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Elements of Syllabus

Materials: 1. Lecture Notes.
2. cfl library and the project Examples.
3. Books on C++ with STL library: Stroustrup, Josuttis, etc..

Requirements: 1. Notebook with C++ compiler.
I MS Visual Studio 2017 (Community Desktop Edition).
I GNU GCC (5.4.0)

2. “Basic” knowledge of relevant topics:

2.1 Object-oriented programming with C++
2.2 Stochastic Analysis
2.3 Arbitrage-Free Pricing of Derivatives
2.4 Numerical Analysis
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Elements of Syllabus

Course work:

Homeworks Exam

# 4 (best 3) 4 (best 3)

Collaboration YES NO

Extra exercises:

I Problem sessions.
I Sample Exams.
I Bonus homework containing 5 problems of “extra” difficulty.
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Results from previous years (MSCF at CMU)

2014: # of students = 42

# of solved problems 4 3 2 1 0

# of students 6 10 11 9 6

2015: # of students = 35

# of solved problems 4 3 2 1 0

# of students 3 11 5 14 2

2016: # of students = 60

# of solved problems 4 3 2 1 0

# of students 5 17 14 13 11
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Goals of the course

”Theoretical”: review and expand the knowledge of the basic
topics:

1. Object Oriented Programming with C++
2. Arbitrage-Free Pricing of Derivatives
3. Stochastic Calculus
4. Numerical Analysis

”Practical”: improve (and test!) the ability to use C++ for
practical financial computations such as

1. Calibration of financial models, that is, the construction of
continuous curves (discount, volatility, forward, etc. ) from
discrete input data.

2. Pricing of (quite complicated!) real life derivative securities.
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Case study: cfl library

cfl (Library for the course Financial Computing with C++) is a
part of the course package. We shall use it to achieve the goals of
the course:

”Theoretical”: discuss the design and implementation of a
powerful C++ library for pricing of derivative securities.

”Practical”: use cfl library for practical financial computations.

Remark
The library is intended only for the course. No guarantee is given
with respect to the accuracy of the results.
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Elements of C++

Bibliography
Namespaces
Inheritance and template
Errors and exceptions
Standard Template Library
Memory management and “smart” pointers
“Pimpl” (pointer to implementation) idiom
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Namespaces

Examples of namespaces:

std: STL (Standard Template Library)
boost: library of “candidates” to STL.
cfl: library for the course “Financial Computing”.
prb: namespace for “problems” (examples, homeworks, exams,

etc. ).

Basic role: group related concepts. The namespaces help to

1. avoid name collisions.
2. organize a large amount of code (such as a library).
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Namespaces: name collisions

Assume that we have 4 libraries:

std: STL (Standard Template Library)

cfl: library for the course “Financial Computing”. cfl

depends on std.

finlab: another library for pricing of derivatives. finlab also
depends on std.

prb: library containing pricing modules for different
derivatives. prb depends on std + cfl + finlab.

If both cfl and finlab have the class Function, then we have
name conflict.
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Namespaces: names collisions
There are two ways to avoid names conflicts.

1. Use longer names: append prefix cfl to all classes in cfl

library:
Function→ cflFunction.

Disadvantage: leads to “ugly” long names. We get something
like cflGaussRollbackCrankNicolson, etc.

2. Use namespaces: put all classes and functions from cfl

library into namespace cfl.

namespace cfl {

class Function {

// some code

};

}
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Namespaces: names collisions

To use the class Function later we can write

1. everywhere (both in .hpp or .cpp files):

cfl::Function uF;

2. only in .cpp files (never in .hpp!):

using namespace cfl;

Function uF;
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Namespaces: code organization

namespace cfl { //main namespace

//global classes:

class Slice { ... };

class IModel { ... };

class Function { ... };

//subspaces:

namespace Black { //Black model

class Data { ... };

AssetModel model( ... );

}

namespace HullWhite { //Hull and White model

class Data { ... };

InterestRateModel model( ... );

}

}
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Namespaces in cfl library

cfl: Main namespace for cfl library.

cfl::Black: Black model for a single asset.

cfl::Data: Data structures.

cfl::HullWhite: Hull and White model for interest rates.

cfl::NApprox: One-dimensional approximation methods.

cfl::NBrownian: Implementations of class Brownian.

cfl::NError: Different types of exceptions.

cfl::NExtended: Implementations of ”expandable” financial
models.

cfl::NGaussRollback: Conditional expectation with respect to
gaussian distribution.

cfl::NInd: Implementations of indicator functions.

cfl::NInterp: Implementations of different interpolation
methods.
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Inheritance and templates

Assume that we have to price a standard call option.

Black & Scholes model:

dSt = St(rdt + σdWt)

Empirical fact: stock price ↑ ⇔ volatility ↓
Elastic model:

dSt = St(rdt + σ

(
S0

St

)γ
dWt)

Here 0 < γ < 1 is an elasticity coefficient.
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Inheritance and templates

1. Code for Black model:

double call(const Black::Model & rModel,

double dStrike) {

cfl::Slice uCall =

max(rModel.spot(1) - dStrike, 0.);

uCall.rollback(0);

return atOrigin(uCall);

}

2. Code for Elastic model:

double call(const Elastic::Model & rModel,

double dStrike) {

// Same code!

...

}
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Inheritance

Solution 1: use Inheritance.

1. Create “abstract” or “interface” class IAssetModel. (An
abstract class contains only pure virtual functions.)

2. Derive Black::Model and Elastic::Model from
IAssetModel:

IAssetModel

Black::Model

�
�
�
�>

Elastic::Model

Z
Z

Z
Z}
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Inheritance

class IAssetModel {

public:

virtual Slice spot(unsigned) const=0;

}; //No implementation!

namespace Black {

class Model: public IAssetModel {

public:

Slice spot(unsigned) const;

...

}; //Implement in *.cpp

}

namespace Elastic {

//Same code

...

}
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Inheritance

To price a standard call we create the function:

double call(const IAssetModel & rModel,

double dStrike) {

cfl::Slice uCall =

max(rModel.spot(1) - dStrike, 0.);

uCall.rollback(0);

return atOrigin(uCall);

}

We can use this function for both Black and Elastic models!

Elements of C++ Inheritance and template 20



Inheritance: disadvantages

1. Slower execution due to virtual functions.

2. Complicated design:

IModel

IAssetModel
�
�
�
�>

IInterestModel
Z

Z
Z

Z}

Black
�
�
��>

Elastic

6

BlackHullWhite
Z
Z

ZZ}

�
�
��>

HullWhite

6

'

&

$

%
��

multiple inheritance ⇒ virtual inheritance
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Inheritance

Virtual inheritance:

class IModel {

...

};

class IAssetModel: public virtual IModel {

public:

virtual Slice spot(unsigned) const=0;

...

};

Advices for design:

1. Use abstract classes.
2. Keep the structure “flat”.
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Templates

Solution 2: use Templates.
To price a standard call we create the function:

template <class Model>

double call(const Model & rModel,

double dStrike) {

cfl::Slice uCall =

max(rModel.spot(1) - dStrike, 0.);

uCall.rollback(0);

return atOrigin(uCall);

}

We can use this function for any model that has the member
function spot.
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Templates: disadvantages

1. An implementation is “visible” (in *.hpp file).

2. A documentation is required.

3. Compilation time is larger.

4. Templates have tendency to propagate throughout the library.
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Comparison table

Features Inheritance Templates

speed ?

platform independence ?

ease of implementation ?

documentation ?

compilation time ?

visibility of implementation ?
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Possible library design

cfl (kernel) � prb (concrete deals)

Inhertance Templates

Remark
cfl library is based on the so-called pimpl (pointer to
implementation) design pattern. This software idiom is a flavor of
inheritance. We shall discuss it later.
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Errors and exceptions

Levels of defense in C++:

1. Compiler

2. Assertions: assert.

3. Exceptions: throw, catch and try.
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Assertions

The key function: assert(bool).

Example

We want to handle negative volatility in Black and Scholes model.

double BSCall(double dSigma, ...) {

assert(dSigma > 0);

...

}

If dSigma <= 0, then complier prints the location of the error.
The assert command is executed only in DEBUG mode.
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Assertions

Advantages: 1. Works only in DEBUG mode.
2. Documents the code.

Disadvantages: NONE, unless you do something complicated or
silly.

assert(!(iTime == 0)) //good

assert(!(iTime = 0)) //typo!

Recommendation: Use assert as often as needed.
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Exceptions

Key words: try, catch, throw.

When we write a function we use throw.

double BSCall(double dSigma, ...) {

if(dSigma <= 0) {

throw(cfl::NError::range(‘‘volatility’’))

}

...

