuccessful
end
z[j] := max(z[j], f(y[j])); // set f(y[j]) := −∞ if y[j]

unassigned

if z[j] > z then
x∗ := y[j]; // update incumbent

z := z[j]; // update global lower bound
end
if z[j] = z[j]; then

AN := (AN \ {Fj}); // prune by optimality resp.
infeasiblity

else
AN ← (AN \ {(Fj)}) ∪ {(Fj1), . . . , (Fjk)}; // branching

z[j`] := z[j], (` = 1, . . . , k); // child nodes inherit
dual bound

end
end

end

9.3 LP Based Branch and Bound

Data Specification 9.11 (LP based B&B).
// input
objective x 7→ cTx;
description of F via formulation P (polyhedron);

74

9.4 Adaptation to Specific Problems B6.3 MT 2021, Oxf. Math. Inst.

Methods 9.12 (LP based B&B).
// required methods

compute dual bounds z[j] = cTx[j] by solving LP relaxation

(Pj) x[j] = arg max{cTx : x ∈Pj};

branch on fractional variable x[j]i /∈ Z

Pj1 = Pj ∩
{
x : xi ≤ bx[j]i c

}
;

Pj2 = Pj ∩
{
x : xi ≥ dx[j]i e

}
;

9.4 Adaptation to Specific Problems

Branch & Bound is a framework that can be used to build customised algo-
rithms for specific problem classes:

• choice of algorithm to compute dual bounds,

• choice of heuristics to compute primal bounds,

• branching rules,

• node selection rules,

• preprocessing,

• combination with cutting planes (see later lectures).

9.4.1 Choice of Algorithm to Compute Dual Bounds

For most IPs, LP-based B&B is significantly faster when the simplex algorithm
is applied to the dual of the LP relaxations (Pj) rather than on the primal
problem.

To understand why, let us see what happens when an LP

(P) max
x∈Rn

cTx

s.t. aTi x ≤ bi, (i = 1, . . . ,m)

xj ≥ 0, (j = 1, . . . , n),

75

9.4 Adaptation to Specific Problems B6.3 MT 2021, Oxf. Math. Inst.

where aTi are row vectors, is amended by introducing a new constraint:

(P ′) max
x∈Rn

cTx

s.t. aTi x ≤ bi, (i = 1, . . . ,m)

aTm+1x ≤ bm+1,

xj ≥ 0, (j = 1, . . . , n).

An optimal basic feasible solution (xB , xN) of (P) is not necessarily feasible
for (P)′, which hinders us from re-optimising the solution via primal simplex
pivots.

The change in the dual

(D) min
y∈Rm

bTy

s.t.
m∑
i=1

yiai ≥ c,

yi ≥ 0, (i = 1, . . . ,m)

is more benign, as the amendment of (P) into (P)′ corresponds to the intro-
duction of a new variable ym+1,

(D ′) min
y∈Rm+1

bTy

s.t.
m∑
i=1

yiai + ym+1am+1 ≥ c,

yi ≥ 0, (i = 1, . . . ,m+ 1)

If (yB , yN) is an optimal basic feasible solution of (D), then setting ym+1 = 0
and adding it to the set of non-basic variables yields a basic feasible solution
for (D ′) that can be re-optimised via a few extra simplex pivots. ⇒ Use Dual
Simplex Method.

Special Cases: The simplex algorithm is not always the algorithm of choice
in LP-based B&B.

Example 9.13 (Greedy solution of knapsack LP). Consider the 0-1 knapsack prob-
lem

max


n∑
j=1

cjxj :

n∑
j=1

ajxj ≤ b, x ∈ Bn
 ,

where aj , cj > 0 for j = 1, . . . , n. The LP relaxation

max


n∑
j=1

cjxj :

n∑
j=1

ajxj ≤ b, 0 ≤ xj ≤ 1, (j = 1, . . . , n)


76

9.4 Adaptation to Specific Problems B6.3 MT 2021, Oxf. Math. Inst.

has special structure that makes it possible to solve it greedily:

Re-index the variables to that
c1
a1
≥ · · · ≥ cn

an
> 0,

r−1∑
j=1

aj ≤ b,
r∑
j=1

aj > b.

The optimal solution of the LP relaxation is then given by xj = 1 for j = 1, . . . , r− 1,
xr = (b−

∑r−1
j=1 aj)/ar and xj = 0 for j > r. (See problem sheet.)

9.4.2 Heuristics to Compute Primal Bounds

Example 9.14 (Knapsack primal bounds). Consider the 0-1 knapsack problem

z∗ = max
x

n∑
j=1

cjxj

subject to
n∑
j=1

ajxj ≤ b,

xj ∈ {0, 1}, (j = 1, . . . , n),

where aj (j = 1, . . . , n) and b are positive integers, and cj are rational numbers.

Let zLP be the optimal objective value of the LP-relaxation and zgh the primal
bound obtained from the greedy heuristic described on the next slide. Let r − 1 =

max{i :
∑i
j=1 aj ≤ b} and ξ = b−

∑r−1
j=1 aj .

Then the following approximation bound holds,

zLP ≥ z∗ ≥ zgh ≥
(

1− ξ

b

)
× zLP .

Algorithm 9.15 (Greedy knapsack heuristic).
Re-index s.t. c1/a1 ≥ c2/a2 ≥ · · · ≥ cn/an. Set z = 0, v = b;

// initialisation
for j=1,. . . ,n do

if aj ≤ v then
xj = 1;
v ← v − aj ;
z = z + cj ;

else
xj = 0;

end
end

77

9.4 Adaptation to Specific Problems B6.3 MT 2021, Oxf. Math. Inst.

9.4.3 Branching Rules

Branching on most fractional variable. Let C be the set of fractional variables of
the solution x∗ to a LP relaxation. The most fractional variable approach is to
branch on the variable that corresponds to the index

j = arg max
i∈C

min{fi, 1− fi},

where fi = x∗i − bx∗i c.
Branching by priorities. In this approach the user can indicate a priority of

importance for the decision variables to be integer. The system will then branch
on the fractional variable with highest priority.

Example 9.16. Fixed charge network Consider a fixed charge network problem

min{cTx+ fy : Nx = b, x ≤ uy, x ∈ Rn+, y ∈ Zn+},

where N is the node-arc incidence matrix of the network, and b is the demand vector.

Since rounding up the variables yj corresponding to large fixed costs fj changes the
objective function more severely than rounding yj corresponding to small fixed costs,
we prioritise the yj in order of decreasing fixed costs fj .

GUB/SOS branching. Many IP models contain generalised upper bound (GUB)
or special ordered sets (SOS) constraints of the form

k∑
j=1

xj = 1,

with xj ∈ B for all j. In this case it is not good to branch on a factional variable
x∗i from the solution x∗ of a LP relaxation, since the branching does not lead to
balanced sets:

S1 = {x ∈ S : xi = 1}
contains only one point xi = 1, xj = 0 ∀ j 6= i, whereas

S2 = {x ∈ S : xi = 0}

contains |S| − 1 points.

In these cases, a better choice of branching is given by fixing an order
j1, . . . , jk of the variables and choosing

S1 = S ∩ {x : xji = 0, i = 1, . . . , r},
S2 = S ∩ {x : xji = 0, i = r + 1, . . . , k},

where r = min
{
s :
∑s
i=1 x

∗
ji
≥ 1

2

}
.

Strong Branching. This is used only on difficult problems where it is worth-
while spending more time to find a good branching. In this approach one

78

9.4 Adaptation to Specific Problems B6.3 MT 2021, Oxf. Math. Inst.

i) chooses a set C of candidate variables, branches up and down for each
xj ∈ C,

ii) computes upper bounds zUj and zDj by solving the LP relaxations of the
up and down branching corresponding to xj ,

iii) chooses the variable having the largest effect

j∗ = arg min{max(zUj , z
D
j) : j ∈ C}

as the actual branching variable for the branch-and-bound scheme.

That is, one explores several possible branchings and chooses to pursue the
branches below only the most promising branching variable.

9.4.4 Node Selection

Depth-First. A depth-first strategy aims at finding a feasible solution quickly,
by only choosing an active node that is a direct descendant of the previously
processed node. It is implemented by operating a last-in-first-out stack for the
active nodes.

Best-Node-First. To minimise the total number of nodes processed during
the run of the algorithm, the optimal strategy is to always choose the node
with the largest upper bound, i.e., Sj such that

z[j] = max{z[i] : Si ∈ AN}.

Under this strategy we will never branch on a node St whose upper bound z[t]

is smaller than the optimal value z of S. This is called a best-node-first strategy.

The depth-first and best-node-first strategies are usually mutually contra-
dictory, so a compromise has to be reached. Usually, depth-first is used initially
until a feasible solution is found and a lower bound z is established.

79

B6.3 MT 2021, Oxf. Math. Inst.

10 Lecture 10: Delayed Column Generation

10.1 The Dantzig-Wolfe Reformulation

We will now explore a technique that can be applied to extremely large integer
programming problems of block angular form

(IP) z = max

K∑
k=1

ckTxk

s.t.
K∑
k=1

Akxk = b

xk ∈ Xk = {xk ∈ Znk+ : Dkxk ≤ dk}, (k = 1, . . . ,K).

The key features of such problems are the following:

• The decision vector x = (x1, . . . , xK) is partitioned into K blocks xk ∈
Rnk , (k = 1, . . . ,K.

• The individual blocks are linked to one another only via the joint con-
straints

∑K
k=1A

kxk = b, while the remaining constraints decompose.

• We assume that each Xk = {xk,t}Tkt=1 consists of a large but finite number
of points, so that we can write

Xk =

{
xk ∈ Rnk : xk =

Tk∑
t=1

λk,tx
k,t,

Tk∑
t=1

λk,t = 1, λk,t ∈ {0, 1}, (t = 1, . . . , Tk)

}
.

Example 10.1 (Uncapacitated facility location). The Uncapacitated Facility Loca-
tion Problem from Lecture 1 is of this form,

(UFL) z = min

n∑
k=1

[
m∑
i=1

cikxik + fkyk

]

s.t.
n∑
k=1

xik = 1 (i = 1, . . . ,m)

xik − yk ≤ 0 (i = 1, . . . ,m; k = 1, . . . , n) (“strong formulation”)

x ∈ Rm×n+ , y ∈ {0, 1}n,

• xk = (x1k, . . . , xmk, yk) are the blocks of variables that deal with the proportion
xik of customer i’s demand to meet from a fixed location k,

• the flag variable yk that indicates whether facility k is in operation,

80

10.1 The Dantzig-Wolfe Reformulation B6.3 MT 2021, Oxf. Math. Inst.

• the constraints
∑n
k=1 xik = 1 (i = 1, . . . ,m) that link each fixed customer to

decisions at all facilities play the role of the joint constraints

[
Im 0m×1 Im 0m×1 . . . Im 0m×1

] x
1

...
xn

 =

1
...
1

 ,
that is, K = n and

Ak =
[
Im 0m×1

]
, (k = 1, . . . ,K).

The Dantzig-Wolfe Reformulation exploits the representations

Xk =

{
xk ∈ Rnk : xk =

Tk∑
t=1

λk,tx
k,t,

Tk∑
t=1

λk,t = 1, λk,t ∈ {0, 1} (t = 1, . . . , Tk)

}
,

which are available in theory but generally not in practice, to make it possible
to use the λk,t as decision variables.

Substituting
∑Tk
t=1 λk,tx

k,t for xk in (IP), we obtain the IP Master Problem

(IPM) z = max

K∑
k=1

Tk∑
t=1

(ckTxk,t)λk,t

s.t.
K∑
k=1

Tk∑
t=1

(Akxk,t)λk,t = b,

Tk∑
t=1

λk,t = 1, (k = 1, . . . ,K),

λk,t ∈ {0, 1}, (t = 1, . . . , Tk; k = 1, . . . ,K).

This IP is of course equivalent to the original problem (IP), but inconve-
niently, it has many more variables, though on the plus side it has far fewer
constraints.

Example 10.2 (UFL continued). Let us consider UFL again, this time in the form of
the “weak” formulation

(UFLW) z = min

n∑
k=1

[c1k ... cmk fk]xk

s.t.
n∑
k=1

xik = 1 (i = 1, . . . ,m)

for (k = 1, . . . , n),


∑m
i=1 xik ≤ myk (“weak formulation”)

xk = [x1k ... xmk yk]T ∈ {0, 1}m+1.

81

10.1 The Dantzig-Wolfe Reformulation B6.3 MT 2021, Oxf. Math. Inst.

We have

Xk =

{
xk :

m∑
i=1

xik ≤ myk, xik ∈ {0, 1}, (i = 1, . . . ,m), yk ∈ {0, 1}

}
=
{

(xkS , 1)}S⊆M ∪ {(0, 0)
}
,

where xkS is the incidence vector of S ⊆M = {1, . . . ,m} (which we associate with the
variable λkS), and (0, 0) is the zero vector (which we associate with the variable νk).

Note that in this case all Xk are the same set (k = 1, . . . , n) with Tk = 2m

elements, and if xk,t = (xkS , 1), then Akxk,t = Im x
k
S = xkS .

The IP Master Problem is the following,

(IPM) min

n∑
k=1

∑
S 6=∅

(∑
i∈S

cik + fk

)
λkS + fkλ

k
∅


s.t.

n∑
k=1

∑
S⊆M :i∈S

λkS = 1, (i = 1, . . . ,m)

∑
S 6=∅

λkS + λk∅ + νk = 1, (k = 1, . . . , n)

λkS , ν
k ∈ {0, 1}, (S ⊆M ; k = 1, . . . , n).

