Second-moment method and thresholds:

1. Show that all (finite) graphs of the following types are strictly balanced: complete graphs, cycles, trees, complete bipartite graphs, connected regular graphs.

Give an example of a graph that is balanced but not strictly balanced.

2. Let T be a tree with k vertices. What is the threshold for G(n, p) to contain a copy of T?

Show that, for each fixed k, there is a function p(n) such that the probability that G(n, p(n)) has a component of size exactly k tends to 1 as $n \to \infty$.

3. What is the threshold for G(n, p) to contain a cycle of length k, for fixed k? Find a threshold function for the property of containing a cycle. [Careful! It doesn't quite follow immediately from the first part.]

The Local Lemma:

- 4. Show that it is possible to colour the edges of K_n with $k = \lceil 3\sqrt{n} \rceil$ colours so that no triangle has all its edges the same colour.
- 5. Let H = (V, E) be a hypergraph. Suppose the vertices are k-coloured uniformly at random; each $v \in V$ receives each colour with probability 1/k, and the colours of different vertices are independent. For $e \in E$, let A_e be the event that edge e is monochromatic.

Show that if $|e \cap f| \leq 1$, then A_e and A_f are independent.

Is it true that A_e is independent of the collection $\{A_f : |e \cap f| \leq 1\}$?

6. A k-SAT (more properly k-CNF) formula is an expression such as (for k = 3)

 $(x_1 \text{ OR } x_4 \text{ OR } \overline{x_6}) \text{ AND } (\overline{x_1} \text{ OR } x_2 \text{ OR } x_5)$

AND $(\overline{x_2} \text{ OR } \overline{x_3} \text{ OR } \overline{x_4})$ AND $(\overline{x_4} \text{ OR } \overline{x_5} \text{ OR } x_6)$,

where the variables x_i take values TRUE or FALSE, $\overline{x_i}$ means NOT x_i , and k variables or their negations are ORd together in each clause. A formula is *satisfiable* if there is an assignment of values to the variables making the expression true.

- (a) Use the first-moment method to show that each k-SAT formula with fewer than 2^k clauses is satisfiable.
- (b) Use the Symmetric Local Lemma to show that each k-SAT formula in which no variable lies in more than $2^{k-2}/k$ clauses is satisfiable.
- 7. Let G = (V, E) be a graph with maximum degree Δ , and let V_1, V_2, \ldots, V_s be a collection of disjoint subsets of V, each of size $k \ge 2e\Delta$. Show that G has an independent set which contains a vertex from each set V_i . [There is a hint over the page.]

8. Let G = (V, E) be a graph, and suppose that for each $v \in V$ there is a list S(v) of at least 2er colours, where r is a positive integer. Suppose also that for each $v \in V$ and each $c \in S(v)$, there are at most r neighbours u of v such that $c \in S(u)$. Prove that there is a proper colouring of G under which each vertex v receives a

9. Let W(k) be the smallest integer n such that any two-colouring of the set $\{1, 2, ..., n\}$ contains a monochromatic arithmetic progression of length k.

(a) Use the first-moment method to show that $W(k) \ge 2^{k/2}$.

colour from its list S(v).

(b) Use the Local Lemma to show that $W(k) \ge \frac{2^k}{2ek} (1 + o(1))$.

Bonus questions (compulsory for MFoCS students, optional for others):

10. Let X_1, X_2, \ldots be a sequence of random variables each taking non-negative integer values, and let $k \ge 0$ be fixed. Suppose that for each $r \ge 0$ we have $\lim_{n\to\infty} \mathbb{E}_r[X_n] = \lambda_r < \infty$, and that $\lambda_{r+k}/r! \to 0$ as $r \to \infty$. show that

$$\mathbb{P}(X_n = k) \to \frac{1}{k!} \sum_{r=0}^{\infty} (-1)^r \frac{\lambda_{r+k}}{r!}.$$

[*Hint:* Use a result from last time. Be careful exchanging sums and limits! You may wish to just/first do the case k = 0.]

In applications we often have a limiting distribution X in mind; this result shows that under certain assumptions, if the moments of X_n tend to those of X, then $\mathbb{P}(X_n = k) \to \mathbb{P}(X = k).$

11. Let c > 0 be constant. Suppose that p = p(n) satisfies $n^4 p^6 \to c$ as $n \to \infty$, and let X_n denote the number of copies of K_4 in G(n, p). Show that $\mathbb{P}(X_n > 0) \to 1 - e^{-c/24}$ as $n \to \infty$.

[*Hint: use the result of the previous question.*]

What can you say about the distribution of the number of copies of K_4 ? Can you generalize this to (certain) other graphs?

Hint for Question 7: pick one vertex X_i from each V_i . You could consider a 'bad' event E_{uv} for each edge uv with u and v in different sets V_i .

If you find an error please check the website, and if it has not already been corrected, e-mail riordan@maths.ox.ac.uk