}
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Exceptions
Later, when we use this function, we type:

try{

...

double dSigma = -1;

double dCall = BSCall(dSigma, ...);

...

}

catch(const std::exception & rErr) {

cerr << rErr.what();

}

We should see on the screen:

‘‘out of range: volatility’’
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Exceptions in cfl library

The basic exception class in cfl library is cfl::Error. It inherits
the basic exception class for STL, namely, std::exception:

std::exception

6

cfl::Error

I A user can continue to catch only std::exception.

I Helper functions for different types of exceptions, namely,
range, sort and size, are collected in namespace
cfl::NError.
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Exceptions

Advantages: 1. work for both RELEASE and DEBUG mode.
2. allow “grace” reaction to an error: no need to stop the

execution of the program.

Disadvantages: slow down the performance in the final (RELEASE)
version.

Recommendation: use with care, mainly, to check external errors.

Elements of C++ Errors and exceptions 33



“Creative” use of exceptions
Goal: perform risk-management analysis of a large portfolio of

derivatives (≈ 1000) under various scenarios (≈ 100).
Examples: VAR (value-at-risk), stress analysis, etc. .

A typical code:

{ ...

unsigned iN = 100; //number of scenariors

std::vector<double> uR(iN); //results

for (i=0; i<iN; i++) {

//data(i) returns the data for ith scenario

//value(data(i)) computes the value of the portfolio

//for input data given by ith scenario

uR[i] = value(data(i));

}

return uR;

}
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“Creative” use of exceptions
If the data returned by data(99) are not valid (for example, they
contain negative volatilities), then all results are lost!

Use of exceptions:

{ ...

for (i=0; i<iN; i++) {

try{

uR[i] = value(data(i));

}

catch(...) { //catch all exceptions

uR[i] = -std::numeric_limits<double>::max();

}

}

return uR;

}
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STL library

Namespace: std.

Classes: 1. std::vector<T>

1.1 Elements in memory follow one another.
1.2 Standard container: all STL algorithms work well.

2. std::valarray<T>

2.1 Elements in memory follow one another.
2.2 Not a standard container.
2.3 Good for numerical manipulations:

uA = uB + uC; // uA[i] = uB[i] + uC[i]

uA = exp(uB); // uA[i] = exp(uB[i])

Algorithms: std::lower bound, std::set union,
std::binary search, std::transform
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Memory management

Main rule: # of new = # of delete.

Example (“Naive” strategy)

{

unsigned iN = numberOfNodes(...);

//create array of iN numbers

double * pA = new double [iN];

...

delete [] pA;

}
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Disadvantages of “naive” strategy

1. Remember (!) to delete.

2. Memory leaks with exceptions.

{ ...

try{

for (i=0; i<iM; i++) {

unsigned iN = numberOfNodes(...);

double * pA = new double [iN];

... //if error is thrown from here

//then memory will not be released

delete [] pA;

}

}

catch(...) {...}

}
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Efficient memory management

1. Use STL library: no new ⇒ no delete.

//instead of

double * pA = new double[iN];

...

delete [] pA;

//use

std::vector<double> uB(iN);

//or

std::valarray<double> uC(iN);

//No problems with exceptions!

2. Use “smart” pointers such as std::auto ptr<T> and
std::shared ptr<T>.
(cfl library: # of new ≈ 100, # of delete = 0).
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std::auto ptr<T> (depreciated since C++11)

Example

class IModel {...}; //interface class

//derived class

class Model: public IModel {...};

// Naive memory management:

IModel * pM1 = new Model(...);

...

delete pM1;

//Use of std::auto_ptr:

std::auto_ptr<IModel> pM2(new Model(...));

...

//no need to delete!
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std::auto ptr<T>

Advantages: No need for delete command ⇒ Safe for exceptions.

Main problem: terrible assignment and copy (no const!):

std::auto_ptr(std::auto_ptr<T> & );

std::auto_ptr & operator= (std::auto_ptr<T> &);

1. Never create containers of std::auto ptr:

std::vector<auto_ptr<T> > uVec; //bad!

2. Naive code leads to unexpected bad consequences:

std::auto_ptr<IModel> pM1(new Model(...));

std::auto_ptr<IModel> pM2(pM1);

//pM1 is not valid

std::auto_ptr<IModel> pM3 = pM2;

//pM2 is not valid
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std::auto ptr<T>

Advice: do not use assignment and copy (or be very careful).
Replace with std::unique ptr (from C++11).

Example

If std::auto ptr is a private member of a class, then always
implement or hide assignment and copy operators for this class.

class Model

{

public:

...

private:

std::auto_ptr<T> m_pT;

//no need to implement next two

Model(const Model &);

Model & operator= (const Model & );

};
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std::shared ptr<T> (since C++11)

1. The “smart” pointer for cfl.

2. Standard copy and assignment operators (with const!):

std::shared_ptr(const std::shared_ptr<T> & );

std::shared_ptr & operator =

(const std::shared_ptr<T> &);

std::shared_ptr<IModel> pM1(new Model(...));

std::shared_ptr<IModel> pM2(pM1);

std::shared_ptr<IModel> pM3=pM2;

//pM1, pM2 and pM3 point to the same object

pM1 XXXXXz
pM2 -

pM3 �
���

�:
new Model(...)
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std::shared ptr<T>

Advantages: copy and assignment operators are very fast
(“shallow”’ copies). Great for STL containers!

Problem: delicate behavior for classes with non const member
functions.

{

...

pM1->changeData(rNewData);

//pM2 and pM3 point now to model with

//different input data

...

}

Advice: use only for classes, where all member functions are
const.
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Pimpl idiom

Main idea: “hide implementation”.

Case study: implementation of a one-dimensional function object.
Examples:

1. Input curves for financial models: discount, volatility,
forward, etc.

2. Output for prices of derivatives, etc.

Techniques: 1. Templates
2. (Naive) inheritance
3. Pimpl (pointer to implementation) pattern.
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Template

If we base our design on templates (like in STL), then a function is
any object with member function similar to:

double operator()(double) const;

Remark
Nice, but then we get templates everywhere!
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Naive inheritance

If we base our design on “naive” inheritance, then we

1. define interface class IFunction:

class IFunction {

public:

virtual double

operator()(double) const = 0;

};

2. call a function any class that implements IFunction.
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Naive inheritance

Discount XXXXXz

Forward -

Volatility ��
��1

IFunction

Disadvantages: 1. Too many classes will appear.
2. It is not easy to define elegant arithmetic operators.
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Pimpl idiom
If we base our design on “pimpl” (pointer to implementation)
pattern, then we

1. define interface class IFunction as before.

2. define the “uniform” class for all functions:

class Function {

public:

Function(IFunction * pF)

:m_pF(pF) {}

...

double operator()(double dX) const {

return (*m_pF)(dX);

}

private:

std::shared_ptr<IFunction> m_pF;

};
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Pimpl idiom

Function

private: m pF IFunction-

Advantages: 1. All functions share the same name Function.
2. Implementations are done in *.cpp files. (We are hiding

implementations!).
3. It is easy to define and implement elegant and efficient

numerical operators such as +, −, ∗, /, exp, max, etc..
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Construction of data curves

Function objects in cfl
Interpolation
Least square fitting
Examples
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Function objects in cfl

cfl contains the following function objects:

1. One-dimensional (cfl::Function, cfl:IFunction)

2. Multi-dimensional (cfl::MultiFunction,
cfl:IMultiFunction)

These classes play very important role. For example, we use them
to define

I Input curves (volatility, forward, discount, etc).

I Output curves for the prices of derivatives (dependence of
computed prices on model’s factors).
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cfl::Function

Description: the class in cfl for a one-dimensional function object.

Implementation: a dynamically allocated object derived from the
interface cfl::IFunction (pimpl pattern).

Function

private: m pF IFunction-

Private members: std::shared_ptr<IFunction> m_pF

(all member functions in IFunction are const!)
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cfl::MultiFunction

Description: the class in cfl for a multi-dimensional function
object.

Implementation: a dynamically allocated object derived from the
interface cfl::IMultiFunction (pimpl pattern).

MultiFunction

private: m pF IMultiFunction-

Private members: std::shared_ptr<IMultiFunction> m_pF

(all member functions in IMultiFunction are const!)
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Interpolation

Basic idea: given

(x0, . . . , xn): arguments
(y0, . . . , yn): values of function f = f (x) (yk = f (xk))

⇒ restore f = f (x) for all x .