Since fk > 0, a solution could not be optimal unless λk∅ = 0 ∀k, so that (IPM) is
equivalent to

(IPM) min

n∑
k=1

∑
S 6=∅

(∑
i∈S

cik + fk

)
λkS

s.t.
n∑
k=1

∑
S⊆M :i∈S

λkS = 1, (i = 1, . . . ,m)

∑
S 6=∅

λkS ≤ 1, (j = 1, . . . , n)

λkS ∈ {0, 1}, (∅ 6= S ⊆M ; j = 1, . . . , n).

Example 10.3 (Symmetric travelling salesman problem). A special case in which
K = 1 occurs for the STSP on a graph G = (V,E), which can be formulated as
follows,

min
∑
e∈E

cexe

s.t.
∑
e∈δ(i)

xe = 2, (i ∈ N),

x ∈ X1,

82

10.2 LP Master Problem B6.3 MT 2021, Oxf. Math. Inst.

where N is the set of nodes (cities), δ(i) the set of edges incident to i, xe the indicator
variable for edge e, and X1 the set of indicator vectors of 1-trees of the graph.

A 1-tree is a subset E′ ⊂ E of edges of which exactly two are incident to node 1,
that is,

|E′ ∩ δ(1)| = 2,

and E′ \ δ(1) is a spanning tree on the remaining nodes 2, . . . , n, and hence it is of
cardinality n− 2.

Every Hamiltonian tour is a 1-tree that satisfies the degree constraint |E′∩δ(i)| =
2 for all nodes i ∈ N . Conversely, every 1-tree that satisfies these degree constraints is
a Hamiltonian tour.

We use a conceptual enumeration {Et : t = 1, . . . , T 1} of the set of 1-trees and
write

xe =
∑

t: e∈Et
λt,

subject to λt ∈ {0, 1} for all t and
∑T1

t=1 λt = 1. This defines the indicator vector of
the single 1-tree for which λt = 1.

The degree constraints become∑
e∈δ(i)

xe =
∑
e∈δ(i)

∑
t: e∈Et

λt =
∑
t

dtiλt = 2,

where dti is the degree of node i in the 1-tree Et. This yields the IP Master Problem

min

T1∑
t=1

(∑
e∈E

cex
t
e

)
λt

s.t.
T1∑
t=1

dtiλt = 2, (i ∈ N)

T1∑
t=1

λt = 1,

λt ∈ {0, 1}, (t = 1, . . . , T1).

10.2 LP Master Problem

To recap so far, starting with an IP of the form

(IP) z = max
x

K∑
k=1

ckTxk

s.t.
K∑
k=1

Akxk = b

xk ∈ Xk = {xk ∈ Znk+ : Dkxk ≤ dk}, (k = 1, . . . ,K),

83

10.2 LP Master Problem B6.3 MT 2021, Oxf. Math. Inst.

we have derived the IP Master Problem

(IPM) z = max
λ

K∑
k=1

Tk∑
t=1

(ckTxk,t)λk,t

s.t.
K∑
k=1

Tk∑
t=1

(Akxk,t)λk,t = b,

Tk∑
t=1

λk,t = 1, (k = 1, . . . ,K),

λk,t ∈ {0, 1}, (t = 1, . . . , Tk; k = 1, . . . ,K).

Next, we consider the LP relaxation of (IPM), called the LP Master Problem,

(LPM) zLPM = max
λ

K∑
k=1

Tk∑
t=1

(ckTxk,t)λk,t

s.t.
K∑
k=1

Tk∑
t=1

(Akxk,t)λk,t = b, (22)

Tk∑
t=1

λk,t = 1, (k = 1, . . . ,K), (23)

λk,t ≥ 0, (t = 1, . . . , Tk; k = 1, . . . ,K), (24)

in which there is a column ckTxk,t

Akxk,t

ek


for every xk,t ∈ Xk (t = 1, . . . , Tk) and every (k = 1, . . . ,K), where ek is the
k-th canonical unit vector in RK . Equations (23) are called convexity constraints.

Associating (23) with dual variables {µk}Kk=1, and (22) with dual variables
{πi}mi=1, the dual of (LPM) is the following problem,

(DM) zDM = min
µ,π

m∑
i=1

biπi +

K∑
k=1

µk

s.t. πTAkxk + µk ≥ ckTxk, (xk ∈ Xk).

We now wish to apply the simplex algorithm to (LPM), but this is impossi-
ble because there are too many columns in this LP.

To get around this problem, we consider Restricted LP Master Problems

(RM) z̃RM = max c̃Tλ̃

s.t. Ãλ̃ = b̃,

λ̃ ≥ 0

84

10.3 Delayed Column Generation B6.3 MT 2021, Oxf. Math. Inst.

that arise from (LPM) by retaining only a subset of columns, at least one from
each k.

Conceptually, this is the same as fixing λk,t = 0 for (k, t) that do not corre-
spond to one of the chosen columns.

10.3 Delayed Column Generation

This is a simplex variant for solving LP Master Problem based on the following
ideas:

• Use the simplex algorithm to find an optimal solution of a given reduced
master problem (RM).

• Use this optimal solution to identify a further column to add (if neces-
sary) and generate a new reduced master problem (RM+).

• Solve (RM+) via warm-start simplex.

Thus, instead of generating all the problem data of (LPM) initially, data is
generated as and when it is needed. Typically, (LPM) is solved long before all
the columns are generated!

Let us now discuss the details of this approach. We start with a reduced
master problem

(RM) z̃RM = max c̃Tλ̃

s.t. Ãλ̃ = b̃,

λ̃ ≥ 0

and solve for an optimal solution λ̃∗ and an optimal dual solution (π, µ) ∈
Rm × RK .

Note that λ̃∗ can be extended to a primal feasible solution of (LPM) by set-
ting the λ̃k,t = 0 for (k, t) outside the subset of columns chosen to form (RM).

Therefore, we have

z̃RM = c̃Tλ̃∗ =

m∑
i=1

πibi +

K∑
k=1

µk ≤ zLPM .

Next, we check whether (π, µ) is dual feasible (feasible for (DM)), that is,
whether

ckTx− πTAkx− µk ≤ 0, (x ∈ Xk; k = 1, . . . ,K).

85

10.3 Delayed Column Generation B6.3 MT 2021, Oxf. Math. Inst.

This can be checked by solving an optimisation problem over each Xk,

(CGIPk) x̃k = arg max
x

(ck − πTAk)x− µk

s.t. x ∈ Xk,

and by checking whether ζk := (ck − πTAk)x̃k − µk ≤ 0.

Note that (CGIPk) is an IP problem with only nk integer decision variables,
whereas the original IP had

∑K
k=1 nk integer decision variables.

Keep in mind that (CGIPk) needs to be solved for k = 1, . . . ,K. Thus,
in solving these subproblems, the original master problem decomposes into
subproblems that can be solved in parallel!

Decision to terminate or add a new column:

• If ζk ≤ 0 for all k, then λ̃∗ is optimal for (LPM): since (π, µ) is dual feasible,
we have

zLPM ≥ z̃RM = c̃λ̃∗ =

m∑
i=1

πibi +

K∑
k=1

µk ≥ zDM = zLPM ,

and equality must hold throughout. Thus, the algorithm can be stopped
in this case.

• Otherwise, there exists k such that ζk > 0. In this case, adding the column ckx̃kAkx̃k

ek


to (RLPM) leads to a new restricted LP master problem (RLPM+) that can
be reoptimised using warmstarting.

Note that solving the subproblems (CGIPk) automatically takes care of gen-
erating a new column on which we are guaranteed to make progress toward
solving Problem (LPM).

Discussion:

By iteratively adding columns as described above, we ensure that the al-
gorithm behaves like the primal simplex applied to (LPM) with a legitimate
sequence of pivots, but only the data of columns that are actually needed in
pivots is ever generated.

This leads to a massive reduction in memory requirements.

However, the reduced problem (RLPM) grows over time, unless columns
that leave the basis are discarded. At some stage this becomes a memory prob-
lem and the algorithm may have to be stopped before finding an optimal solu-
tion to (LPM).

86

10.3 Delayed Column Generation B6.3 MT 2021, Oxf. Math. Inst.

We are then interested in knowing how closely the final primal bound z :=
z̃RM approximates zLPM . To this end, a dual bound z ≥ zLPM is required.

The primal and dual bounds z and z are also extremely useful when apply-
ing column generation in the context of branch-and-bound.

Calculating Dual Bounds:

A dual bound is obtained by recycling the work we have already done:

By construction of ζk we have

(ck − πAk)x− µk − ζk ≤ 0, (x ∈ Xk),

which shows that (π, µ+ ζ) is dual feasible for (LPM). Therefore,

z := πb+

K∑
k=1

µk +

K∑
k=1

ζk

is a valid upper bound.

87

B6.3 MT 2021, Oxf. Math. Inst.

11 Lecture 11: Branch and Price

11.1 Recap on Delayed Column Generation

We can summarise the delayed column generation method as follows:

• Take a Restricted LP Master Problem

(RM) z̃RM = max c̃Tλ̃

s.t. Ãλ̃ = b̃,

λ̃ ≥ 0,

obtained by setting all but a few λk,t = 0 and forcing them to be non-basic
variables. Only the remaining columns of (LPM) need to be generated.

• Using the simplex algorithm, find an optimal solution λ̃∗ of (RM) and, by
complementary slackness, the corresponding optimal solution (π, µ) ∈
Rm × RK of the dual of (RM).

• In parallel, for all k ∈ [1,K] solve the column generation IPs

(CGIPk) x̂k = arg max
x

(ck − πTAk)x− µk

s.t. x ∈ Xk.

• If the reduced prices ζk := (ck − πTAk)x̂k − µk ≤ 0 for all k, then (π, µ) is
(DM)-feasible and λ̃∗ is (LPM)-optimal.

• Otherwise, pick k such that ζk > 0 and add the column ckx̂kAkx̂k

ek


to (RLPM) to obtain a new restricted LP master problem (RLPM+). Re-
optimise using warmstarting.

• At every iteration, we monitor our progress toward solving (LPM) by
storing the primal and dual bounds

c̃Tλ̃∗ ≤ zLPM ≤ πb+

K∑
k=1

µk +

K∑
k=1

ζk.

88

11.2 The Branch & Price Algorithm B6.3 MT 2021, Oxf. Math. Inst.

11.2 The Branch & Price Algorithm

The application of column generation in the context of branch-and-bound for
binary IPs is called branch-and-price.

• The master problem is in the format, where the vectors xk,t are binary,

z = max

K∑
k=1

Tk∑
t=1

((ck)Txk,t)λk,t

s.t.
K∑
k=1

Tk∑
t=1

(Akxk,t)λk,t = b,

Tk∑
t=1

λk,t = 1, (k = 1, . . . ,K),

λk,t ∈ {0, 1}, (t = 1, . . . , Tk; k = 1, . . . ,K).

• If all subproblems have this same format, we already know how delayed
column generation is able to generate dual bounds that can be used in
branch & bound.

• We need a branching method that guarantees that that subproblems have
the same format as the master problem.

• Since the points xk,t ∈ Xk are all distinct 0-1 vectors, which are all ver-
tices of the unit hypercube, we have that

x̃k =

Tk∑
t=1

λ̃k,tx
k,t

is a 0-1 vector if and only if λ̃ is integer valued.

• If the optimal solution λ̃ of (LPM) (found by delayed column generation)
is not integer, there exists therefore κ, j such that x̃κj , the j-th component
of x̃κ, is fractional.

• We would like to branch by splitting the feasible set S = S0 ∪ S1 into

S0 = S ∩ {x : xκj = 0},
S1 = S ∩ {x : xκj = 1}.

What are the corresponding master problems?

For δ = 0, 1, the requirement that

δ = xκj =

Tκ∑
t=1

λκ,tx
κ,t
j

89

11.3 The Cutting Stock Problem B6.3 MT 2021, Oxf. Math. Inst.

implies that xκ,tj = δ for all t with λκ,t > 0. Therefore, the master problem for
Sδ is

z(Sδ) = max
∑
k 6=κ

Tk∑
t=1

((ck)Txk,t)λk,t +
∑

t: xκ,tj =δ

((cκ)Txκ,t)λκ,t

s.t.
∑
k 6=κ

Tk∑
t=1

(Akxk,t)λk,t +
∑

t: xκ,tj =δ

(Aκxκ,t)λκ,t = b,

Tk∑
t=1

λk,t = 1, (k 6= κ),∑
t: xκ,tj =δ

λκ,t = 1

λk,t ∈ {0, 1}, (t = 1, . . . , Tk; k = 1, . . . ,K).

Thus, the problem has the same structure as the master problem for S, but
some of the columns are permanently excluded. This has the beneficial effect
that the deeper the node in the branch-and-bound tree, the fewer patterns xk,t

need to be considered.

The column generation subproblems are unchanged for k 6= κ,

x̃k = arg max ((ck)T − πAk)x− µk
s.t. x ∈ Xk,

but for k = κ they take on the new form

x̃κ(Sδ) = arg max ((cκ)T − πAκ)x− µκ
s.t. x ∈ Xk,

xj = δ.

Similar further restrictions apply of course deeper down the branches, where
the subproblems are further branched.

11.3 The Cutting Stock Problem

The above ideas can be applied to solve the cutting-stock problem in an ap-
proach developed by Gilmore & Gomoroy.

Example 11.1 (Cutting Stock Problem). A factory has an unlimited stock of 20-inch
paper rolls that it can cut into rolls of smaller widths.

They receive an order of 301 9-inch paper rolls, 401 8-inch paper rolls, 201 7-inch
paper rolls and 501 6-inch paper rolls.

90

11.3 The Cutting Stock Problem B6.3 MT 2021, Oxf. Math. Inst.

Assuming both trim loss and overproduction are waste, how to fill all the orders
under minimal cost?

