Second-moment method and thresholds:

1. Show that all (finite) graphs of the following types are strictly balanced: complete graphs, cycles, trees, complete bipartite graphs, connected regular graphs.

Give an example of a graph that is balanced but not strictly balanced.
2. Let T be a tree with k vertices. What is the threshold for $G(n, p)$ to contain a copy of T ?
Show that, for each fixed k, there is a function $p(n)$ such that the probability that $G(n, p(n))$ has a component of size exactly k tends to 1 as $n \rightarrow \infty$.
3. What is the threshold for $G(n, p)$ to contain a cycle of length k, for fixed k ?

Find a threshold function for the property of containing a cycle. [Careful! It doesn't quite follow immediately from the first part.]

The Local Lemma:
4. Show that it is possible to colour the edges of K_{n} with $k=\lceil 3 \sqrt{n}\rceil$ colours so that no triangle has all its edges the same colour.
5. Let $H=(V, E)$ be a hypergraph. Suppose the vertices are k-coloured uniformly at random; each $v \in V$ receives each colour with probability $1 / k$, and the colours of different vertices are independent. For $e \in E$, let A_{e} be the event that edge e is monochromatic.

Show that if $|e \cap f| \leqslant 1$, then A_{e} and A_{f} are independent.
Is it true that A_{e} is independent of the collection $\left\{A_{f}:|e \cap f| \leqslant 1\right\}$?
6. A k-SAT (more properly k-CNF) formula is an expression such as (for $k=3$)

$$
\begin{aligned}
& \left(x_{1} \text { OR } x_{4} \text { OR } \overline{x_{6}}\right) \text { AND }\left(\overline{x_{1}} \text { OR } x_{2} \text { OR } x_{5}\right) \\
& \text { AND }\left(\overline{x_{2}} \text { OR } \overline{x_{3}} \text { OR } \overline{x_{4}}\right) \text { AND }\left(\overline{x_{4}} \text { OR } \overline{x_{5}} \text { OR } x_{6}\right),
\end{aligned}
$$

where the variables x_{i} take values TRUE or FALSE, $\overline{x_{i}}$ means not x_{i}, and k variables or their negations are ORd together in each clause. A formula is satisfiable if there is an assignment of values to the variables making the expression true.
(a) Use the first-moment method to show that each k-SAT formula with fewer than 2^{k} clauses is satisfiable.
(b) Use the Symmetric Local Lemma to show that each k-SAT formula in which no variable lies in more than $2^{k-2} / k$ clauses is satisfiable.
7. Let $G=(V, E)$ be a graph with maximum degree Δ, and let $V_{1}, V_{2}, \ldots, V_{s}$ be a collection of disjoint subsets of V, each of size $k \geqslant 2 e \Delta$. Show that G has an independent set which contains a vertex from each set V_{i}. [There is a hint over the page.]
8. Let $G=(V, E)$ be a graph, and suppose that for each $v \in V$ there is a list $S(v)$ of at least $2 e r$ colours, where r is a positive integer. Suppose also that for each $v \in V$ and each $c \in S(v)$, there are at most r neighbours u of v such that $c \in S(u)$.

Prove that there is a proper colouring of G under which each vertex v receives a colour from its list $S(v)$.
9. Let $W(k)$ be the smallest integer n such that any two-colouring of the set $\{1,2, \ldots, n\}$ contains a monochromatic arithmetic progression of length k.
(a) Use the first-moment method to show that $W(k) \geqslant 2^{k / 2}$.
(b) Use the Local Lemma to show that $W(k) \geqslant \frac{2^{k}}{2 e k}(1+o(1))$.

Bonus questions (compulsory for MFoCS students, optional for others):
10. Let X_{1}, X_{2}, \ldots be a sequence of random variables each taking non-negative integer values, and let $k \geqslant 0$ be fixed. Suppose that for each $r \geqslant 0$ we have $\lim _{n \rightarrow \infty} \mathbb{E}_{r}\left[X_{n}\right]=\lambda_{r}<\infty$, and that $\lambda_{r+k} / r!\rightarrow 0$ as $r \rightarrow \infty$. show that

$$
\mathbb{P}\left(X_{n}=k\right) \rightarrow \frac{1}{k!} \sum_{r=0}^{\infty}(-1)^{r} \frac{\lambda_{r+k}}{r!} .
$$

[Hint: Use a result from last time. Be careful exchanging sums and limits! You may wish to just/first do the case $k=0$.]
In applications we often have a limiting distribution X in mind; this result shows that under certain assumptions, if the moments of X_{n} tend to those of X, then $\mathbb{P}\left(X_{n}=k\right) \rightarrow \mathbb{P}(X=k)$.
11. Let $c>0$ be constant. Suppose that $p=p(n)$ satisfies $n^{4} p^{6} \rightarrow c$ as $n \rightarrow \infty$, and let X_{n} denote the number of copies of K_{4} in $G(n, p)$. Show that $\mathbb{P}\left(X_{n}>0\right) \rightarrow 1-e^{-c / 24}$ as $n \rightarrow \infty$.
[Hint: use the result of the previous question.]
What can you say about the distribution of the number of copies of K_{4} ? Can you generalize this to (certain) other graphs?

Hint for Question 7: pick one vertex X_{i} from each V_{i}. You could consider a 'bad' event $E_{u v}$ for each edge $u v$ with u and v in different sets V_{i}.

> If you find an error please check the website, and if it has not already been corrected, e-mail riordan@maths.ox.ac.uk