6

-
x0 x1 x2 x3 x4

sy0
�
��
�
�sy1

H
HHH

Hsy2 sy3
   

  sy4

Popular methods: 1. linear interpolation
2. cubic spline interpolation

Construction of data curves Interpolation 55



Cubic spline

Given the arrays of arguments (xk)0≤k≤n and values (yk)0≤k≤n the
cubic spline is defined as a function f = f (x) such that

1. f (xk) = yk for all pairs (xk , yk)

2. f = f (x) is a cubic polynomial on every [xk , xk+1] and is twice
continuously differentiable (that is, f ′′ = f ′′(x) is continuous)

3. Boundary conditions:

3.1 Natural spline: f ′′(x0) = f ′′(xn) = 0.
3.2 Fixed values for derivatives at end points: f ′(x0) = a and

f ′(xn) = b for some a and b.
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Cubic spline

Minimum norm characterization: among all interpolating
functions that satisfy one of the boundary conditions of item 3
the corresponding cubic spline minimizes the L2 norm for its
second derivative: ∫ xn

x0

(f ′′(t))2dt → min .

Intuitively, cubic spline is the smooth (with continuous second
derivative) interpolating function which has the least deviation
from the linear interpolating function.
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Interpolation in cfl library

Numerical interpolation is implemented in cfl through the
following classes:

1. the interface class cfl::IInterp,

2. the concrete class cfl::Interp.

These two classes interact with each other by pimpl idiom.
Concrete implementations are collected in the namespace
cfl::NInterp.
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Least square fitting
Inputs: 1. arguments (x1, . . . , xn)

2. values (y1, . . . , yn)
3. weights (w1, . . . ,wn), wi > 0.
4. a parametric family of functions f (λ) = f (λ, x), where

(λ = (λ1, . . . , λm)) is a parameter.
Output: function f (λ∗), where the optimal parameter λ∗ is the

solution of the least square minimization problem:
n∑

i=1

wi (f (λ, xi )− yi )
2 → min .

Fast numerical methods are available for linear least square fitting,
where

f (λ, x) =
d∑

j=1

λjgj(x)
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Examples of data curves

The following data curves are constructed in the project Examples.

1. Shape curve for yield changes in Hull and White model
(Examples/Src/DataYieldShapeHullWhite.cpp).

2. Discount curve obtained by log linear interpolation.
(Examples/Src/DataDiscountLogLinearInterp.cpp).

3. Discount curve for Hull and White model obtained by least
square fitting of market yields.
(Examples/Src/DataDiscountFitHullWhite.cpp).

These functions are declared in Examples/Examples.hpp.
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Abitrage-free pricing theory

Classification of derivative securities
Rollback operator
State processes
Model implementation
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Classification of derivatives

Type of underlying: (important for design!)

1. Assets: stocks, FX rates, commodities, etc.
2. Interest rates.

Dependence on the history: (important for numerical
implementation!)

1. Standard: payoff depends on the current market values
2. Path dependent: payoff depends on historical values
3. Barrier: simple dependence on the past
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Example: American butterfly

This is an example of Standard Asset option.

P : strike for put option

C : strike for call option (C > P)

(ti )1≤i≤N : exercise times

At an exercise time ti a holder of the option can

1. sell the underlying stock for the strike P of put option

2. buy the underlying stock for the strike C of call option

3. do nothing, wait and exercise later.
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Example: American Swaption

This is an example of Standard Interest Rate option.

(ti )1≤i≤n: exercise times

Underlying Swap with given parameters:

I notional amount,
I fixed swap rate,
I time interval between two payments (as year fractions),
I total number of payments,
I side of the contract (pay “fixed” and receive “float” or

otherwise).

A holder of the option can enter into the underlying swap
agreement at any exercise time ti . This time then becomes the
issue time for the swap.
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Example: down-and-out Call

This is an example of Barrier Asset derivative security.

L : lower barrier

(ti )1≤i≤M : barrier times

K : strike

T : maturity (T > tM).

The payoff of the option at maturity equals

1. the payoff of the standard call option if the spot price was
above the barrier for all barrier times tj ;

2. zero if the barrier was crossed at a barrier time.
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Example: Convertible Bond
This is an example of Path Dependent Asset option.

Coupon bond with standard parameters: face value, coupon rate,
maturity, etc.

Exercise option for holder: right to sell the bond for a number of
shares determined by the strike. The strike is resettable (path
dependence!).

Put option for holder: right to sell for a fixed redemption amount
(usually smaller than the face value).

Hard call option for issuer: right to buy for a fixed redemption
amount (usually larger than the face value).

Soft call option for issuer: right to buy for a fixed redemption
amount if the price of stock exceeds some barrier.

Put option for issuer at maturity: right to sell the bond at maturity
for a number of shares determined by a mandatory strike.
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Rollback operator

Vs : the value of
this payoff at s

Vt : a payoff at t�
Rollback

Notation:
Vs = Rs [Vt ]

Main principle:

Arbitrage-Free Pricing = Replication

Convenient method: (for complete financial models)

Arbitrage-Free Pricing = Risk-neutral valuation
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Money market measure
Denote

rt : short-term interest rate at t.

Bt = exp(
∫ t

0 rudu): bank account

The money market (martingale) measure P∗ is defined as such a
measure that

Xt

Bt
= Xt exp(−

∫ t

0
rudu)

is a martingale under P∗ for any wealth process X :

Xs exp(−
∫ s

0
rudu) = E∗s [Xt exp(−

∫ t

0
rudu)]

m

Xs = E∗s [Xt exp(−
∫ t

s
rudu)]
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Risk-neutral valuation

Theorem
The rollback operator has the following representation in terms of
the money market measure P∗:

Vs = Rs [Vt ] = E∗s [Vt exp(−
∫ t

s
rudu)]

Proof.
Definition of P∗ + “Arbitrage-Free Pricing = Replication”.

Remark

Computation of Rs [.]⇔ Computation of E∗s [.]

Abitrage-free pricing theory Rollback operator 69



Forward measure

B(s, t): price at s of the zero-coupon bond with face value $1 and
maturity t.
The forward (martingale) measure Pt is such a measure that

Xs

B(s, t)
, 0 ≤ s ≤ t,

is a martingale under Pt for any wealth process X :

Xs

B(s, t)
= Et

s [Xt ]

m
Xs = B(s, t)Et

s [Xt ]
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Forward measure

The term forward martingale measure is due to the fact, that
(F (s, t))0≤s≤t is Pt-martingale, where

F (s, t): forward price computed at s for delivery at t.

Indeed, consider long position in the forward contract:

Xs = 0: value at s

Xt = St − F (s, t): value at t

Then

0 = Xs = B(s, t)Et
s [Xt ] = B(s, t)Et

s [St − F (s, t)]

and, hence,
F (s, t) = Et

s [St ]
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Risk-neutral valuation

Theorem
The rollback operator has the following representation in terms of
the forward martingale measure Pt :

Vs = Rs [Vt ] = B(s, t)Et
s [Vt ]

Proof.
Definition of Pt + “Arbitrage-Free Pricing = Replication”.

Remark
To implement Rs [Vt ] we need to implement Et

s [Vt ].
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Problem on float rate

Problem
Notations:

L(s, t): float (LIBOR) rate computed at time s for maturity t

B(s, t): discount factor computed at time s for maturity t.

Compute (express in terms of B(s, t)) the value at time s of the
float payment at t. Recall that

“Float payment at t” = L(s, t)(t − s).
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Problem on foreign exchange rates

Problem
Notations:

F (s, t): forward exchange rate (price of one unit of foreign
currency) computed at time s for maturity t

B(s, t): discount factor (in domestic currency) computed at time s
for maturity t.

Compute (express in terms of F (s, t) and B(s, t)) the value at
time s of one unit of foreign currency paid at t.
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State processes

Idea: efficient storage for relevant random variables.

Consider, for example, binomial model with parameters:

u: relative change “up”

d : relative change “down”

��
��

�
��

�
��*

H
HHH

HHH
HHHj

Sn

dSn

uSn
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Binomial model

Consider payment at n + 1:

Vn+1 = Vn+1(ω1, . . . , ωn+1)

Rollback operator between n + 1 and n has the form:

Vn = Rn[Vn+1](ω1, . . . , ωn)

=
1

1 + r
[p̃Vn+1(ωn+1 = H) + q̃Vn+1(ωn+1 = T )]

where p̃ and q̃ are the one-step risk neutral probabilities:

p̃ =
1 + r − d

u − d
, q̃ = 1− p̃.
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“Naive” storage

“Naive” storage scheme: record values of

Vn = Vn(ω1, . . . , ωn)

for all (ω1, . . . , ωn). Then

# of records = 2n (too big!)

The naive (universal) storage scheme is not practical for already
n ≈ 100.