Details of Branch-and-Price for the Cutting Stock Problem:

• More generally, if the stock rolls have width W and there are m different
widths wi (i = 1, . . . ,m) in the order, we can generate all patterns aj =
[a1j ... amj]T of patterns consisting of aij rolls of width wi that can be cut
into a roll of width W , i.e., such that

m∑
i=1

wiaij ≤W.

• Note that aij ∈ Z+ = {0, 1, 2, 3, . . . } for all i, j.

• Conceptually, we assemble the columns aj into a matrix A (although we
never want to generate the full data).

• Decision variables: xj ∈ N0, the number of times pattern j is used (j =
1, . . . , n). (Note: the xj play the roles of variables λk,t used earlier.)

• Constraints: if there are bi orders of width wi, filling the orders requires
Ax ≥ b, and due to the assumption that overproduction is waste, w.l.o.g.,

Ax = b.

• Objective: minimise
∑n
j=1 xj , the total number of stock rolls used.

• This yields the IP model (Integer Cutting Stock in form similar to a Master
Problem)

(ICS) min

n∑
j=1

xj

s.t. Ax = b,

x ∈ Zn+.

• The LP relaxation is given by

(LCS) min~1Tx

s.t. Ax = b,

x ≥ 0,

which has the dual

(DCS) max bTy

s.t. ATy ≤ ~1.

91

11.3 The Cutting Stock Problem B6.3 MT 2021, Oxf. Math. Inst.

• The number n of patterns can be huge, so apply delayed column genera-
tion to solve (LCS), e.g., starting with initial restricted pattern set

Ã =

bW/w1c 0
. . .

0 bW/wmc


• Here we select onlym patterns in each simplex iteration, i.e., the columns

corresponding to the basic variables. All other variables (the non-basic
variables) are forced to zero.

• To solve the restricted subproblem, we only need to solve a linear system,

x̃ = Ã−1b.

• Theorem (Complementary Slackness) implies that the optimal dual vari-
ables of the restricted LPM are given by ỹ = Ã−T~1.

• If ỹ is dual feasible (feasible for (DCS)), x̃ is optimal for (LCS).

• Else there exists a pattern j (a column of the full matrix A that has not yet
been generated) corresponding to a non-basic variable xj such that

m∑
i=1

aij ỹi > 1.

• Although pattern j has not yet been generated, we can find out whether
or not it exists by solving the knapsack problem

(KS) p∗ = arg max
p

ỹTp

s.t.
m∑
i=1

wipi ≤W,

p ∈ Zm+ .

• If ỹTp∗ ≤ 1, then ỹ is dual feasible, and we are in the first case. Else take
(aij)

m
i=1 := (p∗i)

m
i=1 as the entering pattern j.

• The exiting variable is determined in the usual simplex fashion, and the
dictionary/tableau is pivoted in the usual fashion.

Example 11.2 (CSP continued). We follow through by applying delayed column
generation to solve the LP relaxation of the ICS of our example. Since Ã, x̃, ỹ change
in each iteration, we write A(k), x(k), y(k) for the corresponding data in iteration k,
and we write z(k) =

∑
j x

(k)
j for the objective value.

92

11.3 The Cutting Stock Problem B6.3 MT 2021, Oxf. Math. Inst.

• Using the initialisation discussed above, we have

A(0) =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3

 ,

x(0) = (A(0))−1


301
401
201
501

 =


150.5
200.5
100.5
167

 ,
z(0) = 618.5, (objective value)

y(0) =
(
(A0)−1

)T


1
1
1
1

 =


1/2
1/2
1/2
1/3

 .
• To find the entering variable xj , we need to identify whether or not a correspond-

ing column exists and generate it, i.e., solve the knapsack problem

(KP) p∗ = arg max
p

1

2
p1 +

1

2
p2 +

1

2
p3 +

1

3
p4

s.t. 9p1 + 8p2 + 7p3 + 6p4 ≤ 20,

pi ∈ Z+, (i = 1, . . . , 4).

• Solving (KP) with branch-and-bound, we find p∗ = [0, 0, 2, 1]T. Since (y(0))Tp∗ =
4/3 > 1, p∗ will enter the basic cutting patterns as a column of A(1).

• To identify the pattern that corresponds to the leaving basic variable, we must
calculate

x(0)./(A(0))−1p∗ = [∞,∞, 140, 500]T.

It is x3 that imposes the most restrictive bound, thus the third column of A(0)

leaves the basis.

• Next iteration: For simplicity of solving the restricted LP subproblems we dis-
card the leaving column. This is a variant of delayed column generation that
guarantees that the subproblems don’t grow in size, but this comes at the expense
of possibly having to re-generate a discarded column again at a later iteration.

A(1) =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 1 3

 ,

x(1) = (A(1))−1


301
401
201
501

 =


150.5
200.5
100.5
133.5

 , z(1) = 585.

93

11.3 The Cutting Stock Problem B6.3 MT 2021, Oxf. Math. Inst.

Solving another knapsack problem identifies p∗ = [0, 1, 0, 2]T as entering pat-
tern, and column 4 of A(1) as leaving pattern.

• Next iteration:

A(2) =


2 0 0 0
0 2 0 1
0 0 2 0
0 0 1 2

 , x(2) =


150.5

100.375
100.5
200.25

 , z(2) = 551.625.

• This time the optimal solution of the knapsack problem yields (y(2))Tp∗ ≤ 1,
showing that y(2) is dual optimal, and hence, x(2) is primal optimal.

• The dual bound z(2) = 551.625 could now be used in a branch-and bound algo-
rithm to solve the (ICS).

• Alternatively, note that rounding down the usage of each pattern leaves a short-
fall of 1 roll of each of the ordered widths, which can be covered by two additional
stock rolls cut into patterns [1, 1, 0, 0] and [0, 0, 1, 1]. This shows that

551.625 ≤ zIP ≤ 550 + 2,

and hence, zIP = 552 and we have found the optimal solution.

• This rounding procedure cannot be guaranteed to yield the optimal solution in
general, but it produces a primal and a dual bound which often sandwich zIP in
a narrow interval, thus yielding an approximation guarantee.

94

B6.3 MT 2021, Oxf. Math. Inst.

12 Lecture 12: Lagrangian Relaxation

12.1 Introductory Example: Uncapacitated Facility Location

Many IPs have a structure

(IP) z = max cTx

s.t. Ax ≤ a
Dx ≤ d
x ≥ 0, x ∈ Zn,

such that relaxing the constraints Dx ≤ d yields a substantially more tractable
problem where Ax ≤ a is a benign set of constraints (e.g., totally unimodular)
in the sense that the following is easy to solve,

max cTx

s.t. Ax ≤ a
x ≥ 0, x ∈ Zn.

Thus, we may interpretDx ≤ d as “malicous” constraints that render the prob-
lem (IP) hard to solve.

Note that what is benign or malicous is in the eye of the beholder, as it may
be that

max cTx

s.t. Dx ≤ d
x ≥ 0, x ∈ Zn

is also an easy problem, but it is really the combination of the two constraint sets
Ax ≤ a and Dx ≤ d that renders the problem hard.

Example 12.1 (Uncapacitated facility location (UFL)). Consider the uncapacitated
facility location problem from Lecture 1,

(IP) z = max
∑
i∈M

∑
j∈N

cijxij −
∑
j∈N

fjyj

s.t.
∑
j∈N

xij = 1 (i ∈M)

xij − yj ≤ 0 (i ∈M, j ∈ N)

x ∈ R|M |×|N |+ , y ∈ {0, 1}|N |,

where

• M is the set of customer locations,

95

12.1 Introductory Example: Uncapacitated Facility LocationB6.3 MT 2021, Oxf. Math. Inst.

• N is the set of potential facility locations,

• fj are the fixed costs for opening facility j,

• we replaced the original servicing costs cij with −cij to turn the problem into a
maximisation problem.

One may take the viewpoint that it is the demand constraints∑
j∈N

xij = 1, (i ∈M) (25)

that render the problem hard, because these constraints introduce a functional depen-
dence between the decisions pertaining to different facility locations.

Instead of imposing these constraints, let us add a multiple ui of each residual

1−
∑
j∈N

xij

to the objective function. The objective function is now∑
i∈M

∑
j∈N

cijxij −
∑
j∈N

fjyj +
∑
i∈M

ui(1−
∑
j∈N

xij),

and we say that the constraints (25) have been dualised.

The new problem is called a Lagrangian relaxation,

(IP(u)) z(u) = max
∑
i∈M

∑
j∈N

(cij − ui)xij −
∑
j∈N

fjyj +
∑
i∈M

ui

s.t. xij − yj ≤ 0 (i ∈M, j ∈ N)

x ∈ R|M |×|N |+ , y ∈ {0, 1}|N |.

Note that because the constraints that linked the different facility locations to one
another have been subsumed in the objective function, (IP(u)) decouples,

z(u) =
∑
j∈N

zj(u) +
∑
i∈M

ui,

where zj(u) is the optimal solution of the following problem,

(IPj(u)) zj(u) = max
∑
i∈M

(cij − ui)xij − fjyj

s.t. xij − yj ≤ 0 (i ∈M)

xij ≥ 0 (i ∈M), yj ∈ {0, 1}|N |.

Furthermore, (IPj(u)) is easily solved by inspection:

96

12.1 Introductory Example: Uncapacitated Facility LocationB6.3 MT 2021, Oxf. Math. Inst.

• If yj = 0, then xij = 0 for all i, and the objective value is 0.

• If yj = 1, then all clients i for which cij−ui > 0 will be served, and the objective
value is

∑
i∈M max(0, cij − ui).

Therefore, zj(u) = max
(

0,
∑
i∈M max(0, cij − ui)− fj

)
.

Definition 12.2 (Relaxation). A relaxation of an integer programming problem (IP) z =
max{f(x) : x ∈ F} is any optimisation problem (R)

w = max{g(x) : x ∈ R}

with feasible set R ⊇ F and an objective function g(x) that satisfies g(x) ≥ f(x) for
all x ∈ F .

Lemma 12.3 (Dual bounds by relaxation). If (R) is a relaxation of (IP), thenw ≥ z.

Proof. See Problem Sheet 4.

Corollary 12.3.1 (Optimality by relaxation). Let x∗ ∈ arg max{g(x) : x ∈ R}. If
x∗ ∈ F and g(x∗) = f(x∗), then x∗ is an optimal solution of (IP).

Proof. By Lemma (Dual bounds by relaxation) then the following inequality
holds for all x ∈ F ,

cTx ≤ z ≤ w = g(x∗) = cTx∗.

Example 12.4 (UFL continued). Problem (IP(u)) constructed in Example (UFL) is
indeed a relaxation:

• Giving up on the requirement
∑
j∈N xij = 1 constitutes an enlargement of the

feasible set.

• The restriction of the new objective

max
x,y

g(x, y) =
∑
i∈M

∑
j∈N

cijxij −
∑
j∈N

fjyj +
∑
i∈M

ui(1−
∑
j∈N

xij)

to the feasible set of the UFL coincides with the objective of the latter,

max
x,y

∑
i∈M

∑
j∈N

cijxij −
∑
j∈N

fjyj ,

as any (UFL)-feasible solution (x, y) satisfies the demand constraints
∑
j∈N xij =

1, which implies ∑
i∈M

ui(1−
∑
j∈N

xij) = 0.

97

12.2 Generalisation B6.3 MT 2021, Oxf. Math. Inst.

12.2 Generalisation

Let us now consider an (IP) in the slightly more general form

(IP) z = max cTx

s.t. D1x ≤ d1,
D2x = d2,

x ∈X = {x ∈ Rn : Ax ≤ a, x ≥ 0, x ∈ Zn}

where X is a feasible set of ”benign” type.

We writeD = [DT
1 , D

T
2]T and d = [dT1 , d

T
2]T in block form and denote the set

of row indices of D that correspond to inequality constraints by I and indices
corresponding to equality constraints by E .

Definition 12.5 (Lagrangian relaxation). A Lagrangian relaxation of (IP) is a
problem of the form

(IP(u)) z(u) = max{cTx+ uT(d−Dx) : x ∈X }

where u ∈ Rm is a fixed vector Lagrange multipliers chosen so that ui ≥ 0 for i ∈ I.

Proposition 12.6 (Lagrangian relaxations). Problem (IP(u)) is a relaxation of prob-
lem (IP).

Proof. The feasible region of (IP(u)) contains that of (IP), since

X ⊇ F = {x ∈X : D1x ≤ d1, D2x = d2}.

For all (IP)-feasible x, the objective function of (IP(u)) is at least as large as that
of (IP),

cTx+ uT(d−Dx) = cTx+
∑
i∈I

ui(di −Di,:x) ≥ cTx.

In the context of Lagrangian relaxations, Corollary 12.3.1 can be recast in
terms of a complementarity condition:

Proposition 12.7 (Optimality by Lagrangian relaxation). Let x(u) be an optimal
solution of the Lagrangian relaxation

(IP(u)) x(u) ∈ arg max
x
{cTx+ uT(d−Dx) : x ∈X }.

If x(u) is (IP)-feasible, that is Dix ≤ di for all (i ∈ I) and Dix = di for all (i ∈ E),
and if the complementarity conditions

ui(di − [Dx(u)]i) = 0 ∀ i ∈ I

are satisfied, then x(u) is an optimal solution of (IP).

Proof. By complementarity, z ≤ z(u) = cTx(u) + uT(d−Dx(u)) = cTx(u) ≤ z,
hence cTx(u) = z.