Idea: the storage should be adapted to the type of derivative
security we want to evaluate.
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Storage for standard options

For example, to price standard options it is sufficient to operate
with random variables in the form

Vn = f (Sn),

where f = f (x) is a deterministic function. In this case,

# of records = n + 1 (fine!)

Indeed, if Vn+1 = fn+1(Sn+1) then

Vn = Rn[Vn+1] = fn(Sn)

where fn(x) = 1
1+r [p̃fn+1(ux) + q̃fn+1(dx)].
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State processes

The spot price process (Sn)0≤n≤N in binomial model is an example
of a state process.

Definition
A process (Xt)0≤t≤T is called a state process if ∀s < t and any
deterministic function f = f (x) there is a deterministic function
g = g(x) such that

g(Xs) = Rs [f (Xt)].
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State processes

Remark
For a stochastic process X = (Xt)0≤t≤T and time t denote by

Xt = {f (Xt) : f is deterministic function }

the family of random variables determined by (measurable with
respect to) Xt . We have that

For arbitrary X : for any time t the family Xt is closed under any
arithmetic or functional operation

For state process X : for two times s < t the families Xs and Xt

are closed under the rollback operator s ← t: for any Vt ∈ Xt

Vs = Rs [Vt ] ∈ Xs
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Markov processes

Definition
A stochastic process X = (Xt)0≤t≤T is called a Markov process if
for any s < t and any deterministic f = f (x) there is a
deterministic g = g(x) such that

g(Xs) = Es [f (Xt)]

Remark (Intuitive definition)

At time t the future behavior of X (the distribution of (Xs)t≤s) is
completely determined by the current value Xt (does not depend
on the particular trajectory between times 0 and t).
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State and Markov processes

Theorem
The following conditions are equivalent:

1. X is a state process

2. for any maturity T

2.1 (Xt)0≤t≤T is a Markov process under the forward measure PT

2.2 the discount factor computed at t for maturity T is
determined by Xt , that is,

B(t,T ) = f (Xt)

for some deterministic f = f (x)

Proof.
Formula for rollback operator:

Rt(VT ) = B(t,T )ET
t [VT ].
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“Implementation” of a financial model

An “implementation” of a financial model consists of

1. Specification of a state process X (the choice of state process
is determined by the type of derivative security).

2. Implementation of all necessary operations for random
variables from the classes

Xt = {f (Xt) : f is a deterministic function } , t > 0

2.1 For given time t: all arithmetic and functional operations
2.2 Between two times s < t: rollback operator.
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Design of cfl

Basic elements of cfl
Main class cfl::Slice
Design of cfl
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Basic components

State process:
X = (X 0, . . . ,X d−1︸ ︷︷ ︸

d−dimensional

)

Vector of event times: (initial time = ) t0 < t1 < · · · < tN

At an event time ti we operate with random variables:

Xti =
{

f (Xti ) = f (X 0
ti
, . . . ,X d−1

ti
) : f = f (x0, . . . , xd−1)

}
.

A random variable f (Xti ) is represented by the class cfl::Slice.
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Event times

Any model in cfl has discrete time structure:

(ti )0≤i≤M : sorted vector of event times given as year fractions;

t0: initial time.

Event times: all times needed to price a particular derivative
security. Examples:

1. Exercise times
2. Maturity
3. Barrier times
4. Reset times

Numerical efficiency: create the vector of event times with a
smallest size.
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cfl::Slice
The main class in the library is cfl::Slice.

Basic idea: cfl::Slice represents the value of a (derivative)
security at a particular event time.

Precise defintion: cfl::Slice describes random variables in the
form f (X (ti )), where f = f (x) is a deterministic function, X is a
state process and ti is an event time.

q q q q q q
t0 t1 t2 t3 t4 t5

K : cash at t3

XXXXXXXXz

S(t3): spot price at t3

?

max(S(t3)− K , 0): payoff of call at t3

�
�
�
�
�
�3
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cfl::Slice

There are 2 types of operations for cfl::Slice:

1. At given event time ti : all possible arithmetic, functional, etc..
For example, if

uSpot: cfl::Slice for the spot price S(ti ) at ti
dK: double for the cash amount K at ti

then

Slice uCall = max(uSpot - dK, 0.);

creates cfl::Slice for the payoff

max(S(ti )− K , 0)

of the call option with strike K and maturity ti .
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cfl::Slice

However, if

t1 < t2: event times

uSpot1: cfl::Slice for the spot price S(t1) at t1

uSpot2: cfl::Slice for the spot price S(t2) at t2

then the following code

Slice uSum = uSpot1 + uSpot2

is wrong (should not compile)!

Remark
You might want to create a cfl::Slice for S(t1) + S(t2), (say, to
price an Asian option), but this operation is not allowed!
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cfl::Slice

There are 2 types of operations for cfl::Slice:

2. Between two event times ti < tj : only rollback operator.

The value of
this payoff at ti

A payoff at tj� Rollback

Algorithm for pricing of standard call:

...

//two event times: 0 (initial) and 1 (maturity)

Slice uCall = max(uModel.spot(1) - dK, 0);

uCall.rollback(0);

Design of cfl Main class cfl::Slice 90



Typical program flow

1. Basic objects of the type cfl::Slice such as

1.1 spot prices
1.2 discount factors, etc.

are created by an implementation of a particular financial
model

2. We then manipulate these basic objects using the provided
operators and functions:

2.1 for given event time: all arithmetic and functional operations;
2.2 between two event times: rollback operator.
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Architecture of cfl

full implementation

IModel Slicep p p p p p p p p p p p p p p p p p�
pimpl

�
�

�
�

�=

Z
Z
Z
Z
Z~

model
dependent

model
independent

abstract (interface)
class that defines

model-specific behavior
of the class Slice

concrete class for
random functions f (Xtk )
f : deterministic function
tk : event time
X : state process
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cfl::Slice and cfl::IModel

The class Slice represents the random variable in the form:
f (X i1

tk , . . . ,X
im
tk ).

Components (private members) of Slice:

1. array of values (std::valarray<double>): discretization of
f = f (x i1 , . . . , x im)

2. vector of dependences: i1, . . . , im

3. (index of) current event time tk

4. pimpl of IModel

The interface class IModel contains declarations of
model-specific functions needed to define the behavior of the
class Slice.
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Single asset models

“Standard” Black model
“Generalized” Black model
Black model in cfl

Class cfl::AssetModel
Examples of derivatives
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Black and Scholes model

Classical Black and Scholes:

dSt = St(rdt + σdWt),

where

St : the stock price at t
r : the short-term interest rate
σ: the volatility
W : the Brownian motion under the risk-neutral probability.

For calibration purposes we often use time-dependent version:

r → (rt)t≥0, σ → (σt)t≥0.
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Black and Scholes model

Black and Scholes model with dividends:

dSt = St((rt − dt)dt + σtdWt),

where dt is the dividend rate at time t

Black and Scholes model with cost of carry:

dSt = St(qtdt + σtdWt),

where qt is the cost of carry rate at t.

Black and Scholes fx model:

dSt = St((rdt − r ft )dt + σtdWt)

where rdt and r ft are domestic and foreign short-term rates at t.
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Standard Black model

Key idea: write the model in terms of forward prices. Denote by
F (t,T ) forward price at t for contract with maturity T .

Black model:
dF (t,T ) = F (t,T )σtdWt

or, equivalently,

F (t,T ) = F (0,T ) exp(

∫ t

0
σudWu −

1

2

∫ t

0
σ2
udu)
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Input parameters for Black model

(F (0,T ))T≥0: initial forward curve; F (0,T ) denotes the forward
price (at initial time 0) in the contract with maturity T .

(B(0,T ))T≥0: initial discount curve; B(0,T ) is the price of
zero-coupon bond with face value $1 and maturity T

(Σ(0,T ))T≥0: the average historical volatility curve for the spot
price on the interval [0,T ]:

Σ(0,T ) =

√
1

T

∫ T

0
σ2(u)du,

Equivalently, Σ(0,T ) is the implied volatility of standard
European options with maturity T .
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Examples of forward curves

1. Classical Black and Scholes without dividends:

F (0,T ) = S(0)/B(0,T ) = S(0) exp(

∫ T

0
rudu)

2. Black and Scholes model with cost of carry (qt)t≥0:

F (0,T ) = S(0)e
∫ T

0 q(u)du

3. FX model:

F (0,T ) = S(0) exp(

∫ T

0
(rdu − r fu )du)
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Movements of forward prices

From the model evolution:

dF (t,T ) = F (t,T )σtdWt

we deduce that forward prices move identically (in relative terms):

S(t) ↑ 1 b.p⇔ F (t,T ) ↑ 1 b.p

or, equivalently,

∆S(t)

S(t)
= 0.01%⇔ ∆F (t,T )

F (t,T )
= 0.01%

for any maturity T .
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Stationary implied volatility

We also deduce that the implied volatility:

Σ(t,T ) =

√
1

T − t

∫ T

t
σ2(u)du,

is stationary:

Σ(0,T ) = Σ(t,T + t) t > 0,T > 0,

if and only if
Σ(t,T ) = σ(= const)
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Empirical facts about oil prices

1. Forward prices with longer maturities move slower:

∆S(t)

S(t)
>

∆F (t,T )

F (t,T )
>

∆F (t,U)

F (t,U)
, t < T < U.

2. Shorter maturities have larger implied volatilities:

σt > Σ(t,T ) > Σ(t,U), t < T < U.
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“General” Black model

The evolution of forward prices:

dF (t,T ) = F (t,T )A(T )σtdWt

or, equivalently,

F (t,T ) = F (0,T ) exp

(
A(T )

∫ t

0
σudWu −

1

2
A2(T )

∫ t

0
σ2
udu

)
Here

(A(T ))T≥0: initial “shape curve” for the relative changes in
forward prices. It is convenient to assume that

A(0) = 1.
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Movements of forward prices

From the model evolution:

dF (t,T ) = F (t,T )A(T )σtdWt

we deduce that:

S(t) ↑ A(t) b.p⇔ F (t,T ) ↑ A(T ) b.p

or, equivalently,

∆S(t)

S(t)
= A(t)%⇔ ∆F (t,T )

F (t,T )
= A(T )%.
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Implied volatilities

The implied volatility for maturity t observed at s:

Ψ(s, t) = A(t)

√
1

t − s

∫ t

s
σ2(u)du

The implied volatility is stationary, i.e. Ψ(s, t) = Ψ(0, t − s) if
there are constants λ ≥ 0 and κ > 0:

A(t) = exp(−λt)

σ(t) = κ exp(λt)

Ψ(s, t) = κ

√
1− exp(−2λ(t − s))

2λ(t − s)
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“Traditional” form

Often the model is written in terms of the spot prices:

dSt = St [(θt − λt ln St)dt + A(t)σtdWt ]

Here (θ)t≥0 is chosen to calibrate input forward curve and (λt)t≥0

is the mean-reversion rate

λt = −A′(t)

A(t)
≥ 0,

or, equivalently,

A(t) = exp

(
−
∫ t

0
λudu

)
.
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Inputs for generalized Black model

(F (0,T ))T≥0: initial forward curve;

(B(0,T ))T≥0: initial discount curve;

(A(T ))T≥0: initial “shape curve” for the relative changes in
forward prices; A(0) = 1.

(Σ(0,T )))T≥0: the normalized implied volatility curve

Σ(0,T ) =

√
1

T

∫ T

0
σ2(u)du =

Ψ(0,T )

A(T )
.
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Black model in cfl

Generalized (and standard) Black model is implemented in the
namespace cfl::Black:

1. The class cfl::Black::Data defines the parameters of the
Black model. Recall, that the set of parameters consists of

I initial time (as year fraction),
I discount curve,
I forward curve,
I volatility curve,
I “shape” curve.

2. The functions cfl::Black::model implement the
“standard” single asset model in the library, namely, the class
cfl::AssetModel.
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Output for Black model

It is important (for example, for risk-management) to compute the
value of an option in Black model as the function of relative
change in the price of the stock:

V = (V (x)) ∆
2
≤x≤∆

2

where

V (x): the price of the option corresponding to the scenario that
the spot price changes by x percents

x : relative change in the spot price

∆: width of the interval for relative changes.
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Output for Black model

-

6

0%

initial forward curve
�

�
�	

V (x)

x
−∆

2
∆
2−1%

scenario: stock ↓ 1%
�
�
��

2%

scenario: stock ↑ 2%
@

@
@I
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Single asset model in cfl
A single asset model in cfl is represented by the “universal” class
cfl::AssetModel.

I The main idea is to “separate” the evaluation of derivatives
from the implementations of financial models.

I Creation of basic payoffs (basic Slice objects):
I cash payments,
I spot prices,
I forward prices,
I discount factors.

I Addition of extra state processes to price path dependent
derivatives.

I It is constructed from the implementation on a free store of
the interface class cfl::IAssetModel.

I The interface class cfl::IAssetModel and the concrete class
cfl::AssetModel are related by pimpl idiom.
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Examples of derivatives

The following derivatives on a single financial asset are evaluated
in the project Examples:

1. European put
(Examples/Src/AssetStdPut.cpp)

2. American put
(Examples/Src/AssetStdAmericanPut.cpp)

3. Barrier up-or-down-and-out
(Examples/Src/AssetStdBarrierUpDownOut.cpp)

4. Down-and-out American call
(Examples/Src/AssetStdDownAndOutAmericanCall.cpp)

5. Swing option
(Examples/Src/AssetStdSwing.cpp)
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Interest rate models

Hull and White model for interest rates
Hull and White model in cfl

Interest rate model in cfl

Examples of derivatives
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Traditional form of Hull and White model

Stationary form:

drt = (θt − λrt)dt + κdWt

rt : short-term rate

λ: mean-reversion rate

κ: volatility of short-term rate

(θt)t≥0: a function (if θ = const we get Vasicek model)

General form:
drt = (θt − λtrt)dt + κtdWt

Calibration:

(θt)t≥0: discount curve

(λt)t≥0&(κt)t≥0: implied volatility curve
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Some notations

B(s, t): discount factor computed at s for maturity t

r(s, t): yield computed at s for maturity t (continuously
compounded)

F (s, t, u): forward price of the zero-coupon bond, where

s: current time
t: delivery time for forward
u: maturity of the underlying zero-coupon bond

B(s, t) = exp (−(t − s)r(s, t))

r(s, t) = − 1

t − s
ln B(s, t)

F (s, t, u) = B(s, u)/B(s, t)
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Hull and White model in terms of forward prices

It is very convenient to write Hull and White model in terms of the
evolution of forward prices:

dF (s, t, u) = F (s, t, u)(A(u)− A(t))σsdW t
s ,

where

(A(t))t≥0: initial ”shape curve” for changes of yields and discount
factors. Convention:

A(0) = 0 A′(0) = 1

(σt)t≥0: instantaneous volatility of forward prices. Relation to
volatility of short-term rate: κt = σ(t)A′(t).

W t : Brownian motion under forward measure Pt .
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Movements of yields and discount factors

In Hull and White model the movements of yield and discount
curves are related as follows:

1. the spot short-term interest rate r(0) ↑ 1 b.p. (basic point)

2. yield r(0, t) ↑ A(t)
t b.p.

3. discount factor (relative change):

δB(0, t)

B(0, t)
↓ A(t) b.p.
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Dynamic of discount curve

In practice,

1. discount factors with longer maturities move “faster” ⇔ A is
increasing ⇔ A′ > 0

2. yields with longer maturities move “slower” ⇔ A(t)
t is

decreasing ⇔ A′ ≤ A(t)
t . This is ≈ to the fact that A′ is

decreasing ⇔ A′′ < 0.

If A′ > 0 and A′′ < 0, A′(0) = 1, then there is a positive function
(λt) such that

A′(t) = exp(−
∫ t

0
λudu).

It turns out that (λt) is the mean-reversion rate that appears in
the “traditional” form of Hull and White model.

Interest rate models Hull and White model for interest rates 118



Input parameters of Hull and White

(B(0, t))t≥0 : initial discount curve

(A(t))t≥0: initial ”shape curve”.

(Σ(t)))t≥0 : normalized volatility curve:

Σ(t) =

√
1

t

∫ t

0
σ2
udu,

Implied volatility at initial time 0 of standard put and call options
with delivery s written on zero-coupon bond with maturity t,
s < t, is given by

Ψ(0, s, t) = (A(t)− A(s))Σ(s)
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Stationary implied volatility
The implied volatility function is stationary, i.e.

Ψ(s, t, u) = Ψ(0, t − s, u − s)

if and only if there are constants κ and λ such that

σ(t) = κ exp(λt)

A(t) =
1− exp(−λt)

λ

Σ(t) = κ

√
exp(2λt)− 1

2λt

Ψ(0, t, u) = κ
1− exp(−λ(u − t))

λ

√
1− exp(−2λt)

2λt

The constants κ and λ appear in the “classical” form for Hull and
White model.
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Hull and White model in cfl

Hull and White model is implemented in the namespace
cfl::HullWhite:

1. The class cfl::HullWhite::Data defines the parameters of
the Hull and White model. Recall, that the set of parameters
consists of

I initial time (as year fraction),
I discount curve,
I volatility curve,
I “shape” curve.