98

12.3 Lagrangian Relaxation of STSP B6.3 MT 2021, Oxf. Math. Inst.

12.3 Lagrangian Relaxation of STSP

Example 12.8 (Lagrangian relaxation of STSP). Recall our formulation of the sym-
metric travelling salesman problem from Lecture 1,

(IP) z = min
∑
e∈E

cexe

s.t.
∑
e∈δ(i)

xe = 2 (i ∈ V)

∑
e∈E(S)

xe ≤ |S| − 1 (S ⊂ V s.t. 2 ≤ |S| ≤ |V | − 1)

x ∈ {0, 1}|E|,

Lemma 12.9 (Redundant subtour elimination constraints). Half the subtour elim-
ination constraints

∑
e∈E(S) xe ≤ |S| − 1 are redundant.

Proof. For any x feasible for the LP relaxation of (IP) we have

|S| −
∑

e∈E(S)

xe =
1

2

∑
i∈S

∑
e∈δ(i)

xe −
∑

e∈E(S)

xe =
1

2

∑
e∈δ(S,Sc)

xe,

where δ(S, Sc) is the set of edges in E that are incident to one node from S and
one from Sc := V \ S.

Since δ(S, Sc) = δ(Sc, S), we now have

|S| −
∑

e∈E(S)

xe =
1

2

∑
e∈δ(S,Sc)

xe = |Sc| −
∑

e∈E(Sc)

xe,

and hence,
∑
e∈E(S) xe ≤ |S| − 1⇔

∑
e∈E(Sc) xe ≤ |Sc| − 1.

Example 12.10 (Lagrangian relaxation of STSP continued). • Introduce a new
(redundant) constraint

∑
e∈E xe = n, obtained by summing all degree con-

straints.

• Eliminate all subtour elimination constraints corresponding to sets S that con-
tain node 1, which are redundant by Lemma (Redundant subtour elimination
constraints).

• Dualise the degree constraints
∑
e∈δ(i) xe = 2, (i 6= 1).

99

12.3 Lagrangian Relaxation of STSP B6.3 MT 2021, Oxf. Math. Inst.

This yields the following Lagrangian relaxation of (STSP),

(IP(u)) z(u) = min
∑

e=(ij)∈E

(ce − ui − uj)xe + 2
∑
i∈V

ui

∑
e∈δ(1)

xe = 2

∑
e∈E(S)

xe ≤ |S| − 1, ∀S ⊂ V s.t. 2 ≤ |S| ≤ |V | − 1, 1 /∈ S

∑
e∈E

xe = n

x ∈ {0, 1}|E|.

For notational convenience we included a term u1(2−
∑
e∈δ(1) xe) = 0 in the objective.

Lemma 12.11 (1-Tree Characterisation). A binary vector x ∈ {0, 1}|E| is (IP(u))-
feasible if and only if its support E(x) := {e ∈ E : xe = 1}) is a 1-tree in G =
(V,E).

Proof.
∑
e∈δ(1) xe = 2 guarantees that in the subgraph Gx := (V,E(x)) exactly

two edges are incident to node 1 .

Constraints
∑
e∈E(S) xe ≤ |S| − 1 guarantee that when node 1 is removed,

then there is no cycle left in E(x) \ δ(1).∑
e∈E xe = n guarantees that |E(x) \ δ(1)| = n − 2 is a cycle free subgraph

on |V \ {1}| = n − 1 nodes, which is only possible if E(x) \ δ(1) is a spanning
tree on V \ {1}.

Conversely, if E(x) is a 1-tree, then
∑
e∈δ(1) xe = 2 and

∑
e∈E xe = n are

clearly satisfied, and sinceE(x)\δ(1) a tree, the subtour elimination constraints
are satisfied.

Example 12.12 (Lagrangian relaxation of STSP continued). Let us now look at a
numerical example and consider the STSP on 5 nodes with edge cost matrix

[ce] =


− 30 26 50 40
30 − 24 40 50
26 24 − 24 26
50 40 24 − 30
40 50 26 30 −

 .

Note that the Lagrange multipliers u are unrestricted, as the constraints we du-
alised were equality constraints. Therefore,

u =
[
0 0 −15 0 0 0

]
is a legitimate choice.

100

12.4 The Lagrangian Dual Problem B6.3 MT 2021, Oxf. Math. Inst.

Writing c̄ij := cij − ui − uj , we obtain the revised edge cost matrix

[c̄e] =


− 30 41 50 40
30 − 39 40 50
41 39 − 39 41
50 40 39 − 30
40 50 41 30 −

 .

Using the greedy algorithm, we find that {(1, 2), (1, 5), (4, 5), (2, 3), (3, 4)} is a
minimum weight 1-tree for the revised edge costs. Since this is a Hamiltonian tour, all
degree constraints are satisfied and the complementarity condition holds. Proposition
(Optimality by Lagrangian relaxation) thus implies that this is an STSP-optimal tour.

12.4 The Lagrangian Dual Problem

In summary so far, it follows from Proposition (Lagrangian relaxations) and
Lemma (Dual bounds by relaxation) that for all u ∈ Rm with ui ≥ 0 for i ∈ I,

z(u) := max{cTx+ uT(d−Dx) : x ∈X }

is a dual bound on the optimal objective value of problem (IP),

z = max {cTx : x ∈X , D1x ≤ d1, D2x = d2}.

Definition 12.13 (Lagrangian Dual). The problem of finding the tightest upper
bound obtainable in this fashion can now be cast as an optimisation problem over the
Lagrange multipliers u as decision variables,

(LD) wLD = min{z(u) : u ∈ Rm, ui ≥ 0 (i ∈ I)}.

This is called the Lagrangian Dual of problem (IP),

Theorem 12.14 (Characterisation of Lagrangian dual bound). The Lagrangian
dual bound is characterised as follows,

(LD′) wLD = max
x

cTx

s.t. D1x ≤ d1
D2x = d2

x ∈ conv(X).

Proof. We give the proof in the special case where X = {x[1], . . . , x[T]} is a
finite set. Then

wLD = min
ui≥0, i∈I

z(u) = min
ui≥0, i∈I

{
max{cTx[t] + uT(d−Dx[t]) : t = 1, . . . , T}

}
= min

(η,u)∈Rm+1

{
η : η ≥ cTx[t] + uT(d−Dx[t]), (t = 1, . . . , T), ui ≥ 0, i ∈ I

}
= min

(η,u)∈Rm+1

{
η + 0Tu : η + (Dx[t] − d)Tu ≥ cTx[t], (t = 1, . . . , T), ui ≥ 0, i ∈ I

}
.

101

12.4 The Lagrangian Dual Problem B6.3 MT 2021, Oxf. Math. Inst.

Taking the dual of the latter LP, strong LP duality implies

wLD = max
µ∈RT

{ T∑
t=1

µt(c
Tx[t]) :

T∑
t=1

µt(Dx
[t] − d)i ≤ 0, (i ∈ I),

T∑
t=1

µt(Dx
[t] − d)i = 0, (i ∈ E),

T∑
t=1

µt = 1, µ ≥ 0
}

= max
µ∈RT

{
cTx : D1x− d1 ≤ 0, D2x− d2 = 0, x ∈ conv({x[1], . . . , x[T]})

}
.

102

B6.3 MT 2021, Oxf. Math. Inst.

13 Lecture 13: Lagrangian Dual

13.1 The Strength of the Lagrangian Dual

Let us consider the IP

(IP) z = max cTx

s.t. D1x ≤ d1,
D2x = d2,

x ∈X = {x ∈ Rn : Ax ≤ a, x ≥ 0, x ∈ Zn},

with Lagrangian relaxation

(IP(u)) z(u) = max{cTx+ uT(d−Dx) : x ∈X },

and let us compare the dual bounds associated with the Lagrangian Dual and
the LP relaxation of (IP),

(LD) wLD = min
u
{z(u) : u ∈ Rm, ui ≥ 0 (i ∈ I)},

(LP) wLP = max
x
{cTx : D1x ≤ d1, D2x = d2, Ax ≤ a, x ≥ 0}.

Theorem 13.1 (Lagrangian dual and LP relaxation). The Lagrangian dual bound
is at least as tight as the LP relaxation bound,

z ≤ wLD ≤ wLP .

If {x ∈ Rn : Ax ≤ a, x ≥ 0} is an ideal formulation of X , then wLD = wLP .

Proof. We have X = {x ∈ Rn : Ax ≤ a, x ≥ 0} ∩ Zn. Therefore, X ⊂ {x ∈
Rn : Ax ≤ a, x ≥ 0}, and hence,

conv(X) ⊆ conv ({x ∈ Rn : Ax ≤ a, x ≥ 0}) = {x ∈ Rn : Ax ≤ a, x ≥ 0}.

It follows from Theorem (Characterisation of Lagrangian dual) that (LP) is a
relaxation of (LD), and hence, wLD ≤ wLP, as claimed.

Moreover, if {x ∈ Rn : Ax ≤ a, x ≥ 0} is an ideal formulation of X , then

{x ∈ Rn : Ax ≤ a, x ≥ 0} = conv(X),

so that (LD) and (LP) coincide.

In the latter situation the Lagrangian Dual offers an alternative to solving
the LP relaxation directly in cases where this is too costly.

103

13.2 Choosing a Lagrangian Dual B6.3 MT 2021, Oxf. Math. Inst.

13.2 Choosing a Lagrangian Dual

Many problems have several reasonable Lagrangian Duals. In this case it is
worthwhile thinking about the advantages and disadvantages of the different
formulations before starting any calculations.

Example 13.2 (Generalised assignment problem (GAP)). Consider the gener-
alised assignment problem

(IP) z = max

n∑
j=1

m∑
i=1

cijxij

s.t.
n∑
j=1

xij ≤ 1 (i = 1, . . . ,m),

m∑
i=1

aijxij ≤ bj (j = 1, . . . , n),

x ∈ {0, 1}m×n.

In this case we have multiple choices of a Lagrangian dual:

1. Dualising both sets of constraints

(IP(u)) z(u) = max
x

n∑
j=1

m∑
i=1

(cij − ui − aijvj)xij +

m∑
i=1

ui +

n∑
j=1

vjbj

s.t. x ∈ {0, 1}m×n.

It is certainly easy to solve this IP, as the remaining feasible set X = {0, 1}m×n has the
ideal formulation {x ∈ Rm : 0 ≤ xi ≤ 1 ∀ i}. By Theorem 2, solving the Lagrangian
dual minu≥0 z(u) yields the same result as the LP relaxation of (IP). However, it might
still be of interest to solve the Lagrangian dual, as (IP(u)) can be solved by inspection:

x∗ij =

{
1 if cij − ui − aijvj > 0

0 otherwise.

2. Dualising only the second set of constraints The advantages and disadvan-
tages of this relaxation are similar to the first case, since the constraint matrix has the
consecutive ones property.

3. Dualising only the first set of constraints

(IP(u)) z(u) = max
x

n∑
j=1

m∑
i=1

(cij − ui)xij +

m∑
i=1

ui

s.t.
m∑
i=1

aijxij ≤ bj (j = 1, . . . , n),

x ∈ {0, 1}m×n.

104

13.3 Subgradients B6.3 MT 2021, Oxf. Math. Inst.

Here the remaining feasible set X = {x ∈ {0, 1}m×n :
∑
i aijxij ≤ bj , j = 1, . . . , n}

is not of the ”easy” type, as

conv(X) ⊂

{
x ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . ,m,

∑
i

aijxij ≤ bj j = 1, . . . , n

}
is generally a strict inclusion. Consequently, wLD may be a strictly tighter bound than
the bound obtained from the LP relaxation.

The Lagrangian dual is more difficult to solve, but (IP(u)) decouples into blocks
({xij : i = 1, . . . ,m})nj=1 and can be parallelised.

13.3 Subgradients

By the definition of a Lagrangian Relaxation, the map

u 7→ z(u) = max{cTx+ uT(d−Dx) : x ∈X }

is a piecewise linear function of u. Therefore, z(u) is a convex function on
D := {u ∈ Rm : ui ≥ 0, (i ∈ I)} by virtue of the following lemma:

Lemma 13.3 (Pointwise maximum of convex functions). Let {fi(u) : D →
R
∣∣ i ∈ N} be a set of convex functions defined on a convex domain D . Then

u 7→ max
i∈N

fi(u)

is a convex function on D .

Proof. For all u1, u2 ∈ D and λ ∈ [0, 1],

max
i
fi (λu1 + (1− λ)u2) ≤ max

i
(λfi(u1) + (1− λ)fi(u2)) ≤ λmax

i
fi(u1)+(1−λ) max

i
fi(u2).

Note that z(u) is not differentiable at breakpoints u where arg max{cTx +
uT(d−Dx) : x ∈X } contains more than one point.

Lemma 13.4 (Gradient characterisation of convex functions). Let D ⊆ Rm be a
convex domain and f : D → R a convex function with gradient γ = ∇f(u) at u ∈ D .
Then the first order Taylor approximation is a lower bounding function:

f(u) + γT(v − u) ≤ f(v), (v ∈ D).

Proof. By definition, f is convex if for all u, v ∈ D and λ ∈ [0, 1],

f (λv + (1− λ)u) ≤ λf(v) + (1− λ)f(u).

Therefore,

f(u) +
f (u+ λ(v − u))− f(u)

λ
≤ f(v),

and taking the limit λ→ 0 yields the result.

105

13.4 Solving the Lagrangian Dual B6.3 MT 2021, Oxf. Math. Inst.

Definition 13.5 (Extension of a convex function). Let D ⊆ Rm be a convex do-
main and f : D → R a convex function. We extend f to a proper convex function
defined on Rm by setting f(u) := +∞ for u /∈ D . The extension satisfies satisfies

f (λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v), (u, v ∈ Rm, λ ∈ [0, 1].

Motivated by Lemma (Gradient characterisation of convex functions), the
notion of gradient can be generalised to non-differentiable points of convex
functions:

Definition 13.6 (Subgradient and Subdifferential). Let u ∈ Rm and let f : Rm →
R be a proper convex function. A subgradient of f at u ∈ Rm is a vector γ ∈ Rm
such that

f(u) + γT(v − u) ≤ f(v), (v ∈ Rm).

The subdifferential ∂f(u) of f at u is the set of subgradients of f at u.

Proposition 13.7 (Properties of the subdifferential). i) If f is differentiable at
u, then ∂f(u) = {∇f(u)} is a singleton containing only the gradient.

ii) ∂f(u) is a convex set.

iii) u∗ ∈ arg min f(u) if and only if ~0 ∈ ∂f(u∗).

iv) Let z(u) := max{cTx+ uT(d−Dx) : x ∈X }. Then

∂z(u) = conv
({
d−Dx∗ : x∗ ∈ arg max{cTx+ uT(d−Dx) : x ∈X }

})
,

where arg max is the set of all maximisers.

Proof. See problem sheet.

13.4 Solving the Lagrangian Dual

Algorithm 13.8 (Subgradient Algorithm for Solving (LD)).
Initialise:

choose u ∈ Rm with ui ≥ 0, (i ∈ I);
X∗ := arg max{cTx+ uT(d−Dx) : x ∈X },

V := {d−Dx∗ : x∗ ∈ X∗};
while ~0 /∈ conv(V) do

choose v ∈ V , µ > 0;
if i ∈ I then

ui := max
(
ui − µvi, 0

)
; // Step (*)

else
ui := ui − µvi;

end
X∗ := arg max{cTx+ uT(d−Dx) : x ∈X },
V := {d−Dx∗ : x∗ ∈ X∗};

end

106

13.4 Solving the Lagrangian Dual B6.3 MT 2021, Oxf. Math. Inst.

Notes:

• In each iteration of the main loop the Lagrange multiplier vector is im-
proved by correcting it in a direction−v that makes the objective function
z(u) decrease.

• Note the built-in safeguard mechanism (Step (*)) that prevents individual
components of the updated u to become negative for i ∈ I.

• The termination criterion of the main loop can be evaluated by solving
an LP (see problem sheet).

• The choice of step length µ requires further discussion.

We want to choose the step length µ > 0 to guarantee that the algorithm
converges to the optimal solution of the Lagrangian Dual. The following lemma
gives further insight:

Let

• u[k], v[k] and µk be the values of u, v and µ in the k-th iteration of the main
loop,

• zk := z(u[k]),

• U∗ := arg minu z(u), wLD := minu z(u),

• dist(u[1], U∗) := minu∗∈U∗ ‖u[1]−u∗‖2 (measures how far from an optimal
value we start the iterations).

Lemma 13.9 (Convergence of the subgradient algorithm). If there exists G > 0
such that ‖v[k]‖2 ≤ G for all k, then

min
i∈[1,k]

zi − z∗ ≤
dist(u[1], U∗) +G2

∑k
i=1 µ

2
i

2
∑k
i=1 µi

.

Proof. For any u∗ ∈ U∗,

‖u[k+1] − u∗‖22 ≤ ‖u[k] − µkv[k] − u∗‖22 (see problem sheet)

= ‖u[k] − u∗‖22 − 2µkv
[k] T(u[k] − u∗) + µ2

k‖v[k]‖22
≤ ‖u[k] − u∗‖22 − 2µk (zk − z∗) + µ2

kG
2 (since v[k] is a subgradient).

By recursion, ‖u[k+1] − u∗‖22 ≤ ‖u[1] − u∗‖22 − 2
∑k
i=1 µi (zi − z∗) +

∑k
i=1 µ

2
iG

2,
and hence,

2

(
k∑
i=1

µi

)
×
(

min
i∈[1,k]

zi − z∗
)
≤ 2

k∑
i=1

µi (zi − z∗) + ‖u[k+1] − u∗‖22

≤ ‖u[1] − u∗‖22 +

k∑
i=1

µ2
iG

2.

107

13.5 Practical Subgradient Algorithm B6.3 MT 2021, Oxf. Math. Inst.

Corollary 13.9.1 (Basic step length choice). If (µk)N ⊂ R+ is chosen such that

i)
∑∞
k=1 µk =∞,

ii)
∑∞
k=1 µ

2
k <∞,

then z(u[k])→ wLD.

13.5 Practical Subgradient Algorithm

Theorem 13.10 (Improved step length choice). i) If
∑
k µk → ∞ and µk →

0 as k →∞, then z(u[k])→ wLD.

ii) If µk = µ0ρ
k for some fixed ρ ∈ (0, 1) for µ0 sufficiently large and ρ sufficiently

close to 1, then z(u[k])→ wLD.

iii) if z(u[0]) > w ≥ wLD and

µk =
εk ×

(
z(u[k])− w

)
‖v[k]‖2

,

where εk ∈ (0, 2) for all k, then either z(u[k]) → wLD for k → ∞, or else
w ≥ z(u[k]) ≥ wLD occurs for some finite k.

Step length choice iv) gives the most useful step lengths in practice, but
note that for µk to be positive, we need an upper bound w ∈ (wLD, z(u

[k])). In
practical applications such a bound is not available explicitly.

Note however:

• Lower bounds w of wLD are often available by ways of using heuristics
that produce primal feasible solutions.

• If the bound w in Rule iv) is chosen too low, µk is positive but possibly
too large. If z(u[k+1]) < z(u[k]), this does not pose a problem, as descent
is achieved and the point u[k+1] can be accepted as the next iterate.

• If z(u[k+1]) ≥ z(u[k]), the step µk took the iterate to a point where the
objective function z(u) increases again. The guess of w then needs to be
increased to reduce the step length µk.

Algorithm 13.11 (Practical Subgradient Algorithm for Solving (LD)).

108

13.6 An Example B6.3 MT 2021, Oxf. Math. Inst.

Initialise:
fix ε ∈ (0, 2), choose u ∈ Rm with ui ≥ 0, (i ∈ I);
X∗ := arg max{cTx+ uT(d−Dx) : x ∈X },

V := {d−Dx∗ : x∗ ∈ X∗};
find x ∈ F = X ∩ {D1x ≤ d1, D2x = d2};
set w := w := cTx;

while ~0 /∈ conv(V) do
choose v ∈ V ;
z+ := +∞;
while z+ ≥ z(u) do

w := z(u)+w
2 ; // this is our guess of a suitable

dual bound

µ := ε(z(u)−w)
‖v‖2 ;

if i ∈ I then
u+i := max

(
ui − µvi, 0

)
; // compute candidate updates

else
u+i := ui − µvi; // compute candidate updates

end
z+ := z(u+); // evaluate candidate updates

end
u := u+; // accept candidate updates as actual

updates
w := w;
X∗ := arg max{cTx+ uT(d−Dx) : x ∈X },
V := {d−Dx∗ : x∗ ∈ X∗};

end

13.6 An Example

Example 13.12 (STSP). We revisit the Lagrangian Dual of the STSP, this time with-
out assuming that we have a priori knowledge of the optimal u.

The dualised constraints were the degree constraints∑
e∈δ(i)

xe = 2 (i ∈ V).

Since these are equality constraints, the Lagrange multipliers u are unconstrained,
and the updating rule is

u
[k+1]
i = u

[k]
i + µk

(
2−

∑
e∈δ(i)

x∗e(u
[k])
)
.

The STSP being a minimisation problem rather than a maximisation problem, we
have to replace all mins by maxes, lower bounds by upper bounds and so forth.

109

13.6 An Example B6.3 MT 2021, Oxf. Math. Inst.

We step length rule iii) with εk = 1, that is,

µk =
w − z(u[k])∑

i∈V
(
2−

∑
e∈δ(i) x

∗
e(u

[k])
)2 ,

where w is a lower bound on wLD, and where we had to invert the sign of µk because
(LD) is a maximisation problem.

Initialisation: We apply the greedy heuristic and find the tour 1→ 2→ 3→ 4→
5→ 1 of length 148.

As no lower boundw onwLD is known at present, we use the primal (upper) bound
w = 148 instead and see how far this allows us to increase z(u[k]), knowing that at a
later time we will probably have to replace w by a smaller value, as 148 is usually not
a lower bound.

Iteration 0: Starting with u[0] = [0, 0, 0, 0, 0], the revised costs are given by

c̄
[0]
ij = cij − u[0]i − u

[0]
j = cij .

Solving the associated min-cost 1-tree problem, we find the optimal 1-tree with edge
incidence matrix

[x∗ij(u
[0])] =


− 1 1 0 0
− − 1 0 0
− − − 1 1
− − − − 0
− − − − −

 ,
leading to the objective value z(u[0]) = 130.

The subgradient of z(u) at u[0] is[(
2−

∑
e∈δ(i)

x∗e(u
[0])
)
i=1,...,m

]
= [0, 0,−2, 1, 1],

and as µ0 = (148−130)/6 = 3, we find u[1] = u[0]+3·[0, 0,−2, 1, 1] = [0, 0,−6, 3, 3].

Iteration 1: The new cost matrix is

[c̄
[1]
ij] =

[
cij − u[1]i − u

[1]
j

]
=


− 30 32 47 37
− − 30 37 47
− − − 27 29
− − − − 24
− − − − −

 .

The optimal 1-tree is found as

[x∗ij(u
[1])] =


− 1 1 0 0
− − 1 0 0
− − − 1 0
− − − − 1
− − − − −

 ,

110

13.6 An Example B6.3 MT 2021, Oxf. Math. Inst.

leading to the objective value z(u[1]) = 143 + 2
∑
i u

[1]
i = 143.

Updating the Lagrange multipliers, we obtain

u[2] = u[1] +
148− 143

2
· [0, 0,−1, 0, 1] =

[
0, 0,−17

2
, 3,

11

2

]
.

Iteration 2: The new cost matrix and optimal 1-tree are

[c̄
[2]
ij] =


− 30 34.5 47 34.5
− − 32.5 37 44.5
− − − 29.5 29
− − − − 21.5
− − − − −

 , [x∗ij(u
[2])] =


− 1 0 0 1
− − 1 0 0
− − − 0 1
− − − − 1
− − − − −

 ,

leading to the objective value z(u[2]) = 147.5.

This means that 147.5 is a lower bound on the optimal value z of the STSP. But
since [cij] are all integer valued, this implies

148 = d147.5e ≤ z ≤ w = 148,

which shows that the greedy tour 1→ 2→ 3→ 4→ 5→ 1 was STSP-optimal!

111

B6.3 MT 2021, Oxf. Math. Inst.

14 Lecture 14: Cutting Planes

14.1 LP Preprocessing

LP or IP models can often be simplified by reducing the number of variables
and constraints, and IP models can be tightened before any actual branch-and-
bound computations are performed.

Example 14.1 (Preprocessing an LP). Consider the LP instance

max 2x1 + x2 − x3
s.t. 5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 1

1 ≤ x3.

Tightening bounds: Isolating x1 in the first constraint and using x2 ≤ 1,−x3 ≤
−1 yields

5x1 ≤ 15 + 2x2 − 8x3 ≤ 15 + 2× 1− 8× 1 = 9,

and hence, x1 ≤ 9/5, which tightens the bound x1 ≤ 3.

Likewise, isolating x3 in the first constraint, and using the bound constraints, we
find

8x3 ≤ 15 + 2x2 − 5x1 ≤ 15 + 2× 1− 5× 0 = 17.

This implies x3 ≤ 17/8 and tightens x3 ≤ ∞.

And finally, isolating x2 in the first constraint,

2x2 ≥ 5x1 + 8x3 − 15 ≥ 5× 0 + 8× 1− 15 = −7

yields x2 ≥ −7/2 which does not tighten x2 ≥ 0.

Proceeding similarly with the second and third constraints, we obtain the tightened
bound

8x1 ≥ 9− 3x2 + x3 ≥ 9− 3 + 1 = 7,

yielding the improved bound x1 ≥ 7/8.

As some of the bounds have changed after the first sweep, we may now go back to
the first constraint and tighten the bounds yet further. Isolating x3, we obtain

8x3 ≤ 15 + 2x2 − 5x1 ≤ 15 + 2− 5× 7

8
=

101

8
,

yielding the improved bound x3 ≤ 101/64.

112

14.2 IP Preprocessing B6.3 MT 2021, Oxf. Math. Inst.

Continuing the second sweep by isolating each variable in turn in each of the con-
straints 1–3, and using the bound constraints, several bound constraints may further
tighten in general, but not in the present example.

How many sweeps of this process are needed? One can show that after two sweeps
of all the constraints and variables, the bounds cannot improve any further!

Redundant Constraints: Using the final upper bounds in constraint 3,

x1 + x2 + x3 ≤
9

5
+ 1 +

101

64
< 6,

so that this constraint is redundant and can be omitted.

The remaining problem is

max 2x1 + x2 − x3
5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

7

8
≤ x1 ≤

9

5
, 0 ≤ x2 ≤ 1, 1 ≤ x3 ≤

101

64
.

Variable fixing:

• Increasing x2 makes the objective function grow and loosens all constraints ex-
cept x2 ≤ 1. Therefore, in an optimal solution we must have x2 = 1.

• Decreasing x3 makes the objective function grow and loosens all constraints
except 1 ≤ x3. Thus, in an optimal solution we must have x3 = 1.

This leaves the trivial problem

max

{
2x1 :

7

8
≤ x1 ≤

9

5

}
.

14.2 IP Preprocessing

In the preprocessing of IPs we have further possibilities:

• For all xj with an integrality constraint xj ∈ Z any bounds lj ≤ xj ≤ uj
can be tightened to dlje ≤ xj ≤ bujc.