2. The functions cfl::HullWhite::model implement the
“standard” interest rate model in the library, namely, the class
cfl::InterestRateModel.
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Output for Hull and White model

It is important (for example, for risk-management) to compute the
value of an option in Hull and White model as the function of
(minus) change in the short-term interest rate:

V = (V (x)) ∆
2
≤x≤∆

2

where

V (x): the price of the option corresponding to the scenario that
the short-term rate changes by −x percents

x : with sign − the change in the short-term rate

∆: width of the interval for changes in the short-term rate.
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Output for Hull and White model

-

6

0%

initial discount curve
�

�
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V (x)

x
−∆

2
∆
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scenario: rate ↑ 1%
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Interest rate model in cfl
An interest rate model in cfl is represented by the “universal”
class cfl::InterestRateModel.

I The main idea is to “separate” the evaluation of derivatives
from the implementations of financial models.

I Creation of basic payoffs (basic cfl::Slice objects):
I cash payments,
I discount factors.

I Addition of extra state processes to price path dependent
derivatives.

I It is constructed from the implementation on a free store of
the interface class cfl::IInterestRateModel.

I The interface class cfl::IInterestRateModel and the
concrete class cfl::InterestRateModel are related by
pimpl idiom.
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Examples of derivatives on interest rates

The following derivatives on a financial asset are evaluated in the
project Examples:

1. Interest rate cap
(Examples/Src/InterestRateStdCap.cpp)

2. Interest rate swaption
(Examples/Src/InterestRateStdSwaption.cpp)

3. Cancellable collar
(Examples/Src/
InterestRateStdCancellableCollar.cpp)

4. Down and out cap
(Examples/Src/InterestRateStdDownOutCap.cpp)

5. Future on LIBOR
(Examples/Src/InterestRateStdFutureOnLibor.cpp)
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Pricing of path-dependent derivatives

Forward start call
Theory
Implementation in cfl

Examples of path-dependent derivatives
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Motivating example

Assume that we have a “standard” implementation of Black
model, where the spot price S is a state process. In this case, at
any time t we can work with random variables in the form:

Vt = f (St)

where f = f (x) is a deterministic function.
Using this implementation of Black model we can price different
standard and barrier, European and American options.
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Motivating example

Suppose that we have to price forward start call option:q q q
0 t1 t2

issue time start time maturity

which payoff at maturity t2 is given by

Vt2 = max(St2 − St1 , 0).

Here the strike St1 is determined at t1.
The payoff function of the forward start call is not “supported” by
our standard implementation of Black model.
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Motivating example

Solution: extend the dimension of the model

S → (S ,Y )

where the new component Y is chosen so that

1. (S ,Y ) is a state process
2. Yt2 = St1

Then the payoff of the forward start call can be “correctly”
expressed in terms of the new 2-dimensional state process (S ,Y ):

Vt2 = max(St2 − St1 , 0) = max(St2 − Yt2 , 0) = f (St2 ,Yt2)

where f (x , y) = max(x − y , 0).
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General framework

Assume that we are given an “implementation” of a financial
model corresponding to a particular choice of a state process X ,
that is, for random variables from the sets

Xt = {f (Xt) : f is deterministic function } , t > 0

the following operations are implemented:

1. for given time t — all arithmetic and functional

2. between two times s < t — rollback, that is for any f = f (x)
we know how to compute g = g(x) such that

g(Xs) = Rs(f (Xt))
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General framework

Consider also a stochastic process Y which values change at reset
times t1, . . . , tN :

t0

q q q q q-

t1

-

t2

-

· · ·

-

tN−1

-

tN
-

6Y
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General framework

Question
When is (X ,Y ) a state process?

In other words, we want to find the conditions on Y so that for
any two times s < t and any payoff at t in the form:

Vt = f (Xt ,Yt),

where f = f (x , y), the arbitrage-free price of this payoff at s:

Vs = Rs(Vt)

has a similar representation:

Vs = g(Xs ,Ys)

for some g = g(x , y).
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Main theorem

Theorem
Assume that for any reset time ti+1 there is a deterministic
function Gi+1 = Gi+1(x , y) ( reset function) such that

Yti+1 = Gi+1(Xti+1 ,Yti )

Then (X ,Y ) is a state process.

(The value of Y at a reset time is determined by the value of the
original state process X at this time and the value of Y before
this time).
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Example: historical value

In the following examples we assume that the spot price S is a
state process.

Example (Historical value)

The process

Yt = 0 t < t1

Yt = St1 t ≥ t1

is useful for the evaluation of forward start options.
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Example: historical maximum

Example (Historical maximum)

The process
Yt = max

ti≤t
Sti

is useful for the evaluation of Lookback options. We have

Yt = 0 t < t1

Yti+1 = max(Yti ,Sti+1)
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Example: historical average

Example (Historical average)

The process

Yt =
1

n(t)

n(t)∑
i=1

Sti

where
n(t) = max {i : ti ≤ t}

is useful for the evaluation of Asian options. We have

Yt = 0 t < t1

Yti+1 =
1

i + 1
(iYti + Sti+1)
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Implementation in cfl library

1. We start with “standard” implementation of the model
determined by the basic state process X .

2. To price a path dependent derivative security we add another
state process Y determined by

2.1 reset times: t1, . . . , tN
2.2 reset functions: (Gi )1≤i≤N

Yti+1 = Gi+1(Xti+1 ,Yti ).

2.3 initial value: Yt0 (the value of Y before the first reset time).
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Classes in cfl library

1. Classes for path dependent processes:

1.1 Interface class cfl::IResetValues (describes reset
functions).

1.2 Concrete class cfl::PathDependent (is related to
cfl::IResetValues through pimpl idiom).

2. Classes for model extensions by path dependent processes:

2.1 Interface class cfl::IExtend.
2.2 Concrete class cfl::Extended (is related to cfl::IExtend

through pimpl idiom).
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Examples

The following path dependent derivatives are evaluated in project
Examples:

1. Barrier up-or-down-and-out in single asset model
(Examples/Src/AssetPathBarrierUpDownOut.cpp)

2. Asian call in single asset model
(Examples/Src/AssetPathAsianCall.cpp)

3. Savings account in interest rate model
(Examples/Src/InterestRatePathSavingsAccount.cpp)

4. Put on savings account in interest rate model
(Examples/Src/
InterestRatePathPutOnSavingsAccount.cpp)
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Implementation of financial models

Models with identical state processes
Finite differences
Indicators
Approximation
Path-dependent state processes

Implementation of financial models 140



Models with identical state process

Consider two financial models A and B that have the same

1. maturity T and the forward martingale measure PT ;

2. state process X = (Xt)0≤t≤T .

We call such models A and B “similar”.
Assume that

1. the model A has been implemented for the state process X
(“old” model)

2. the model B is “new”.

Our goal is to implement the “new” model B using the available
implementation of the similar “old” model A.
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Rollback operators

Denote

dA(s,T ): discount factor in model A for maturity T computed at
s < T .

dB(s,T ): discount factor in model B for maturity T computed at
s < T .

Theorem
For any s < t and any payoff ξ at t the arbitrage-free prices
computed at time s in models A and B are related by the following
expression:

RB
s [ξ] =

dB(s,T )

dA(s,T )
RA

s

[
dA(t,T )

dB(t,T )
ξ

]
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Rollback operators

Since the models A and B share the same state process X , for any
s > 0 there are deterministic functions fs = fs(x) and gs = gs(x)
such that

dA(s,T ) = fs(Xs), dB(s,T ) = gs(Xs)

Denoting h(x) = f (x)/g(x) we deduce that for the payoff ξ at t
given by

ξ = φ(Xt)

its arbitrage-free price in model B is given by

RB
s [φ(Xt)] =

1

hs(Xs)
RA

s [ht(Xt)φ(Xt)]
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Key example: Brownian motion

A popular choice of a state process for many one-factor models is

Xt =

∫ t

0
σ(u)dWu

where

σ = σ(t): deterministic volatility

W = (Wt)t≥0: standard Brownian motion

This process appears, for example, in

1. Black model

2. Hull and White model

3. Black-Karachinski model

4. Black-Derman-Toy model etc..
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Brownian model in cfl
In cfl an “artificial” Brownian model has been defined, where
interest rate is 0 and, hence,

Rs [·] = Es [·].

This model has been used then to implement Black and
Hull-White models. This is great for testing!