• For binary variables new logical or Boolean constraints can be derived that
tighten the formulation and hence lead to fewer branching nodes in a
branch-and-bound procedure.

The latter point is illustrated in the next example:

113

14.3 The Cutting Plane Algorithm B6.3 MT 2021, Oxf. Math. Inst.

Example 14.2 (Preprocessing Binary Programming Problems). Consider a BIP
instance whose feasible set is defined by the following constraints,

7x1 + 3x2 − 4x3 − 2x4 ≤ 1

−2x1 + 7x2 + 3x3 + x4 ≤ 6

−2x2 − 3x3 − 6x4 ≤ −5

3x1 − 2x3 ≥ −1

x ∈ {0, 1}4.

Generating logical inequalities: The first constraint shows that x1 = 1⇒ x3 =
1, which can be written as x1 ≤ x3. Likewise, x1 = 1 ⇒ x4 = 1, or equivalently,
x1 ≤ x4.

Finally, constraint 1 also shows that the problem is infeasible if x1 = x2 = 1.
Therefore, the following constraint must hold,

x1 + x2 ≤ 1.

We can process the remaining constraints in a similar vein:

• Constraint 2 yields the inequalities x2 ≤ x1 and x2 + x3 ≤ 1.

• Constraint 3 yields x2 + x4 ≥ 1 and x3 + x4 ≥ 1.

• Constraint 4 yields x1 ≥ x3.

Although the introduction of the new logical constraints makes the problem seem
more complicated, the formulation becomes tighter and thus easier to solve. Further-
more, we can now process the problem further:

Combining pairs of logical inequalities: We now consider pairs involving the
same variables.

• x1 ≤ x3 and x1 ≥ x3 yield x1 = x3.

• x1 + x2 ≤ 1 and x2 ≤ x1 yield x2 = 0, and then x2 + x4 ≥ 1 yields x4 = 1.

Simplifying: Substituting the identities x2 = 0, x3 = x1 and x4 = 1 we found,
all four constraints become redundant.

We are left with the choice x1 ∈ {0, 1}, and hence the feasible set contains only two
points

S = {(1, 0, 1, 1), (0, 0, 0, 1)}.

14.3 The Cutting Plane Algorithm

The above discussion of preprocessing steps shows that it is possible to derive
valid inequalities for the integer feasible solutions of an IP from its polyhedral

114

14.3 The Cutting Plane Algorithm B6.3 MT 2021, Oxf. Math. Inst.

formulation. This idea can be generalised and systematically exploited in the
design of algorithms.

Consider the problem

(IP) max cTx

s.t. x ∈X = P ∩ Zn,

where P = {x ∈ Rn : aTi x = bi, (i = 1, . . . ,m), x ≥ 0}.

Definition 14.3 (Valid inequalities and cuts). A valid inequality for X is an
inequality of the form

αTx ≤ α0

that is satisfied for all x ∈X (but not necessarily for all x ∈P).

A cut for x∗ ∈P \X is a valid inequality for X such that

αTx∗ > α0,

that is, P ∩ {x : αTx ≤ α0} is a tighter formulation of X that excludes x∗.

Algorithm 14.4 (Cutting Plane Algorithm).
solve LP relaxation x∗ = arg maxx{cTx : x ∈P}; // initialisation
while x∗ fractional do

find a cut αTx ≤ α0 for x∗;
P ←P ∩ {x : αTx ≤ α0};
// (x∗ is cut from the new formulation)
solve LP relaxation x∗ = arg maxx{cTx : x ∈P};

end

Notes:

• The algorithm relies on systematic methods to generate cuts, an issue we
will discuss further.

• In contrast to the Branch & Bound Algorithm, the convergence of the
Cutting Plance Algorithm is not guaranteed but depends on the nature
of the cuts that are applied.

• Ideally, one would like to apply cuts that are easily computed and cut off
a large part of P , but the two goals are often contradictory.

• The Cutting Plane Algorithm can be combined with the Branch-and-Bound
Method, which yields the most powerful black-box solvers for IPs (Branch-
and-Cut Algorithm).

115

14.4 Chvàtal Cuts B6.3 MT 2021, Oxf. Math. Inst.

14.4 Chvàtal Cuts

Example 14.5 (Chvàtal cut). Consider the IP minx{−x1− x2− x3 : x ∈X } with
X = P ∩ Z3 and

P = {x ∈ R3 : x1 + x2 ≤ 1, x2 + x3 ≤ 1, x1 + x3 ≤ 1, x ≥ 0}.

Using slack variables x4, x5, x6, the vector x∗ = (0.5, 0.5, 0.5, 0, 0, 0) is optimal for
the LP relaxation of (IP),

(LP) min
x≥0
−x1 − x2 − x3 s.t.


x1 + x2 + x4 = 1

x2 + x3 + x5 = 1

x1 + x3 + x6 = 1

Multiplying the three equality constraints with 0.5 and adding them yields

x1 + x2 + x3 + 0.5x4 + 0.5x5 + 0.5x6 = 1.5.

Using the non-negativity of x4, x5, x6, this implies x1+x2+x3 ≤ 1.5, which is a valid
inequality not only for X but also for P . Now using the integrality of x1, x2, x3, we
obtain the valid inequality

x1 + x2 + x3 ≤ 1,

which is a cut for x∗ because x∗1 + x∗2 + x∗3 = 1.5.

We now generalise the approach described above: For any r ∈ Rn, let brc =
[br1c, . . . , brnc].

Definition 14.6 (Chvàtal cuts). Let P(0) = {x ≥ 0 : Ax = b} be a polyhedron
given by a system of m equations and n non-negativity constraints, and let u ∈ Rm.
The Chvàtal cut associated with u is given by

αTx ≤ α0,

where αT := buTAc and α0 := buTbc.

Lemma 14.7 (Chvàtal cuts are valid inequalities). All Chvàtal cuts are valid in-
equalities for the set X = P(0) ∩ Zn.

Proof. x ∈ X implies Ax = b, and hence, uTAx = uTb. Using x ≥ 0 this
implies buTAcx ≤ uTb, and using integrality of xi, (i = 1, . . . , n), this implies
buTAcx ≤ buTbc.

We state the next result without proof.

Theorem 14.8 (Separation of non-integral vertices). Let x∗ be a vertex of P(0)

such that x∗ /∈ Zn. Then there exists a vector u ∈ Rm such that

buTAcx ≤ buTbc

is a cut for x∗.

116

14.5 Chvàtal Closures B6.3 MT 2021, Oxf. Math. Inst.

14.5 Chvàtal Closures

In general, not all valid inequalities for X can be obtained as Chvàtal cuts of a
given formulation P(0):

Let us write A(1)x ≤ b(1) for the set of all Chvàtal cuts that can be derived
from the formulation P(0) of X , and let us define the new set

P(1) := {x ≥ 0 : Ax = b, A(1)x ≤ b(1)}.

The next result is given without proof.

Lemma 14.9 (Polyhedrality of Chvàtal closure). Only finitely many of the inequal-
ities A(1)x ≤ b(1) are essential (non-redundant), that is, P(1) is a polyhedron, and
we assume without loss of generality that the system A(1)x ≤ b(1) lists only essential
Chvàtal cuts, and that there are m1 of these.

We can now repeat this construction an apply new Chvàtal cuts

buTA+ wT
1 A

(1)cx ≤ buTb+ wT
1 b

(1)c

with u ∈ Rm and w1 ∈ Rm1
+ to P(1). Denote the essential inequalities of this

form by A(2)x ≤ b(2). By Lemma (Polyhedrality of Chvàtal closure), there are a
finite number m2 of new inequalities, hence

P(2) := {x ≥ 0 : Ax = b, A(1)x ≤ b(1), A(2)x ≤ b(2)}

is a polyhedron.

Applying this process iteratively, for k ∈ N we obtain polyhedra

P(k) = {x ≥ 0 : Ax = b, A(1)x ≤ b(1), . . . , A(k−1)x ≤ b(k−1)}

that generate a new set of mk inequalities A(k)x ≤ b(k) defined as the set of
essential Chvàtal cuts of the form

buTA+

k∑
j=1

wT
j A

(j)cx ≤ buTb+

k∑
j=1

wT
j b

(j)c

with u ∈ Rm and wj ∈ Rmj+ , (j = 1, . . . , k).

It is clear from the above construction that

P(0) ⊇P(1) ⊇ · · · ⊇P(k) ⊃ conv(X)

is a nesting of ever tighter formulations of X . The next result, given without
proof, shows that this process is finite.

Theorem 14.10 (Finiteness of Chvàtal rank). For any polyhedron P(0) and X =
P(0) ∩ Zn there exists a finite k for which P(k) = conv(X).

117

14.5 Chvàtal Closures B6.3 MT 2021, Oxf. Math. Inst.

Definition 14.11 (Chvàtal closures). P(k) is called the k-th Chvàtal closure of
P(0), and min{k : P(k) = conv(X)} is called the Chvàtal rank of P(0). In
particular, P(0) is an ideal formulation if and only if its Chvàtal rank is zero.

Notes:

• We started with an equality constrained IP max{cTx : Ax = b}, which
is why the vectors u are unconstrained, but the vectors wk used to take
linear combinations of added inequalities A(k)x ≤ b(k) must be chosen
w1 ≥ 0. Alternatively, note that A(k), b(k) are integer valued, so that if the
IP is brought into equality constrained form by adding slack variables
s(k) = b(k) −A(k)x, these are forced to be integer valued variables too.

• The use of an essential Chvàtal cut in each iteration of the cutting plane
algorithm guarantees finite termination, because an ideal formulation of
X is found after applying finitely many iterations. However, there ex-
ist examples for which the Chvàtal rank is larger than the number n of
decision variables.

• In general even the number of essential inequalities A(1)x ≤ b(1) in the
first Chvàtal closure is of order m1 = O

((
n
m

))
. Applying the cutting

plane algorithm with Chvàtal cuts is thus very inefficient in practice.

• However, to solve an IP it is not necessary to find an ideal formulation.
A more economical approach is required that only applies cuts that make
the optimal solution emerge.

118

B6.3 MT 2021, Oxf. Math. Inst.

15 Lecture 15: Gomoroy Cuts

15.1 Gomoroy Cuts

Let P = {x ∈ Rn : aTi x = bi, (i = 1, . . . ,m), x ≥ 0} and consider the IP
problem

(IP) max cTx

s.t. x ∈X = P ∩ Zn.

The LP relaxation is given by

(LP) max{cTx : Ax = b, x ≥ 0}

with A = [a1 ... am]T and b = [b1 ... bm]T. Let x∗ be obtained by solving (LP)
with the simplex algorithm.

By permuting decision variables we may assume w.l.o.g. that B = [1,m],
i.e., the columns so that the basic variables associated with x∗ appear in the
first m×m block. The optimal tableau looks as follows,

Im AN b̄
0 c̄TN −z∗

where z∗ = cTx∗, A = A−1B A, b̄ = A−1B b = x∗B and c̄N = cN − AT
NA
−T
B cB (see

Lecture 2).

If b̄ ∈ Zn, x∗ solves (IP). Otherwise there exists t ∈ B s.t. x∗t is fractional and
the t-th row of the tableau reads

xt +
∑
j∈N

ātjxj = b̄t,

Definition 15.1 (Gomoroy Cut). The Gomoroy cut associated with variable x∗t is
the valid inequality

xt +
∑
j∈N
bātjcxj ≤ bb̄tc.

Lemma 15.2. The Gomoroy cut associated with variable x∗t is a cut for x∗. This is a
special case of a Chvàtal cut.

Proof. Let et be the t-th canonical unit vector. The Gomoroy cut is then obtained
as the Chvàtal cut associated with vector u = A−TB et, and it is a cut for x∗ since

x∗t +
∑
j∈N
bātjcx∗j = x∗t > bb̄tc.

119

15.2 Cutting Planes with Gomoroy Cuts B6.3 MT 2021, Oxf. Math. Inst.

Indeed, we have

uTA = eTt A
−1
B A = eTt A = aTt ,

uTb = eTt A
−1
B b = eTt b = b

T

t .

Subtracting the equality constraint xt+
∑
j∈N atjxj = bt from its associated

Gomoroy cut
xt +

∑
j∈N
bātjcxj ≤ bb̄tc,

we obtain
∑
j∈N −ϕ(ātj)xj ≤ −ϕ(b̄t), where we write ϕ(a) = a − bac for the

fractional part of any real number a. This yields the Gomoroy cut in fractional
form, ∑

j∈N
−ϕ(ātj)xj + s = −ϕ(b̄t), s ∈ N0,

where s is a nonegative integer valued slack variable.

15.2 Cutting Planes with Gomoroy Cuts

We may now use Gomoroy cuts as a way to generate cutting planes in the
cutting plane algorithm. Adding the cut to the formulation of our IP, we have

(IP) max [c0]T[xs]

s.t. [xs] ∈X + := P+ ∩ Zn+1,

where

P+ = {[xs] : x ∈P} ∩

[xs] :
∑
j∈N
−ϕ(ātj)xj + s = −ϕ(b̄t)

 .

Writing ϕ(āt,:) for the vector [ϕ(āt,j)]
n
j=1, the LP relaxation of this new for-

mulation is given by

(LP’) max
x,s

cTx

s.t.
[

A 0
−ϕ(āt,:) 1

] [
x
s

]
=

[
b̄

−ϕ(b̄t)

]
,

x, s ≥ 0.