Brownian

Black::Model HullWhite::Model

�
�
�
�
��>

Z
Z

Z
Z
ZZ}
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Gaussian conditional expectation

To implement the rollback operator for a financial model with the
state process

Xt =

∫ t

0
σ(u)dWu,

where

σ = σ(t): deterministic volatility

W = (Wt)t≥0: standard Brownian motion

we need to provide numerical implementation of the operator of
conditional expectation with respect to Gaussian distribution.
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Gaussian conditional expectation

Inputs: two times s < t and a deterministic function f = f (x)

Output: the deterministic function g = g(x) such that

g(Xs) = Es [f (Xt)].

We have

g(x) =
1√

2πT

∫ ∞
−∞

exp(−(x − y)2

2T
)f (y)dy ,

where T =
∫ t
s σ

2(u)du.
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Gaussian conditional expectation

For the purpose of numerical implementation we assume that the
values of both functions: f = f (x) (input) and g = g(x) (output)
are given on a grid with 2N + 1 elements and step δx :

xi = i × δx , −N ≤ i ≤ N.

Popular numerical methods:

1. Finite differences

2. Spectral methods (Fast Fourier Transform)
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Partial differential equation
The functions f = f (x) (input) and g = g(x) (output) given by

g(x) =
1√

2πT

∫ ∞
−∞

exp(−(x − y)2

2T
)f (y)dy

are also related by the following equation:

Boundary condition:
u(x , 0) = f (x)

PDE:
∂u

∂t
=

1

2

∂2u

∂x2

Result:
g(x) = u(x ,T ).
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Finite differences

δt: time step

(known) t −→ t + δt (unknown)

δx : space step

Idea: approximate ∂u
∂t and ∂2u

∂x2 on the grid of x and t.

Error analysis: shows how “fast” the numerical result converges to
the true result

Stability analysis: delivers conditions on δx and δt that guarantee
that the scheme is stable, that is,

Bounded input ⇒ Bounded output
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Approximation for ∂u
∂t

Hereafter we consider the following popular finite difference
schemes:

1. Explicit

2. Implicit

3. Crank-Nicolson

All these schemes share approximation for ∂u
∂t :

∂u

∂t
≈ u(x , t + δt)− u(x , t)

δt
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Explicit scheme

Approximation for ∂2u
∂x2 in explicit scheme:

∂2u

∂x2
≈ u(x + δx , t)− 2u(x , t) + u(x − δx , t)

(δx)2

t t + δt
(known) (unknown)

t
t
t

t

x − δx

x

x + δx
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Error of explicit scheme

We have

u(x , t + δt) = (1− 2p)u(x , t) + p{u(x − δx , t) + u(x + δx , t)}

where

p =
δt

2(δx)2
.

We now perform error and stability analysis. Using Taylor’s
expansion for partial derivatives we deduce:

Error for explicit scheme � δt + (δx)2
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Stability of explicit scheme

Definition:

Bounded input ⇒ Bounded output

Method: as an input we take

f (x) = e ikx ,

where k is an integer. Then the output is

u(x , t) = e ikxq
(t/δt)
k

where

qk = (1− 2p) + p{e−ikδx + e ikδx} = 1− 4p sin2 kδx

2
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Stability of explicit scheme

We have

Bounded output

m
|qk | ≤ 1,∀k

m

p =
δt

2(δx)2
≤ 1

2

m
δt ≤ (δx)2

The last equality is the stability condition for the explicit scheme.
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Remarks on explicit scheme

Advantages: 1. Great for not very smooth functions f (x) as
inputs

2. This is a positive scheme:

Positive input ⇒ Positive output

Disadvantages: might be quite slow. Indeed, to double the
number of state layers (x ’s) we have to quadruple the number of
time layers.
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Implicit scheme

Approximation for ∂2u
∂x2 in implicit scheme:

∂2u

∂x2
≈ u(x + δx , t + δt)− 2u(x , t + δt) + u(x − δx , t + δt)

(δx)2

t t + δt
(known) (unknown)

t
t
t

t

x − δx

x

x + δx
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Error of implicit scheme

We have

u(x , t) = (1 + 2p)u(x , t + δt)

− p{u(x − δx , t + δt) + u(x + δx , t + δt)}

where

p =
δt

2(δx)2
.

To move one step forward we need to solve a tridiagonal system
of equations.
Using Taylor’s expansion for partial derivatives we deduce:

Error for implicit scheme � δt + (δx)2
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Stability of implicit scheme

As an input we take
f (x) = e ikx ,

where k is an integer. Then the output is

u(x , t) = e ikxq
(t/δt)
k

where

qk =
1

1 + 4p sin2 kδx
2

As qk ≤ 1 for any k , the scheme is stable (for any p).
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Remarks on implicit scheme

Advantages: 1. Great stability
2. No restriction on time step ⇒ can be quite fast.

Disadvantages: 1. Not a positive scheme:

Positive input 6⇒ Positive output

2. Still poor speed of convergence with respect to δt.
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Crank-Nicolson scheme

Approximation for ∂2u
∂x2 in Crank-Nicolson scheme:

∂2u

∂x2
≈ 1

2
(“Explicit” + “Implicit”)

t t + δt
(known) (unknown)

t
t
t

t
t
t

x − δx

x

x + δx
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Crank-Nicolson scheme

We have

(1− 2p)u(x , t) + p{u(x − δx , t) + u(x + δx , t)}
= (1 + 2p)u(x , t + δt)

− p{u(x − δx , t + δt) + u(x + δx , t + δt)}

where

p =
δt

2(δx)2
.

As in implicit scheme to move one step forward we need to solve a
tridiagonal system of equations.
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Error of Crank-Nicolson scheme

Using Taylor’s expansion for partial derivatives we deduce:

Error for Crank-Nicolson � (δt)2 + (δx)2

(Note the term (δt)2!).
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Stability of Crank-Nicolson scheme

As an input we take
f (x) = e ikx ,

where k is an integer. Then the output is

u(x , t) = e ikxq
(t/δt)
k

where

qk =
1− 4p sin2 kδx

2

1 + 4p sin2 kδx
2

As qk ≤ 1 for any k , the scheme is stable (for any p).
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Remarks on Crank-Nicolson scheme

Advantages: 1. Good stability. No restriction on time step.
2. Good speed of convergence with respect to δt.

Disadvantages: Not a positive scheme:

Positive input 6⇒ Positive output
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Comparison table

Features Explicit Implicit Crank-Nicolson

Positivity ?
Error ?

Stability ?

My favorite scheme consists of 3 layers:

1. start with explicit scheme with equal weights (to smooth
discontinuities).

2. continue with Crank-Nicolson (fast)

3. finish with implicit scheme (stable).
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Implementation in cfl library

In cfl library the operator of conditional expectation with respect
to Gaussian distribution is implemented through the classes

1. cfl::IGaussRollback: interface class,

2. cfl::GaussRollback: concrete class,

which cooperate by pimpl idiom.
Concrete instances are collected in the namespace
cfl::NGaussRollback. Currently, the following finite difference
methods are implemented: explicit, implicit and Crank-Nicolson.
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Integration of discontinuous functions

Basic principle:
speed � smoothness

Consider the trapezoidal method of numerical integration on
[−1, 1] with the number of steps 2N + 1:∫ 1

−1
f (x)dx =

∑
−N≤i≤N

∫ (i+1)h

ih
f (x)dx

≈
∑

−N≤i≤N

h

2
(f (ih) + f ((i + 1)h))

where h = 1/N is the step of integration.
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Case 1: f (x) is smooth

If f (x) is smooth, that is, f ′(x) is continuous, then

”Error on [ih, (i + 1)h]”

=

∫ (i+1)h

ih
(f (x)− 1

2
(f (ih) + f ((i + 1)h))dx

�
∫ (i+1)h

ih
(x − ih)2dx � h3

As the number of intervals � 1/h we deduce that

”Total error on [−1, 1]” � h2 � 1/N2
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Case 2: f ′(x) is discontinuous
Assume now that f (x) is continuous and f ′(x) has a finite
number of discontinuities. For example,

f (x) = max(g(x), h(x)),

where g(x) and h(x) are smooth functions.

1. If f ′(x) is continuous on [ih, (i + 1)h] (“good” interval), then
as before

”Error on good [ih, (i + 1)h]” � h3

As the number of “good” intervals � 1/h we deduce that

”Total error on good intervals of [−1, 1]” � h2
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Case 2: f ′(x) is discontinuous

2. If f ′(x) is discontinuous on [ih, (i + 1)h] (“bad” interval),
then

”Error on bad [ih, (i + 1)h]”

=

∫ (i+1)h

ih
(f (x)− 1

2
(f (ih) + f ((i + 1)h))dx

�
∫ (i+1)h

ih
(x − ih)dx � h2

As the number of “bad” intervals � 1 we deduce that

”Total error on bad intervals of [−1, 1]” � h2
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Case 2: f ′(x) is discontinuous

Hence,

”Total error on [−1, 1]”

= ”Total error on good intervals of [−1, 1]”

+ ”Total error on bad intervals of [−1, 1]”

� h2 � 1/N2.