The Gomoroy cut can be added to the tableau corresponding to x∗, which
now has one extra row (for the cut) and column (for the new basic variable s),

120

15.3 An Example B6.3 MT 2021, Oxf. Math. Inst.

Im AN 0 b̄
0 −ϕ(āt,N) 1 −ϕ(b̄t)
0 c̄TN 0 −z∗

which now represents a basic (but infeasible) solution of (LP’).

However, we can re-optimise the primal tableau via dual simplex steps,
because the dual solution y∗ remains feasible by extending it to (y∗, 0).

15.3 An Example

Example 15.3 (IP by cutting plane algorithm with Gomoroy cuts).

(IP) max
x

x2

s.t. 3x1 + 2x2 + x3 = 6

−3x1 + 2x2 + x4 = 0

xj ≥ 0, xj ∈ Z, (j = 1, . . . , 4).

The initial tableau is found as

3 2 1 0 6
-3 2 0 1 0
0 1 0 0 0

and after a few pivoting steps, the optimal tableau is found:

1 0 1/6 -1/6 1
0 1 1/4 1/4 3/2
0 0 -1/4 -1/4 -3/2

from which we read off the LP-optimal solution x∗ = [1, 3/2, 0, 0]. Since x∗2 is frac-
tional, row 2 yields

x2 + 0.25x3 + 0.25x4 = 1.5,

⇒ x2 + 0× x3 + 0× x4 ≤ b1.5c,
⇒ x2 ≤ 1.

Introduction of a slack variable x5 and subtraction of the two equations yields

x2 + x5 = 1, x5 ≥ 0, x5 ∈ Z
−(x2 + 0.25x3 + 0.25x4 = 1.5)

⇒ −0.25x3 − 0.25x4 + x5 = −0.5, x5 ≥ 0, x5 ∈ Z.

Add this equation to the tableau,

121

15.3 An Example B6.3 MT 2021, Oxf. Math. Inst.

1 0 1/6 -1/6 0 1
0 1 1/4 1/4 0 3/2
0 0 -1/4 -1/4 1 -1/2
0 0 -1/4 -1/4 0 -3/2

This tableau describes a basic solution (the intersection of m active constraints)
by setting xN = 0, but the solution is not feasible, because x5 = −1/2. To render
this variable non-negative, we must use row 3 as a pivot row in which to eliminate a
different variable.

To decide on which column to pivot, note that if the pivot row t were to read
n∑
j=1

ātjxj = b̄t

with ātj ≥ 0 (j = 1, . . . , n) and b̄t < 0, then no matter how x ≥ 0 is chosen,
constraint t cannot be satisfied. In that case, we would have to conclude that the
primal problem is infeasible.

Luckily, in our case, this is not so, and in pivoting on column h with āth < 0, the
last row changes as follows,

c̄j ← c̄j −
c̄h
āth

ātj .

To ensure that dual feasibility is not destroyed, we must not allow any c̄j to become
positive, that is,

c̄j −
c̄h
āth

ātj ≤ 0, (j = 1, . . . , n) (not a problem if ātj ≥ 0, since c̄h ≤ 0 and āth < 0)

⇔ c̄j
|ātj |

− c̄h
|āth|

≤ 0, (j ∈ [1, n], ātj < 0)

⇔ h ∈ arg max

{
c̄j
|ātj |

: j ∈ [1, n], ātj < 0

}
.

For example in our case, t = 3, h ∈ {3, 4}. Eliminating x3 in row 3 reoptimises the
tableau,

1 0 1/6 -1/6 0 1
0 1 1/4 1/4 0 3/2
0 0 1 1 -4 2
0 0 -1/4 -1/4 0 3/2

→

1 0 0 -1/3 2/3 2/3
0 1 0 0 1 1
0 0 1 1 -4 2
0 0 0 0 -1 -1

Row 1 yields the Gomoroy cut x1 − x4 ≤ 0, or in fractional form,

x1 − x4 + x6 = 0, x6 ≥ 0, x6 ∈ Z
−(x1 − 1/3x4 + 2/3x5 = 2/3)

⇒ −2/3x4 − 2/3x5 + x6 = −2/3, x6 ≥ 0, x6 ∈ Z.

Add this equation to the tableau,

122

15.3 An Example B6.3 MT 2021, Oxf. Math. Inst.

1 0 0 -1/3 2/3 0 2/3
0 1 0 0 1 0 1
0 0 1 1 -4 0 2
0 0 0 -2/3 -2/3 1 -2/3
0 0 0 0 -1 0 -1

Now t = 4, h = 4. Eliminating x4 in row 4 reoptimises the tableau,

1 0 0 -1/3 2/3 0 2/3
0 1 0 0 1 0 1
0 0 1 1 -4 0 2
0 0 0 1 1 -3/2 1
0 0 0 0 -1 0 -1

→

1 0 0 0 1 -1/2 1
0 1 0 0 1 0 1
0 0 1 0 -5 3/2 1
0 0 0 1 1 -3/2 1
0 0 0 0 -1 0 -1

The new optimal solution is x∗ = [1, 1, 1, 1, 0, 0], and the IP is now solved by LP
relaxation.

Note: Alternatively, the second Gomoroy cut x1 − x4 ≤ 0 could have also been
reformulated using the substitution x4 = 3x1 − 2x2, yielding

x2 ≤ x1.

Notes:

• The use of Gomoroy cuts is easy to understand and apply, and it guaran-
tees that the cutting plane algorithm converges. However, the technique
is not particularly effective, because the cuts become very shallow very
quickly.

• To help the method select deeper cuts, it is advised to generate the Go-
moroy cut from the most fractional variable x∗j , that is from the row corre-
sponding to arg maxj ϕ(x∗j).

• If the objective vector c is integer, then the objective z associated with any
integer feasible solution is integer, and one can also use the last row

−z +
∑
j∈N

c̄jxj = c̄0

of the optimised tableau to generate a Gomoroy cut when c̄0 is fractional:∑
j∈N
bc̄jcxj ≤ bc̄0c+ z

∑
j∈N

c̄jxj = c̄0 + z,

which yields ∑
j∈N
−ϕ(c̄j)xj ≤ −ϕ(c̄0).

123

15.3 An Example B6.3 MT 2021, Oxf. Math. Inst.

This is a cut for x∗, since
∑
j∈N ϕ(c̄j)x

∗
j = 0, but ϕ(c̄0) > 0, as c̄0 was

assumed fractional.

124

B6.3 MT 2021, Oxf. Math. Inst.

16 Lecture 16: Branch and Cut

16.1 The Branch & Cut Framework

Data Specification 16.1 (Branch & Cut).
// input data
objective max cTx;
constraints Ax = b with A, b integer valued, defining feasible set;
X = {x ∈ Zn : Ax = b, x ≥ 0};
// global data

global pool of valid inequalities A(0)x ≤ b(0) for X ;
global dual bound z̄;
global primal bound z;
list AN of active nodes;
node counter k;
// local (node level) data

local inequalities A[j]x ≤ b[j];
local polyhedron P [j], defining node feasible set X [j] = P [j] ∩ Zn;
node dual bound z̄[j];
node primal bound z[j];

Methods 16.2 (Branch & Cut).
function [x[j], P [j]] = addCuts(x[j], P [j])
// input x[j] = arg max{cTx : x ∈P [j]} optimised via simplex

while P [j] 6= ∅, x[j] fractional and ∃ sufficiently deep cut in pool do
find cut A[0]

i x
[j] > b

[0]
i in pool of valid inequalities;

P [j] ←P [j] ∩ {x : A
[0]
i x ≤ b

[0]
i };

re-optimise x[j] via dual simplex;
end
while P [j] 6= ∅, x[j] fractional and sufficiently deep new cuts generated do

generate cut αTx[j] > α0 with αTx ≤ α0 a valid inequality for X ;
{A[0]x ≤ b[0]} ← {A[0]x ≤ b[0]} ∪ {αTx ≤ α0}; // add valid

inequality to pool

P [j] ←P [j] ∩ {x : αTx ≤ α0};
re-optimise x[j] via dual simplex;

end
if P [j] = ∅ then

x[j] = NaN;
end

125

16.2 Algorithm Design Steps B6.3 MT 2021, Oxf. Math. Inst.

Algorithm 16.3 (Branch & Cut).

k = 1, A[1], b[1] = ∅, AN= {1}, z = −∞, z̄ = +∞, x∗ = NaN,
{A[0]x ≤ b[0]} = ∅; // initialisation

while AN 6= ∅ do
choose j ∈ AN;
if z̄[j] ≤ z then

AN← AN \ {j}; // pruning
else

P [j] = {x ∈ Rn : Ax = b, A[j]x ≤ b[j], x ≥ 0};
x[j] := arg max{cTx : x ∈P [j]}; // simplex warmstart

from parent’s initial subproblem

[x[j], P [j]] = addCuts(x[j], P [j]); // global pool of cuts
mined and expanded here

z̄[j] := cTx[j]; // z̄[j] := −∞ if x[j] = NaN

z̄ := max{z̄[`] : ` ∈ AN}; // update global upper bound

if x[j] integer valued then y[j] := x[j];
else attempt to find y[j] ∈X [j] via heuristic;
z[j] := cTy[j]; // set z[j] := −∞ if y[j] unassigned

if z[j] > z then
x∗ := y[j]; // update incumbent

z := z[j]; // update global lower bound
end
if ∃x[j]` fractional then
{A[k+i]x ≤ b[k+i]} := {A[j]x ≤

b[j]} ∪

{
{x ≤ bx[j]` c}, (i = 1),

{x ≥ dx[j]` e}, (i = 2)
// cuts from

global pool not passed on to child nodes!

z̄[k+i] := z̄[j], (i = 1, 2); // inherit dual bound from
parent

AN← (AN \ {j}) ∪ {k + 1, k + 2}, k ← k + 2; // branching
end

end
end

16.2 Algorithm Design Steps

Adapting the branch-and-cut framework to a specific problem class involves
the following steps:

1. Identification of structural properties of the problem class.

2. Use polyhedral analysis to translate the structural properties into classes
of valid inequalities to be used as cuts.

126

16.2 Algorithm Design Steps B6.3 MT 2021, Oxf. Math. Inst.

3. For each class C of valid inequalities, identify an efficient procedure to
solve the associated separation problem: Given x∗ /∈ X , find a valid
inequality αTx ≤ α0 for X among class C such that αTx∗ > α0.

Example 16.4 (Search index construction). The following example is due to Fis-
chetti:

Relational data bases use a small number of search indices to use in queries of m
different types. We need to choose which among a set of candidate indices {1, . . . , n}
to build and maintain so as to minimise the expected cost. j = 0 represents a default
index available without fixed cost:

min
y,x

n∑
j=1

cjyj +

m∑
i=1

n∑
j=0

γijxij

s.t.
n∑
j=1

djyj ≤ D

n∑
j=0

xij = 1, (i = 1, . . . ,m)

m∑
i=1

xij ≤ myj , (j = 1, . . . , n)

xij , yj ∈ {0, 1}, (i = 1, . . . ,m; j = 0, . . . , n).

• xij = 1 iff using index j for type i query,

• dj memory requirement for index j,

• D memory budget for all indices,

• xij = 1 for some i⇒ yj = 1 expressed as big M contraint,

• index 0 free and available.

127

16.2 Algorithm Design Steps B6.3 MT 2021, Oxf. Math. Inst.

In our example, let n = 5, m = 6, D = 19,

[γij] =


6200 1300 6200 6200 6200 6200
2000 900 700 2000 2000 2000
800 800 800 800 800 800
6700 6700 6700 1700 6700 2700
5000 5000 5000 2200 1200 4200
2000 2000 2000 2000 2000 750



[cj] =


200
1200
400
2400
250

 ,

[dj] =


10
5
10
8
6


The optimal solution (x∗, y∗) of the LP relaxation can never give a tight dual

bound, because the big-M constraint
∑m
i=1 x

∗
ij ≤ my∗j and the optimality of y∗ imply

that

y∗j =
1

m

m∑
i=1

x∗ij

is always fractional, unless all xij = 1 for the same index j.

Variable fixing: γij ≥ γi0 ⇒ xij = 0. This removes all variables xij apart from
x10, . . . , x60, x11, x21, x22, x43, x53, x54, x45, x55, x65, and it allows to tighten the
big-M constraints to

m∑
i=1

x∗ij ≤ |Ij |yj ,

where |Ij | = {i : γij < γi0}.
Now solving the LP relaxation yields the dual bound 8,940 and the following non-

zero values x∗20 = 6/10, x∗30 = 1, y∗1 = 7/10, x∗11 = 1, x∗21 = 4/10, y∗3 = 1,
x∗43 = x∗53 = 1, y∗5 = 1/3, x∗65 = 1.

In a similar discussion of the UFL we previously noticed that the big-M constraint∑m
i=1 xij ≤ |Ij |yj may be replaced by the strong formulation given by the valid

inequalities
Class C1: xij ≤ yj , (j ∈ [1, n]; i ∈ Ij).

Rather than imposing all of these constraints at each node of the branch-and-cut
algorithm, we only use these as cuts when needed. In our case, the valid inequality
x11 ≤ y1 is a cut of x∗, because x∗11 = 1 > y∗1 .

128

16.2 Algorithm Design Steps B6.3 MT 2021, Oxf. Math. Inst.

The separation problem associated with class C1 is straightforward to solve via
enumeration and scanning. In addition to the cut x11 ≤ y1, we also find the cut
x65 ≤ y5.

After adding the two cuts to the formulation, we re-optimise the LP solution via
dual simplex pivots and obtain the dual bound 9, 900 and the following nonzero com-
ponents: x∗30 = 1, x∗60 = 3/4, y∗1 = 1, x∗11 = x∗21 = 1, y∗3 = 3/4, x∗43 = 3/4,
x∗53 = 3/4, y∗5 = 1/4, x∗45 = x∗55 = x∗65 = 1.

None of the inequalities of class C1 are violated. However, note that y1 + y3 ≤ 1
is a valid inequality, because d1 + d3 > 19, hence this is a cut for (x∗, y∗). More
generally, we consider the following valid inequalities

Class C2:
∑
j∈S

yj ≤ |S| − 1, ∀S ⊆ [1, n] s.t.
∑
j∈S

dj > D.

To solve the separation problem associated with class C2, we need to find the indi-
cator vector z ∈ {0, 1}n of a set S such that

n∑
j=1

y∗j zj =
∑
j∈S

y∗j > |S| − 1 =

n∑
j=1

zj − 1,

n∑
j=1

djzj =
∑
j∈S

dj ≥ D + ε

for some sufficiently small ε.

We can find the deepest cut from this class by solving the knapsack problem

w∗ = min
z

n∑
j=1

(1− y∗j)zj

s.t.
n∑
j=1

djzj ≥ D + ε,

zj ∈ {0, 1}, (j ∈ [1, n])

and checking if w∗ < 1. The knapsack problem is quite easy to solve via branch-and-
bound and allows for variable fixing zj = 1 if y∗j = 1, which reduces the number of
variables.

Adding the cut y1 + y3 ≤ 1 from class C2 to the formulation and re-optimising
the LP relaxation via dual simplex iterations yields the dual bound 10,880 and non-
zero variables x∗30 = 1, y∗1 = 1, x∗11 = x∗21 = 1, y∗4 = 3/8, x∗54 = 3/8, y∗5 = 1,
x∗45 = x∗65 = 1, x55 = 5/8.

Class C1 does not yield any violated inequalities, but from C2 we find the cut
y1 + y4 + y5 ≤ 2. Adding this inequality to the formulation and re-optimising the LP
yields the dual bound 11,100 and the non-zero variables x∗30 = 1, y∗1 = 1, x∗11 = x∗21 =
1, y∗5 = 1, x∗45 = x∗55 = x∗65 = 1, which is integral valued and hence (IP)-optimal.

129

16.3 Cover Inequalities B6.3 MT 2021, Oxf. Math. Inst.

Note that no branching was necessary in the above example. In general,
using cuts from classes C1 and C2 in the branch-and-cut framework reduces
the number of nodes generated by 2 or 3 orders of magnitude over straight-
forward branch-and-bound when applied to larger search index construction
problems.

Class C2 can be generalised to other binary programming problems, where
they are known as cover inequalities.

16.3 Cover Inequalities

Definition 16.5 (Cover Inequality). Let aTx ≤ r with a ∈ Rn+, r ∈ R+ be a
constraint on binary decision variables xi ∈ {0, 1}. A cover of this constraint is a
subset C ⊆ {1, . . . , n} such that

∑
j∈C aj > r.

A cover is minimal if no strict subset S (C is a cover.

The cover inequality associated with a coverC is the inequality
∑
j∈C xj ≤ |C|−1.

Proposition 16.6. i) The cover inequality
∑
j∈C xj ≤ |C| − 1 associated with

a cover C of the constraint aTx ≤ r is a valid inequality for {x ∈ {0, 1}n :
aTx ≤ r}.

ii) If S ⊂ C is also a cover, then the cover inequality
∑
j∈S xj ≤ |S|−1 is stronger

than the cover inequality associated with C.

iii) Only cover inequalities associated with minimal covers are essential.

Proof. i) Suppose to the contrary that ∃x ∈ {0, 1}n such that aTx ≤ r and∑
j∈C xj ≥ |C|. Since x is binary, this implies xj = 1 ∀ j ∈ C, and then, using

aj ≥ 0,
aTx ≥

∑
j∈C

ajxj =
∑
j∈C

aj > r. E

ii) We need to show that for x ∈ {0, 1}n,
∑
j∈S xj ≤ |S|−1 implies

∑
j∈C xj ≤

|C|−1 (but not necessarily the other way round). Let Sc0 = {j ∈ C \S : xj = 0}
and Sc1 = {j ∈ C \ S : xj = 1}. Then∑

j∈C
xj =

∑
j∈S

xj +
∑
j∈Sc1

xj ≤ |S| − 1 + |Sc1| ≤ |C| − 1.

iii) If the cover C is not minimal, then there exists a cover S (C, and by
Part ii) the cover inequality associated with S renders the inequality

∑
j∈C xj ≤

|C| − 1 redundant.

130

16.4 Lifted Cover Inequalities B6.3 MT 2021, Oxf. Math. Inst.

Algorithm 16.7 (Minimal cover separation).
Input: a ∈ Rn+, r ∈ R+, x∗ ∈ {0, 1}n such that aTx∗ > r;
Output: minimal cover C whose associated cover inequality is a cut for x∗;
Initialise: C = ∅, ` = 1;
compute list I = {j1, . . . , jk} = {j : x∗j > 0} ordered such that
aj1 ≥ · · · ≥ ajk ;
while ` ≤ k and

∑
j∈C aj ≤ r do

C ← C ∪ {j`};
`← `+ 1;

end

Definition 16.8 (Extended cover Inequality). Let aTx∗ > r with a ∈ Rn+, r ∈
R+, and let

∑
j∈C xj ≤ |C| − 1 be the cover inequality with the minimal cover C

constructed by Algorithm (Minimal cover separation), and a∗ := aj1 = maxj∈C aj .
Let E = {j : aj > a∗}. The associated extended cover inequality is defined as∑
j∈C∪E xj ≤ |C| − 1.

Note that, althoughC∪E is a cover, the extended cover inequality is not the
cover inequality associated with C ∪ E, because the right-hand side is |C| − 1,
not |C ∪ E| − 1.

Proposition 16.9. i) The extended cover inequality
∑
j∈C∪E xj ≤ |C| − 1 is a

valid inequality for the set {x ∈ {0, 1}n : aTx ≤ r}.

ii) The extended cover inequality is stronger than the cover inequality
∑
j∈C xj ≤

|C| − 1.

Proof. i) Suppose to the contrary that ∃x ∈ {0, 1}n such that aTx ≤ r and∑
j∈C∪E xj ≥ |C|. Then x is a binary vector with at least |C| components equal

to 1. Using aj , xj ≥ 0 ∀ j and aj > a∗ ∀ j ∈ E by construction, we find

aTx ≥
∑

j∈C∪E
ajxj ≥

∑
j∈C

aj > r. E

ii) We need to show that for x ∈ Rn+,
∑
j∈C∪E xj ≤ |C|−1 implies

∑
j∈C xj ≤

|C| − 1 (but not necessarily the other way round). This follows trivially from
the disjointness of C and E and xj ≥ 0.

16.4 Lifted Cover Inequalities

This section consists of non-examinable material.

Lemma 16.10 (Lifting valid inequalities). Let S := {j1, . . . , jt} ⊂ [1, n], α0, αjs ≥
0, (s = 1, . . . , t), a ∈ Rn+ and r ∈ R+ be given such that

∑t
s=1 αjsxjs ≤ α0 is a

131

16.4 Lifted Cover Inequalities B6.3 MT 2021, Oxf. Math. Inst.

valid inequality for the set {x ∈ {0, 1}n : aTx ≤ r}. Let jt+1 ∈ [1, n] \ S and

ζt+1 := max

t∑
s=1

αjsxjs

s.t.
t∑

s=1

ajsxjs + ajt+1
≤ r,

xjs ∈ {0, 1}, (s = 1, . . . , t).

Then for every αjt+1 ∈ [0, α0 − ζt+1] the lifted inequality
∑t+1
s=1 αjsxjs ≤ α0 is

valid for the set {x ∈ {0, 1}n : aTx ≤ r}. Furthermore, the larger αt+1, the stronger
the inequality.

Proof. Let x ∈ {0, 1}n be such that aTx ≤ r. If xjt+1
= 0, then the lifted in-

equality follows from the validity of the unlifted inequality. If xjt+1
= 1, then x

satisfies the constraints of the optimisation problem, and hence,
∑t
s=1 αjsxjs ≤

ζt+1, with ζt+1 ≥ 0 because αjs , xjs ≥ 0, (s = 1, . . . , t). Therefore,

t∑
s=1

αjsxjs + αjt+1
xjt+1

≤ ζt+1 + α0 − ζt+1 = α0.

Furthermore, if 0 ≤ α[1] < α[2] ≤ α0 − ζt+1, then for x ∈ Rn+,
∑t
s=1 αjsxjs +

α[2]xjt+1
≤ α0 implies

∑t
s=1 αjsxjs + α[1]xjt+1

≤ α0, but not necessarily the
other way round.

Let x∗ ∈ Rn+ be such that aTx∗ > r with a ∈ Rn+, r ∈ R+. We would like to
use a tight lifted cover inequality to cut x∗ from the set {x ∈ {0, 1}n : aTx ≤ r}.
The following algorithm solves this separation problem:

Algorithm 16.11 (Separation by lifted cover inequalities).
using Algorithm (Minimal cover separation), find minimal cover inequality∑
j∈C xj ≤ |C| − 1;

fix an ordering j1, . . . , jp of [1, n] \ C;
for t = 1 to p do

using branch & bound, solve knapsack problem

ζt := max

t−1∑
s=1

αjsxjs +
∑
j∈C

xj

s.t.
t−1∑
s=1

ajsxjs +
∑
j∈C

ajxj + ajt ≤ r,

xj ∈ {0, 1}, (j ∈ C ∪ {js : s ∈ [1, t− 1]});

αjt := |C| − 1− ζt;
end

132

16.4 Lifted Cover Inequalities B6.3 MT 2021, Oxf. Math. Inst.

Proof. (Proof of Correctness) By construction, the cover inequality
∑
j∈C xj ≤

|C| − 1 is a cut for x∗, and applying Lemma (Lifting valid inequalities) recur-
sively, it follows that the lifted cover inequality

∑p
s=1 αjsxjs+

∑
j∈C xj ≤ |C|−1

is a valid inequality stronger than the cover inequality. Hence, it is also a cut
for x∗.

Example 16.12 (Generalised Assignment Problem by Branch & Cut). A fairly
general class of IPs is the Generalised Assignment Problem (GAP) that takes the fol-
lowing form, which uses a combination of knapsack and assignment constraints:

(GAP) max
x

m∑
i=1

n∑
j=1

pijxij

s.t.
n∑
j=1

cijxij ≤ bi, (i = 1, . . . ,m) (26)

m∑
i=1

xij = 1, (j = 1, . . . , n) (27)

xij ∈ {0, 1}, (i = 1, . . . ,m; j = 1, . . . , n).

GUB/SOS branching (see Lecture 9) on the assignment constraints (27) ensures
that the feasible sets of subproblems are balanced (children of the same parent node have
approximately equal cardinality).

Cuts for optimal solutions x∗ of LP relaxed subproblems can be constructed in the
form of lifted cover inequalities deriving from the knapsack constraints (26).

The branch & cut algorithm solves the problem in two to three orders of magnitude
fewer nodes than the branch & bound approach.

133

	Lecture 1: Modelling
	What is integer programming?
	Complexity
	Introductory Examples

	Lecture 2: Linear Programming Primal
	LP Relaxation
	Introductory Example
	The Simplex Method
	Tableau Format of the Simplex Method
	Phase I of the Simplex Algorithm

	Lecture 3: Linear Programming Duality
	Bounding LPs
	Weak Duality
	Strong Duality
	Linear Complementarity

	Lecture 4: Dual Simplex Algorithm, Alternative IP Formulations
	The Dual Simplex Algorithm
	Polyhedra and Polytopes
	Alternative Formulations of IP Problems

	Lecture 5: Total Unimodularity
	Totally Unimodular Matrices
	Total Unimodularity Theory
	Practical Tools to Recognise TU matrices
	Another Sufficient Condition for TU
	Application to Graph Problems

	Lecture 6: Submodularity
	The Maximum Weight Forest Problem
	Submodular functions
	Submodular Optimisation
	Submodular Rank Functions

	Lecture 7: Matroids
	Submodular Rank Functions Continued
	Matroids
	The MISP
	Lovasz Extension

	Lecture 8: Branch and Bound
	Branch-and-Bound: A Divide and Conquer Strategy
	Introductory Example

	Lecture 9: More on Branch and Bound
	General Branch-and-Bound Principles
	The General Branch & Bound Framework
	LP Based Branch and Bound
	Adaptation to Specific Problems
	Choice of Algorithm to Compute Dual Bounds
	Heuristics to Compute Primal Bounds
	Branching Rules
	Node Selection

	Lecture 10: Delayed Column Generation
	The Dantzig-Wolfe Reformulation
	LP Master Problem
	Delayed Column Generation

	Lecture 11: Branch and Price
	Recap on Delayed Column Generation
	The Branch & Price Algorithm
	The Cutting Stock Problem

	Lecture 12: Lagrangian Relaxation
	Introductory Example: Uncapacitated Facility Location
	Generalisation
	Lagrangian Relaxation of STSP
	The Lagrangian Dual Problem

	Lecture 13: Lagrangian Dual
	The Strength of the Lagrangian Dual
	Choosing a Lagrangian Dual
	Subgradients
	Solving the Lagrangian Dual
	Practical Subgradient Algorithm
	An Example

	Lecture 14: Cutting Planes
	LP Preprocessing
	IP Preprocessing
	The Cutting Plane Algorithm
	Chvàtal Cuts
	Chvàtal Closures

	Lecture 15: Gomoroy Cuts
	Gomoroy Cuts
	Cutting Planes with Gomoroy Cuts
	An Example

	Lecture 16: Branch and Cut
	The Branch & Cut Framework
	Algorithm Design Steps
	Cover Inequalities
	Lifted Cover Inequalities