Same error as for the smooth case!

Implementation of financial models Indicators 172



Case 3: f (x) is discontinuous

Assume now that f (x) has a finite number of discontinuities. As
before we divide all intervals [ih, (i + 1)h] into two groups:

1. “Good” intervals, where f (x) is continuous

2. “Bad” intervals, where f (x) is discontinuous.

Our previous analysis implies that

”Error on good intervals of [−1, 1]” � h2
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Case 3: f (x) is discontinuous

We have

”Error on bad [ih, (i + 1)h]”

=

∫ (i+1)h

ih
(f (x)− 1

2
(f (ih) + f ((i + 1)h))dx

�
∫ (i+1)h

ih
dx � h

Hence,

”Total error” = ”Error on bad intervals of [−1, 1]” � h

(Quite remarkable: one “bad” interval incurs a greater error than
all “good” intervals together).
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“Smart” indicators
How to increase the speed of convergence of numerical integration
for discontinuous functions?

Idea: “smart” representation of indicator functions on the grid:

1{x>a} −→ Ismart(ih > a)

so that any smooth function f (x)∫ 1

−1
f (x)I (x > a)dx =

∫ 1

a
f (x)dx

≈
∑

−N≤i≤N

h

2
(f (ih)Ismart(ih > a)

+ f ((i + 1)h)Ismart((i + 1)h > a)) + O(h2)

We then can use “smart” indicators to model discontinuities.
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Example of “smart” indicator

Example

An example of a “smart” indicator if ih ≤ a ≤ (i + 1)h:

Ismart(kh > a) = 0 k < i

Ismart(ih > a) =
(i + 1)h − a

2h

Ismart((i + 1)h > a) =
(i + 1)h − a

2h
+

1

2
Ismart(kh > a) = 1 k > i + 1.
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Numerical example

UP-AND-IN AMERICAN PUT OPTION IN BLACK MODEL

Quality Smart Naive Quality Smart Naive

20 1.12388 1.09714 720 1.10673 1.1064

120 1.10728 1.10655 820 1.10673 1.10785

220 1.10696 1.10466 920 1.10672 1.10598

320 1.10682 1.10891 1020 1.10672 1.10632

420 1.10676 1.11042 1120 1.10672 1.10688

520 1.10674 1.10183 1220 1.10672 1.10651

620 1.10674 1.10448 1320 1.10672 1.10612
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Implementation in cfl library

In cfl library the indicator functions are implemented through

1. the interface class cfl::IInd,

2. the concrete class cfl::Ind.

These two classes interact with each other by pimpl idiom.
Concrete implementations are collected in the namespace
cfl::NInd.
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Interpolation and approximation

Basic idea: given

(x0, . . . , xn): arguments
(y0, . . . , yn): values of function f = f (x) (yk = f (xk))

⇒ restore f = f (x) for all x .

6

-
x0 x1 x2 x3 x4

sy0
��
��

�
sy1

HHH
HHsy2 sy3

   
  sy4
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Interpolation and approximation

1. In the case of interpolation both arguments and values are
given as inputs. The methods include

1.1 linear interpolation
1.2 cubic spline interpolation
1.3 polynomial interpolation

2. In the case of approximation the arguments are selected first
and then the values are computed for these arguments. The
methods include

2.1 Chebyshev polynomials
2.2 Trigonometric polynomials
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Polynomial interpolation

Assume for simplicity that the arguments belong to [−1, 1]:

−1 = x0 < x1 < · · · < xn = 1

For any set of values (y0, . . . , yn) there is a unique approximating
polynomial Pn = Pn(x) of degree n, that is,

Pn(x) = a0 + a1x + · · ·+ anxn,

and
Pn(xk) = yk , 0 ≤ k ≤ n.
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Polynomial interpolation

Efficient way to compute Pn is based on the representation

Pn(x) =
n∑

k=0

ykLk(x),

where

Lk(x) =
n∏

j=0,j 6=k

x − xj
xk − xj

are Lagrange polynomials for which

Lk(xj) = 1{j=k}, 0 ≤ j ≤ k .
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Polynomial interpolation

Using Taylor’s formula one can show that if we use polynomial
interpolation for a function f = f (x) then the error is given by

|f (x)− Pn(x)| =
f (n+1)(θ(x))

(n + 1)!
Q(x)

where Q = Q(x) is the polynomial of the degree n + 1:

Q(x) =
n∏

k=0

(x − xk)

and θ(x) ∈ [−1, 1].
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“Holy Grail” of Polynomial Approximation

Problem (“Holy Grail” of Polynomial Approximation)

Find the partition

−1 = x0 < x1 < · · · < xn = 1

of [−1, 1] so that

max
−1≤x≤1

|f (x)− Pn(x)| → min .

Unfortunately, such minimax polynomial Pn for f = f (x) is hard to
compute.
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Chebyshev approximation

Recall that

max
−1≤x≤1

|f (x)− Pn(x)| = max
−1≤x≤1

| f
(n+1)(θ(x))

(n + 1)!
Q(x)|

≤ max
−1≤x≤1

| f
(n+1)(θ(x))

(n + 1)!
| max
−1≤x≤1

|Q(x)|

where Q = Q(x) is the polynomial of the degree n + 1:

Q(x) =
n∏

k=0

(x − xk)
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Chebyshev approximation
This suggests to look at the following minimization problem:

Problem (Chebyshev approximation)

Find the partition

−1 = x0 < x1 < · · · < xn = 1

of [−1, 1] so that
max
−1≤x≤1

|Q(x)| → min .

The solution is given by

xk = cos

(
π(k + 1

2 )

n + 1

)
, 0 ≤ k ≤ n.
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Chebyshev approximation

The corresponding polynomial approximation is called Chebyshev
approximation.
The arguments (xk)0≤k≤n given above are the roots of the
Chebyshev polynomial of the degree n + 1:

Tn+1(x) = cos((n + 1) arccos(x)).

(Tn+1(xk) = 0, 0 ≤ k ≤ n)
We also have the following expression for the error term:

Q(x) =
1

2n
Tn+1(x).
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Implementation in cfl

In cfl numerical approximation is realized through

1. interface class cfl::IApprox

2. concrete class cfl::Approx.

Concrete implementations are collected in the namespace
cfl::NApprox.
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Path Dependent state processes

Input: 1. (t1, . . . , tM): event times
2. X : “old” state process
3. R = RX : “old” rollback operator (supports X )
4. Y : “new” component for the state process

4.1 (s1, . . . , sN): reset times (subset of event times)
4.2 (G1, . . . ,GN): reset functions

Ysi+1 = Gi+1(Xsi+1 ,Ysi ).
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Path Dependent state processes

Output: the rollback operator R = RX ,Y that supports the state
process (X ,Y ).
In other words given two consecutive event times ti and ti+1 and
a function f = f (x , y) we need to compute the function
g = g(x , y) such that

g(Xti ,Yti ) = Rti [f (Xti+1 ,Yti+1)].
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Path Dependent state processes

Case 1: ti+1 is not a reset time. Then

Yti+1 = Yti

and
f (Xti+1 ,Yti+1) = f (Xti+1 ,Yti )

“Naive” scheme: for any y we compute

g(Xti , y) = Rti [f (Xti+1 , y)] = RX
ti

[f (Xti+1 , y)].
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Path Dependent state processes

“Practical” scheme: choose approximation method for the
values of Yti :

1. Nodes: (y1, . . . , yK )
2. Recovery operator: ((y1, . . . , yK ), (θ(y1), . . . , θ(yK ))) −→
θ = θ(y).

For every node yi compute gi = gi (x) by

gi (Xti ) = Rti [f (Xti+1 , y)] = RX
ti

[f (Xti+1 , y)].

Then for every x :

((y1, . . . , yK ), (g1(x), . . . , gK (x))
recovery−→ g(x , y)
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Path Dependent state processes

Case 2: ti+1 is a reset time. Then

Yti+1 = Gi+1(Xti+1 ,Yti )

and
f (Xti+1 ,Yti+1) = h(Xti+1 ,Yti )

where
h(x , y) = g(x ,Gi+1(x , y))

We follow now the same technique as in the first step.
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Path Dependent state processes

In cfl library the infrastructure that allows us to add an additional
path dependent state process is based on the following classes:

1. cfl::IExtend: interface class

2. cfl::Extended: concrete class (related to cfl::IExtend

through pimpl idiom).

Implementations of cfl::Extended are collected in the
namespace cfl::NExtended.
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